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Abstract

This paper proposes a self-controllable super-resolution adaptation algorithm in drone platforms. The drone
platforms are generally used for surveillance in target network areas. Thus, super-resolution algorithms which
are for enhancing surveillance video quality are essential. In surveillance drone platforms, generating video
streams obtained by CCTV cameras is not static, because the cameras record the video when abnormal objects
are detected. The generation of streams is not predictable, therefore, this unpredictable situation can be
harmful to reliable surveillance monitoring. To handle this problem, the proposed algorithm designs super-
resolution adaptation. With the proposed algorithm, the shallow model which is fast and low-performance
will be used if the stream queue is near overflow. On the other hand, the deep model which is high-
performance and slow will be used if the queue is idle to improve the performance of super-resolution.
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1. Introduction
Recently, many research results have been introduced
to deal with the use of mobile stations for enhancing
communications and networking performance, e.g., (i)
mobile computing for surveillance monitoring and
(ii) cellular network coverage extension using drones.
Among them, the use of drone wireless communications
and networking is promising and a lot of related
research contributions are now available for various
applications and settings [1–9].

This paper considers the case where drone mobile
platforms are used for surveillance. The drone mobile
platforms are equipped with CCTV cameras and
the cameras record the environment and transmit
the recorded video streams to ground surveillance
monitoring centers over wireless channels such as 5G
millimeter-wave channels or LTE. In drone mobile
platforms, CCTV cameras are equipped with computer
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vision functions, i.e., object detection and super-
resolution [10, 11]. The super-resolution stands for
the technology which is for enhancing the resolution
of given images or video streams. Previously, various
signal processing techniques are used for this purpose.
However, various modern deep learning methodologies
such as convolutional neural networks (CNN) and
generative adversarial networks (GAN) have been used
nowadays. With the function of object detection, the
CCTV cameras are able to record video streams when
abnormal objects are detected. Then, the recorded video
streams are stored in the queues with the drone mobile
platforms. Thus, the arrivals of the queues are not static.
In order to improve the qualities of the video streams
with the queues, super-resolution algorithms are used.

In this system setting, multiple super-resolution algo-
rithms are implemented. Among these algorithms, the
deep learning-based models are for high-performance
learning whereas they take a longer time in terms
of their computation. On the other hand, the shal-
low learning-based models are for fast computation
whereas they take low-performance learning.
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The proposed algorithm in this paper selects an
optimal super-resolution algorithm among a set of
candidate super-resolution algorithms depending on
the queue-backlog size. If the system has a larger
queue-backlog (near overflow), the super-resolution
computation should be accelerated in order to speed
up the departure processes. Thus, shallow models
should be selected while sacrificing certain amounts
of learning accuracy. On the other hand, if the
system has an idle queue-backlog, the super-resolution
computation can take more time in order to improve
the performance of learning accuracy. In this case,
the longer computation times with the deep models
do not need to be strictly considered because the
queue-backlog is idle. Note that the main objective
of this paper is for improving the performance of
super-resolution deep learning-based image processing
in order to increase surveillance performance [12]. In
this paper, a dynamic novel super-resolution adaptation
control algorithm is designed for time-average learning
performance maximization subject to queue stability
by selecting the super-resolution algorithm among
the given set, inspired by the Lyapunov optimization
framework. Note that the Lyapunov optimization
framework provides theoretical underpinnings for
time-average utility function maximization subject to
system stability.
Therefore, the motivation of this paper can be illustrated

as follows. The proposed Lyapunov-optimization based
dynamic super-resolution deep learning control algorithm
maximizes time-average object recognition performance via
super-resolution model selection subject to queue stability.
Thus, our scheme achieves maximum performance while
makes our systems be stabilized. Finally, it is obvious that
our scheme guarantees optimal performance as well as is
suitable for real-time computing platforms.

The rest of this paper is organized as follows. Sec. 2
presents the preliminary knowledge for our research
presented in this work. Sec. 3 proposes the dynamic
algorithm (to control) which is for super-resolution
deep learning adaptation in drone mobile platforms.
Sec. 4 verifies the proposed algorithm via simulations,
and then, Sec. 5 concludes this paper.

2. Preliminaries
This section serves two objectives: 1) introducing a
reference system model characterizing the context
of deployment of our work and 2) introducing
the time-average utility maximization via Lyapunov
optimization, which is a key technique in this paper.

