
Analysis of Differential Synchronisation’s Energy
Consumption on Mobile Devices
Jörg Simon1,∗, Peter Schmidt2, Viktoria Pammer-Schindler3

1Know-Center GmbH, Inffeldgasse 13/6, 8010 Graz, Austria
2Mendeley Ltd, White Bear Yard 144a Clerkenwell Road, London, UK
3Knowledge Technologies Institute, Graz University of Technology, Inffeldgasse 13/5, 8010 Graz, Austria

Abstract

Synchronisation algorithms are central to collaborative editing software. As collaboration is increasingly
mediated by mobile devices, the energy efficiency for such algorithms is interest to a wide community of
application developers. In this paper we explore the differential synchronisation (diffsync) algorithm with
respect to energy consumption on mobile devices. Discussions within this paper are based on real usage data
of PDF annotations via the Mendeley iOS app, which requires realtime synchronisation.
We identify three areas for optimising diffsync: a.) Empty cycles in which no changes need to be processed b.)
tail energy by adapting cycle intervals and c.) computational complexity. Following these considerations, we
propose a push-based diffsync strategy in which synchronisation cycles are triggered when a device connects
to the network or when a device is notified of changes.

Keywords: synchronisation, collaboration, differential synchronisation, energy efficiency, mobile computing, push
notification mechanism

Copyright © 2017 Simon et al., licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eai.30-6-2017.152756

1. Introduction
Enabling synchronous read and write access to
shared items is one of the key functionalities in
collaborative software (e.g., svn), games (e.g, Age
Of Empires [2]) or documents (e.g., Google Docs).
In the wake of increased mobile broadband access
distributed collaboration is increasingly mediated
by mobile devices. Application developers should,
therefore, consider energy consumption in the use of
synchronisation algorithms.
In this paper we explore the energy consumption of
the differential synchronisation algorithm (diffsync)
from the viewpoint of mobile devices. Diffsync is a
synchronisation algorithm which is originally designed
for near real time synchronisation over the web, like
online computer games or collaborative document
editing. We showed that is it possible to configure
the diffsync algorithm to use push notifications and
with it retaining the correctness of the algorithm and

∗Corresponding author email: jsimon@know-center.at

saving energy at the same time still keeping the near
realtime nature of the algorithm in tact [22]. In this
paper we want to explore the energy characteristics in
more detail.
A preliminary version of this paper was published
as a poster at the Mobiquitous 2014 [22]. This paper
extends the poster by an in-depth analysis of the energy
characteristics of different cycle times, the energy
characteristics of size and complexity of single diffs on
the CPU, describe the experiment setup and use case in
more detail in order to give readers the possibility to
repeat similar experiments, and also go more in depth
on how the push notifications work and save energy.

2. Use Case: Social Reference Management
Examples in this paper are based on real usage data
of editing PDF annotations within the Mendeley iOS
app. Mendeley is a social document and content
reference management tool, e.g. it enables users to
manage their PDF documents, generate citations and
bibliographies. In the Mendeley iOS app, PDF content
can be annotated, e.g., highlighting, or adding and

1

EAEAI Endorsed Transactions
on Collaborative Computing Research Article

EAI Endorsed Transactions on
Collaborative Computing

 12 2016 - 06 2017 | Volume 3 | Issue 11 | e2

http://creativecommons.org/licenses/by/3.0/
mailto:<jsimon@know-center.at>

J. Simon, P. Schmidt, V. Pammer-Schindler

editing textual notes. Together with other metadata,
annotations are stored locally on the mobile device as
well as centrally on the Mendeley server. References,
and their related PDFs can be shared amongst a
group, and PDF annotations can therefore be edited
by multiple users. Data integrity between server and
Mendeley app (client) are a fundamental requirement.
This raises the need for synchronising data between
client(s) and server. Since annotations can be done
collaboratively, diffsync was a natural choice for
mendeley, contrary to simpler direct synchronisation
schemes or rsync schemes services like dropbox use it.
Mendeley used the diffsync algorithm in their official
iOS client app during the time of the study. We can use
this data to report realistic usage schemes and package
sizes for later calculations.