2.1. Reference System Model
Our considered reference system model is illustrated
in Fig. 1. As presented in Fig. 1, a drone mobile
platform using its own camera exists and its camera

conducts object detection. If abnormal objects are
detected, the streams will be recorded and the results
are stored in the queue. Then, a super-resolution
algorithm is used in order to improve the quality of
streams. In Fig. 1, the super-resolution framework is
illustrated and it consists of multiple super-resolution
algorithms. If a super-resolution algorithm is deep, it
takes more time and (often) achieves high learning
performance, as presented in Table 1. Note that our
considering super-resolution deep learning algorithm
is based on VSDR [11] which is one of the most
well-known CNN-based super-resolution algorithms.
On the other hand, if a super-resolution algorithm is
shallow, it consumes less computation time whereas
its learning performance is (often) not as good. Thus,
a trade-off exists between learning performance and
delays. In order to address this state of trade-off under
constraints, this paper designs an adaptive control
algorithm that can flexibly select super-resolution deep
learning algorithms depending on the queue-backlog.

2.2. Lyapunov Optimization
The Lyapunov optimization framework, which is
based on stochastic optimization (time-average utility
maximization while achieving queue stability), is
widely applied in the literature [24], with applications
that include the following:

• Adaptive video streaming: Kim et al. [13, 14]
and Bethanabhotla et al. [15] design a novel
control algorithm for time-average streaming
quality (modelled with peak-signal-to-noise-ratio
(PSNR)) maximization subject to transmit buffer
stability in wireless video networks. In addition,
Koo et al. [16] propose a novel dynamic adaptive
streaming over HTTP (DASH) mechanism for
video streaming quality optimization under the
consideration of battery status, LTE data quota,
and buffer stability in integrated LTE and IEEE
802.11 wireless networks.

• Wireless networks: Neely, et al. [17, 18] propose
a novel dynamic routing algorithm which is for
energy-efficient and power-aware multi-hop data
transmission while maintaining queue stability.

• Surveillance monitoring applications: Mo et al. [19]
design a secure learning framework for CCTV-
based surveillance applications. In the system,
multiple artificial neural network (ANN) frame-
works exist; and each ANN is with its own param-
eters and setup. In this situation, there exists a
tradeoff between computational complexity and
performance. Therefore, the proposed algorithm
dynamically and adaptively selects an ANN mod-
ule depending on buffer size for recognition per-
formance maximization subject to CCTV buffer
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Figure 1. Reference System Model.

Table 1. Processing time and resolution (peak-signal-to-noise ratio, PSNR) measurement results depending on the number of hidden
layers (note that simulation settings are equivalent to the settings in VSDR [11]).

Depth (# Hidden Layers) 0 4 6 8 11 14 17 20

PSNR (dB) 30.40 32.56 33.01 33.23 33.38 33.44 33.50 33.52
SSIM 0.868 0.910 0.916 0.918 0.920 0.920 0.921 0.922
Processing Time [CPU-only] (ms) 0.002 0.321 0.547 0.773 0.994 1.317 1.622 1.960
Processing Time [CPU+GPU] (ms) [25] 0.001 0.010 0.012 0.015 0.019 0.022 0.026 0.031

stability. Furthermore, Kim et al. [20] design a
novel face identification machine learning frame-
work for CCTV-based surveillance platforms.
Instead of multiple ANN frameworks, this archi-
tecture has one learning system (based on Open-
Face open-source software library) and controls
the sampling rates of the CCTV camera. Eventu-
ally, the proposed adaptation algorithm dynam-
ically and adaptively controls CCTV sampling
rates for recognition performance maximization
subject to CCTV buffer stability.

• Others: The application of Lyapunov optimization
framework to dynamic reinforcement learning
policy design is presented in [21]. In addition, the
use of Lyapunov optimization for stock market
pricing is well described in [22]. Finally, the
stabilized adaptive control in smart and micro
grid systems is discussed in [23] as yet another
application.

Clearly, the applications above provide a great insight
into the parallels of the existing literature and our

application domain, which we explore through our
proposed algorithm in the subsequent section.

3. Proposed Algorithm
This section describes the proposed super-resolution
deep learning model adaptation for time-average qual-
ity maximization subject to queue stability, inspired by
Lyapunov optimization framework [24].

First of all, the system queue dynamics are modeled
as follows [24],

Q(t + 1) = max
{
Q(t) − µ(t), 0

}
+ λ(t), (1)

Q(0) = 0, (2)

where Q(t), µ(t), and λ(t), respectively, denote the
queue-backlog at drone mobile platforms at time t, the
number of enhanced video streams via selected super-
resolution algorithm (and then left from the queue) at
time t, and the number of images arriving at the queue
(i.i.d. random arrivals from the drone CCTV cameras)
at time t.

Then, we formulate the mathematical program
for maximizing the time-average super-resolution
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performance maximization subject to queue stability,
which is presented as:

max : lim
t→∞

t−1∑
τ=0

P (α(τ)), (3)

where P (α(τ)) is a peak signal-to-noise ratio (PSNR)
value when current selected super-resolution algorithm
at time τ is α(τ) and its system queue stability can be
formulated as:

lim
t→∞

1
t

t−1∑
τ=0

Q(t) < ∞. (4)

Based on the Lyapunov optimization [24], which is
for the time-average performance maximization subject
to queue stability, this proposed program can be re-
formulated as following (where α∗(t) is the selected
optimal super-resolution algorithm for time-average
PSNR maximization subject to queue stability).

α∗(t)← arg max
α(t)∈S

{
V · P (α(t)) +Q(t) · µ(α(t))

}
, (5)

where S is the set of all possible super-resolution
algorithms; and V is the trade-off coefficient between
the performance and queue stability, respectively.

Therefore, our proposed closed-form equation (5)
should be computed in each unit time while observing
Q(t), and then our proposed algorithm guarantees
time-average PSNR maximization subject to stability.
Based on this characterization and property, our
proposed algorithm is self-controllable because it
can dynamically and adaptively select one super-
resolution algorithm automatically. Moreover, the
proposed algorithm is reliable according to the fact that
the self-adaptation is for maximizing its utility while
maintaining stability.

The proposed algorithm can be presented in the
form of a pseudo-code (Algorithm 1). As shown in
Algorithm 1, the computation procedure is for solving
the closed-form equation, i.e., (5). Thus, the complexity
of this algorithm is polynomial-time.

4. Performance Evaluation
The performances of the super-resolution algorithm
computation depending on the different numbers of
hidden layers are presented in Table 1 and Fig. 2.
Note that simulation settings are equivalent to the
settings in VSDR [11]). As can be seen in the table and
demonstrated by examples in the figures, the super-
resolution models with more hidden layers show better
performance in terms of PSNR, i.e., video quality [26,
27].

Algorithm 1 Proposed Super-Resolution Deep Learning
Adaptation

Initialize:
1: t ← 0
2: Q(t)← 0
3: S = {α1(t), · · · , αN (t)}
Stochastic Super-Resolution Model Adaptation:
4: while t ≤ T do
5: Observe Q(t)
6: T ∗ ← −∞
7: for α(t) ∈ S do
8: T ← V · P (α(t)) +Q(t) · µ(α(t))
9: if T ≥ T ∗ then

10: T ∗ ← T
11: α∗(t)← α(t)
12: end if
13: end for
14: end while

The simulation-based evaluation for the proposed
super-resolution adaptation control algorithm is per-
formed and then the results are presented in Fig. 3.

As illustrated in Fig. 3, if the models are static (i.e.,
Deep or Shallow in the plotting), the curves say that the
two models are not efficient. The deep model cannot
handle the overflow case, thus the queue diverges.
On the other hand, the shallow model is fast, thus
the queue is always empty. This is obviously good for
stability, although the performance in terms of PSNR
is the lowest. Thus, it might be better if the algorithm
allows certain amounts of delays in order to enhance
the quality of super-resolution. The proposed dynamic
algorithm via Lyapunov optimization (i.e., Proposed

(Lyapunov)) initially follows the Deep model because
the queue is idle during the initial phases. If the queue
is filled with images (up to a threshold), then it starts
the control. Thus, the proposed algorithm starts to
select models that can handle delays. Thus, it is clear
that the proposed dynamic algorithm is better than the
other two static algorithms.

5. Concluding Remarks and Future Work
This paper proposes a dynamic and stabilized super-
resolution deep learning adaptation algorithm for
surveillance drone mobile platforms in security appli-
cations. In the reference surveillance model, drone
mobile platforms detect abnormal objects and then the
detected video streams will be stored into the queue.
Then, each stream in the queue needs super-resolution
computation in order to enhance the video stream
quality improvement. If the queue is idle, deep super-
resolution algorithms can be used for better perfor-
mance. On the other hand, shallow super-resolution
algorithms should be used for fast computation while
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(a) Image #1 (Low-Resolution) (b) Image #2 (Low-Resolution) (c) Image #3 (High-Resolution)

(d) Image #1 (High-Resolution) (e) Image #2 (High-Resolution) (f ) Image #3 (Low-Resolution)

(g) Image #4 (Low-Resolution) (h) Image #5 (Low-Resolution) (i) Image #6 (Low-Resolution)

(j) Image #4 (High-Resolution) (k) Image #5 (High-Resolution) (l) Image #6 (High-Resolution)

Figure 2. Super-Resolution Computation Results. Note that the model for Low-Resolution is bicubic which has no hidden layers.

sacrificing certain amounts of performance if the queue
is near overflow. Therefore, in order to hand the trade-
off between performance and delay, the proposed algo-
rithm for time-average super-resolution performance
maximization subject to queue stability is designed

inspired by Lyapunov optimization theory. Simulation-
based performance evaluation verifies that the pro-
posed algorithm is better than static model selection
algorithms.

As a future research direction, a multi-drone scenario
will be considered, since such a scenario will also be
subject to multiple scheduling problems.
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Figure 3. Performance Evaluation: Queueing-Backlog (x-axis
and y-axis stand for unit time (unit: msec) and queue-backlog
(unit: bits), respectively.
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