3. Related Work

3.1. Energy Optimisation on Mobile Devices
Mobile devices such as smartphones and tablets rely on
battery power. Energy intensive hardware and software
operations limit the use by "shortening battery life" and
significantly impact user experience. Energy consump-
tion can be reduced either by modifying mobile device
hardware or mobile applications (software). In this
paper, we are concerned with the latter. For application
developers the challenge is to balance the need for per-
formance (e.g. computational speed) while maintaining
a low level of power consumption. For instance, in
mobile phone sensing, it is common to reduce sampling
frequency of sensors to reduce energy consumption.
This may lead to reduced precision however [20, 21].
Moreover, the most energy consuming components in
mobile devices are CPU, network components (WiFi,
3G, GSM) and display [4, 5]1. As optimising display
energy consumption is out of application developers’
control except in game development, application devel-
opers are mostly left to optimise CPU and network
energy consumption. In [1], a network energy consump-
tion model is described based on empirical data, which
emphasises the possibility to optimise network energy
consumption by exploiting the tail energy property of
different network protocols. This model has influenced
other research e.g. for optimising computational com-
plexity on the mobile device by offloading computation
to the cloud [6, 12]. Network energy consumption can
sometimes be optimised by choosing suitably between
push and pull communication paradigm, as has been
discussed in [3] in connection with the Google cloud
messaging system. CPU energy consumption can be
optimised by adapting algorithms to mobile devices,

1https://source.android.com/devices/tech/power.html

as has been done e.g., for the hash function [7] and
AdaBoost [14].

3.2. Delay Tolerant or Prefetch Friendly
Synchronisation
Delay tolerant or prefetch friendly synchronisation
methods can drop the constrain that small updates
should be delivered frequently. As we will see, in a
scenario where frequent small updates must be made,
tail energy is the main concern. The best strategy to
save energy is to collect a bulk of data for transmission
for a while, and transmit at a time of good connectivity
(of fetch a lot respectively). This minimises the tail
energy, as this is a constant added only once after
the bulk transmission. Is also minimises transmission
energy, as this is inverse proportional to the bandwidth
available. Thus, using time slots of good connectivity
is an important part of Mobile Cloud Computing [9].
Recent research formulates this problem as a system of
applications putting data into queues for transmission,
a discrete time, and a cost function based on a power
model. A Lyapunov drift is then used to compute when
data should be transmitted. AppATP [10] is a cloud
based middleware managing several applications, and
decides for prefetch friendly and delay tolerant apps
in a fixed cycle of 60s if a transmission should be
made. AppATP archives savings of 30- 50% on the
synchronisation part of a complete system. eTrain [24]
also uses Lyapunov optimisation, and also optimises
several mobile Applications at once. However, it does
not rely on a own middleware, and piggyback the
heartbeat transmissions applications employing push
notifications need to keep the tunnel open to add
transmissions there to reduce wasted tail energy. It can
save 12-33%. Similar to both Systems our approach
uses a fixed cycle time. Similar to eTrain reducing the
waste of energy caused by tail energy is a central topic.
However, we want to keep the near real time character
of the diffsync. Therefore we employ a different strategy
for tail energy (optimising cycle time/tail energy
tradeoff and push notifications). Also these works look
at group of apps while we look at suggestions for an
specific algorithm for an app developer to implement.

3.3. Realtime Synchronisation
For a long time, operational transform (OT) [8] has been
the quasi-standard synchronisation algorithm in use.
It is used for instance in Google products like Google
Docs or Google Wave. OT is based on the notion of
expressing edits as operations on the state of an item
(e.g. a document). To avoid loss of changes and ensure
data integrity, OT relies on capturing all user edits for
each item. Once an edit is lost, different item copies
will not converge towards an agreed version again.
This poses a significant challenge given today’s rich

2
EAI Endorsed Transactions on

Collaborative Computing
 12 2016 - 06 2017 | Volume 3 | Issue 11 | e2

https://source.android.com/devices/tech/power.html

Analysis of Dierential Synchronisation’s Energy Consumption on Mobile Devices

user interfaces and feature sets, including: edit items
via typing, cutting, pasting, undo, redo, drag, drop,
etc. [11]2.
There is an "intent" problem with OT [23]: It may hap-
pen, that a correct merge of two edits is in conflict with
the intent of each individual edit. E.g. let us assume that
two users edit the sequence “AB”, one person wishes to
delete “B”, and the other to insert “12” after the “A”. An
intent-preserving merge would lead to “A12”. Depend-
ing on the sequence of transformation operations, how-
ever, OT may lead to “A1B”, which does not correspond
to the intent of either editor. Woot [19] (WithOut OT)
tries to resolve this problem by including not only
the exact transformation operation but also contextual
information in one operation. However, Woot does not
allow deleting content. A successor, Logoot [25] allows
deletions as well as undos [26].
Differential Synchronization (diffsync) [11] works on
item states only - i.e. knowledge of edit actions is not
required by the synchronisation algorithm. The key
notion of diffsync is that the synchronisation algorithm
compares two states of an item, computes the differ-
ences and necessary changes. While some changes may
be lost, different item copies will always converge. Diff-
sync is used in the Mendeley iOS app for synchronising
PDF annotations, but also in MobWrite3 for collabora-
tive writing or CoRED [15] for collaborative program-
ming. More widespread use of diffsync can be expected
in the future, mainly because of the ease of implemen-
tation with fewer possibilities for programming errors
when compared to other synchronisation algorithms.
Firstly, client and server code are nearly identical. Sec-
ondly, synchronisation code does not depend on user
interface code. The latter is highly relevant in collab-
oration systems available on a broad range of devices.
Thirdly, synchronisation code is independent of the
diff and patch algorithm, which makes synchronisation
code independent of the data structure of an applica-
tion. Thus, diffsync delegates the problem of preserving
edit intentions to the diff and patch algorithm. It is
therefore “suitable for any content for which semantic
diff and patch algorithms exist” [11].
Causal Trees [13] mix features of Woot and diffsync, but
break the elegant independence between synchronisa-
tion and diff/patch algorithm that exists in diffsync.

4. Differential Synchronization
Diffsync for one client and one server can be briefly
summarised as follows: Both server and client contain
an item (e.g. a document) on which the diffsync
algorithm will be executed. As will be shown below,
both server and client will also create a "shadow" copy

2See also http://sharejs.org.
3https://code.google.com/p/google-mobwrite/

Figure 1. Differential synchronization with shadows - essentially
corresponds to Fig.3 in [11] but the numbering and text have been
adapted.

of the item. The initial state is defined as having no
edits and assumes that all copies of the item, including
the shadow copies, are identical. The following list
describes one diffsyc cycle starting with an edit on a
client item. Figure 1 illustrates this procedure.

1. User edits client item.

2. Diff: Difference between client item and client
shadow is computed.

3. A list of necessary edits is the result.

4. Client item is copied to client shadow.

5. Patch: The edits are patched onto the server
shadow (which was identical to the client shadow
until Step 4) and onto the server item (which may
be different to the server shadow, e.g., in a multi-
device/multi-user environment).

6. Diff: Difference between server shadow and server
item is computed.

7. A list of necessary edits is the result (edits may be
due to unsuccessful take-up of client edits, or due
to edits from other devices/users).

8. Server item is copied to server shadow.

9. Patch: The edits are patched onto the client
shadow (after applying the patch, the client
shadow is identical to the server shadow) and onto
the client item.

This algorithm can be extrapolated to a system where
an item is shared between multiple clients: The server
maintains a central copy of the item (server item) and a
shadow copy for each client (multiple server shadows).

3
EAI Endorsed Transactions on

Collaborative Computing
 12 2016 - 06 2017 | Volume 3 | Issue 11 | e2

http://sharejs.org.
https://code.google.com/p/google-mobwrite/

J. Simon, P. Schmidt, V. Pammer-Schindler

5. Potential for Energy Optimisation
There are three areas with potential for energy
optimisation. All three are based on the underlying
property of the unmodified differential synchronisation
that the complete diffsync cycle as described above
(Steps 1-9) is executed in regular, fixed intervals.

5.1. Empty Cycles
The unmodified diffsync executes the complete diffsync
cycles in regular, fixed intervals even if there are no
changes (empty cycles). Clearly, these cycles consume
CPU and network (3G, WiFi, Bluetooth) energy without
direct benefit to synchronisation.

5.2. Tail Energy
In 3G and GSM connections, there is a medium power
state lasting for approximately 12s for 3G and 6s
for GSM once a data connection is terminated. This
tail energy accounts for up to 60% of the energy
consumption of a network connection [1]. If you
transfer at fixed cycle intervals it is therefore more
efficient to either transfer data more frequently (more
than 12s resp. 6s), or to transfer large amounts of data
in less frequent intervals. Therefore, the worst interval
cycle for diffsync would be 12s or 6s depending on
connection type: The mobile device would not be able
to enter a low power state (network sleep). This leads to
wasting energy in the medium power (tail energy) state,
offsetting computational advantages by processing very
small changes (see next discussion item). Note that for
WLAN connections, there is no such tail energy [1], and
that different sources quote slightly different durations
of power states4. Also note that for synchronisation that
is delay tolerant it is more efficient to basically collect
transmissions until a large chunk of data is available
and transmit at a time with good connectivity [10, 16,
24].

5.3. Computational Complexity
Computational complexity directly correlates with CPU
energy consumption [7]. Small changes have a high
likelihood of being computationally less complex than
large changes [17]. In addition, item size influences
computational complexity, as diff is of O(n2) [17].

This discussion leads to the following conclusions:
a.) repeated diffsync cycles containing no changes, i.e.
"empty" cycles, should be avoided. b.) to optimise
tail energy consumption, the recommended cycle

4For instance, an additional high power state of 5s duration is
included in the network model at http://developer.android.com/
training/efficient-downloads/efficient-network-access.

html.

interval is below 12s for 3G (resp. 6s for GSM),
or considerably longer interval durations (than 12s).
Finally c.) processing small changes and small items
reduces computational complexity and reduces energy
consumption. If cycle times can be considerably longer,
Lyapunov optimisation should be considered.

5.4. Experimental Verification Based on the
Mendeley App
We verified the effects of tail energy and computational
complexity on energy consumption in simulations with
the iOS Mendeley App.

Measuring Energy Consumption on Mobile Devices
Many papers report power consumption of components
in W (Watt) and in J (Joule, 1J = 1Ws) of events,
as these are the correct physical terms. In order to
compute power consumption in terms of W or J , system
voltage of the battery would need to be measured
over time. Since we are only interested in the relative
energy consumption of different configurations, we
have chosen to measure energy consumption in terms
of percent of battery power. We did this via a software
monitor of battery status, using an iOS internal API
which reports battery drainage in 1% steps. This call
requires no significant energy in case the CPU is already
active. A similar setup to measure energy consumption
of apps has been described in [18] for both Android
and iOS. We therefore express energy consumption in
terms of battery drainage in % per minute (%/min) in
this paper.

Experiment Setup We have implemented an experi-
mental framework which includes the software monitor
of battery status and an experiment runner. The experi-
ment runner starts executions of the diffsync algorithm
as implemented within the Mendeley app but requires
no user interaction. The runner takes a measurement
of battery status before and after each diffsync cycle.
Server-side action in the experiments has been simu-
lated based on real usage data from Mendeley. With
that method more than 60.000 diffsync cycles were
recorded, with about 1.000 cycles per experiment.
All our experiments run on the same device, an iPhone
5s with a fresh install of iOS7. The following device
setup was used: iCloud was disabled, one email account
with manual updates, no notifications, no iMessage
and no other apps apart from default system apps. In
every experiment, unused network components were
switched off in order to avoid battery drainage through
low power states or network scans. The experiment
runner dims the screen to minimal brightness before
each experiment run.
The baseline drainage of the environment without
execution of diffsync is 0.108% of battery power per

4
EAI Endorsed Transactions on

Collaborative Computing
 12 2016 - 06 2017 | Volume 3 | Issue 11 | e2

http://developer.android.com/training/efficient-downloads/efficient-network-access.html
http://developer.android.com/training/efficient-downloads/efficient-network-access.html
http://developer.android.com/training/efficient-downloads/efficient-network-access.html

minute. This has been averaged over a total of 10h
recording with sampling time for battery measurement
ranging from 1s to 60s.

Tail Energy Consumption Based on existing models
of network energy consumption [1], we have predicted
above that in order to optimise tail energy, the diffsync
cycle interval should either be significantly below 12s
(3G) or 6s (GSM), or significantly above. For WLAN, we
expect no dependance on cycle interval.
In order to verify this, the experiment runner executed
diffsync with different cycle intervals for 3G, GSM and
WLAN network connection: The cycle intervals were
0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 20, 30, 60 seconds.
The downlink bandwidths were 168,2 kbit/s for GSM,
2,4 mbit/s for 3G, and 2,8 mbit/s for WLAN averaged
over all runs. We observed that a usual package is
less than 1kb in our case, and most of the time about
124bytes in diffsync with a 3s cycle interval. So, for
every package size the transfer was always less than
a second, and almost all the energy has to account
to cycle time and cpu complexity. Since we were
interested in cycle time energy without diff energy, and
the difference between the standard package (124bytes)
and the empty package (100byte) are not significant for
this test, we choose to send empty packages around.
Each experiment was run until 20% of the battery
was drained. The dependance of diffsync’s energy
consumption on the cycle interval is illustrated in
Fig. 2.
Experiments show that the predictions based on the
network energy consumption model of [1] are correct.
Additionally, we can experimentally identify a local
minimum around a cycle interval of 6s for 3G. In case a
fixed and small cycle interval is desired, 6s would then
be a recommended interval for all network protocols:
For WLAN, the interval does not matter, for 3G it is
the local minimum, and GSM does not use much less
power even for smaller cycle intervals.

Effect of Computational Complexity on Energy
Consumption Theory predicts that computationally
more complex changes require more CPU time
and, therefore, consume more energy. Computational
complexity for diffsync stems from the complexity of
the change, and from the item size.
We verified and quantified this in an experiment:
The experiment runner executed diffsync with a cycle
interval of 6s. In the first run, all cycles were empty,
i.e. no changes were made. In the second run, in each
cycle a worst case (from a computational complexity
viewpoint) change happened on an item of size ≈
700bytes. In the third run, in each cycle a worst case
change happened on an item of size ≈ 7000bytes. In a
fourth run, a “simple” change happened in every cycle

Figure 2. Comparison of battery drainage of 3G vs. WLAN, based
on cycle timing

on a large item (≈ 7000bytes). In all four experiment
runs, the experiment was run until 20% of the battery
was drained.
When the data structure is an ordered list, the worst
case change is a change in both the beginning and the
end of the list for a fixed size of the change. For instance,
if every change has the size of two characters, it is
computationally more complex if “cat” is changed to
“bad” than if “cat” is changed to “colt”. Ordered lists
are a typical data structure for text, as is the case for
PDF text annotations in Mendeley. A simple change is
for instance a deletion at the end of the item, e.g., “cat”
is changed to “ca”.
In the experiment run with empty cycles, energy
consumption was 0.22%/min. In the experiment run
with the computational worst case and small item size
of 700bytes as well as in the experiment with a simple
change but large item size of 7000bytes, no difference
in energy consumption when compared to empty cycles
could be measured via the software monitor. Only for
a very large item size of 7000bytes and the worst case
change, energy consumption was significantly, namely
0.34%/min.
This confirms the prediction that computational
complexity impacts energy consumption, but only
when item size is large and the change is complex. Since
developers can influence item size but not complexity of
changes (this lies with the users), energy consumption
due to computational complexity can best be avoided by
reducing item size. This argues for data structures that
break content down into small pieces, so that diff and
patch algorithms can work on small items. For instance,
documents should be broken down into paragraphs or
sections.

Generalisation of Experiment Results The experi-
ments are performed on iOS, on an iPhone 5s, and on

5 EAI Endorsed Transactions on
Collaborative Computing

 12 2016 - 06 2017 | Volume 3 | Issue 11 | e2

Analysis of Dierential Synchronisation’s Energy Consumption on Mobile Devices

J. Simon, P. Schmidt, V. Pammer-Schindler

a single device. Results can nonetheless be generalised
to other iPhone 5s devices, other generations of iPhones,
as well as to other platforms (Android, Windows 8) and
phones from different manufacturers: Energy savings
are either specific to the network protocol, like tail
energy to GSM and 3G, or to the CPU. While there
are differences in Apple’s Push Notification Service and
Google’s Cloud Messaging, they rely on the same prin-
ciples with respect to network energy consumption [3].
Both platforms use ARM multiprocessors, and provide
similar advice in terms of optimising for CPU energy
efficiency5. The remaining difference is the operating
system: By switching off as many services as possible in
order to still allow the Mendeley app to be executed,
we avoid measuring operating system services such
as background download of emails etc. Apart from
this, the push-based diffsync optimisation works on an
algorithmic level, without platform-specific elements.

6. Push-Based Energy Optimisation of Differential
Synchronisation
The original diffsync paper [11] suggests adapting
cycle intervals to current editing activities in a client
between 1s and 10s. However, this has been proposed
in view of improving performance (e.g. processing
speed, avoidance of merge conflicts), rather than energy
consumption.

In order to strike a balance between computational
performance and power consumption we propose to
execute a diffsync only when changes occur, except for
an initialisation cycle. Concretely:

1. In the initial state, the client connects to the
network. In order to capture any changes that may
have occurred in the meantime an initial diffsync
cycle will be required.

2. When the client item is edited, the client initiates
a diffsync cycle.

3. If a change arrives at the server, a push
notification is sent to all clients. On receiving the
notification clients execute a complete diffsync
cycle.

Nearly No Empty Cycles Except at initialisation, no
empty cycles are being carried out. This is the central
property of the push-based optimisation of energy
efficiency of diffsync. Note that reducing empty cycles
only reduces energy consumption significantly for 3G

5For Apple see https://developer.apple.com/library/ios/

documentation/iphone/conceptual/iphoneosprogrammingguide/

PerformanceTuning/PerformanceTuning.html, for
Android see http://developer.android.com/training/

monitoring-device-state/index.html

and GSM connections, as empty cycles in WLAN drain
the battery only minimally.

Correctness The push-based optimisation algorithm
does not change the diffsync algorithm per se, but
only changes the intervals between cycles. All edits are
synchronised to the server and to connected clients as
fast as possible.
Clients not connected to the network (offline) cannot
receive push notifications. In this case clients may
have to process significant amount of changes when
reconnecting to the network (online). Depending on
the complexity and nature of changes this may lead to
merge conflicts and failures. However, this is also the
case for the original diffsync.

Identifying the Occurrence of an Edit The original
diffsync algorithm is, amongst other things, easy to
implement because as it is independent of the nature
of "an edit”. The algorithm only needs to compare
states regularly. In contrast, the push-based optimisa-
tion algorithm needs to know what an edit is in Step 2.
Note that also Fraser’s suggestion for bounded adaptive
timing [11] would require this knowledge.
There are three possibilities how to identify that an
edit has occurred on the client: Firstly, the "diff” part
of the diffsync algorithm could be executed in regu-
lar intervals until a difference (an edit) is detected.
Secondly, the data structure (e.g., file, database, in-
memory) in which the application stores its content can
be monitored for changes. Thirdly, it can be decided
which user interaction means that an edit has occurred.
Depending on the application and which granularity of
edits needs to be identified, this may be as simple as
noticing a user pushing a "save” button, or as complex
as tracking every possible way of editing within a given
UI.
Note that the difficulty (for implementation) of identi-
fying an edit is lower than in operational transforma-
tion (OT). While in the push-based optimised diffsync,
one only needs to identify that an edit has occurred, OT
requires exact knowledge of what the edit consists of in
addition.

Energy Consumption of Push Notifications on Mobile
Devices A network communication overhead is gen-
erated via push notifications. In both Android and
iOS, push notifications are facilitated by a local service
(on the mobile device) which regularly polls for push
notifications (Google cloud messaging6, Apple push
notifications7).
We quantified this overhead in an experiment: The local

6http://developer.android.com/google/gcm/index.html
7https://developer.apple.com/notifications/

6
EAI Endorsed Transactions on

Collaborative Computing
 12 2016 - 06 2017 | Volume 3 | Issue 11 | e2

https://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/PerformanceTuning/PerformanceTuning.html
https://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/PerformanceTuning/PerformanceTuning.html
https://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/PerformanceTuning/PerformanceTuning.html
http://developer.android.com/training/monitoring-device-state/index.html
http://developer.android.com/training/monitoring-device-state/index.html
http://developer.android.com/google/gcm/index.html
https://developer.apple.com/notifications/

service that polls for push notifications was run for
2h without incoming push notifications (idle polling).
Idle polling adds ≈ 0.02%/min of energy consumption
to the idle operating system, thus adding nearly no
overhead. In a 2h run with a push notification every 6s
(active polling), energy consumption was 0.13%/min.
This overhead is only for receiving push notifications,
not for executing the diffsync cycles. For instance, if
every 6s a change on a small item happens, over-
all energy consumption would be ≈ 0.35%/min. This
number stems from adding the energy consumption of
active polling with notifications every 6s (0.13%/min)
to the energy consumption of diffcycles every 6s for
items of small size (0.22%/min for items of size of ≈
700bytes).
Therefore, the polling required on mobile devices in
case of a push notification mechanism leads to a neg-
ligible energy consumption overhead while no changes
occur (idle polling). This means that the push notifica-
tion mechanism nearly eliminates the energy wasted in
empty cycles in the original diffsync. However, active
polling introduces an overhead of ≈ 0.13%/min. This
means that if changes occur regularly and frequently,
it is more energy efficient to adapt cycle time to editing
activity.

Minimum Time Between Push Notifications Note
that when the interval between push notifications
becomes smaller than 2s, the mechanism became highly
unreliable in our experiments, in the sense that the
sequence of notifications was changed or notifications
became lost. Server code should therefore take care to
send notifications about changes only in intervals larger
than 2s. In addition, clients need to ensure that only one
diffcycle is running at a time.

7. Push-Based Diffsync within Mendeley
We have implemented the above-described push-based
energy optimisation of diffsync in the Mendeley app.
In this section, we describe our implementation,
emphasising app specifics in terms of implementation
and usage that impact the actual effect of this
optimisation.

7.1. Diffsync in the Mendeley App
In the Mendeley app, diffsync is active in clients
when a PDF document is opened, and inactive when
the document is closed. Synchronisation is on PDF
annotations such as textual highlights and notes. The
data content exchanged in each cycle is based on
differences in position, and colour for highlights. When
adding and managing notes, differences in text and
author names as well as position and colour will
be added. Therefore, highlighting text results in a

smaller diffsync payload than annotation notes. The
payload also includes other synchronisation metadata,
e.g. unique identifiers. The format of the exchanged
data set is based on standard JSON.
The Mendeley app’s internal data structure for PDF
annotations is a dictionary where every PDF annotation
(highlight or note) is a dictionary entry identified by
a unique ID. The “diff”-part of the diffsync algorithm
therefore works on very small items, namely single
dictionary entries. Thus, computational complexity has
no significant effect on diffsync energy consumption
in the Mendeley app. Data are stored in a Core Data8

database.

Original Diffsync The diffsync cycle interval in
the implementation of the original diffsync was
2s before the push-based optimisation. In empty
cycles, approximately 100bytes of data (metadata) are
transmitted.

Push-based Diffsync For correctness, we ensure that
only one diffsync cycle can run at a time. If a push
notification arrives or a local edit is identified while a
diffsync cycle is running, we let the algorithm perform
another cycle right after the current one. We do so via
a boolean flag loopOnceMore. When diffsync starts a
cycle, the flag is set to false. In case a push notification
arrives while a cycle is running, the flag will be set to
true. At the end of each cycle diffsync checks that flag,
and if true performs another cycle.
We identify the occurrence of edits on the client
by listening to modifications of the data structure.
Since CoreData sends notifications about changes to its
content in any case, this does not add extra computation
and therefore does not consume additional energy.
Servers-side, push notifications are sent to all clients,
but waits at least 2s between sending push notifications
in order to avoid unreliable behaviour.

7.2. Mendeley Usage Statistics
We analysed Mendeley usage data from a period of 4
weeks in May 2014. In this period, users were far more
likely (with an approximate ratio of 3 : 1) to change
text highlights than to edit textual notes. This strongly
supports the conclusion that computational complexity
does not offer potential for energy optimisation in the
Mendeley app, since item sizes are very small not only
by design but also by usage.

Average Interaction Time with PDFs On average,
users spent 431, 4s (≈ 7min) within a PDF, reading and

8https://developer.apple.com/library/iOS/documentation/
Cocoa/Conceptual/CoreData/

7
EAI Endorsed Transactions on

Collaborative Computing
 12 2016 - 06 2017 | Volume 3 | Issue 11 | e2

Analysis of Dierential Synchronisation’s Energy Consumption on Mobile Devices

https://developer.apple.com/library/iOS/documentation/Cocoa/Conceptual/CoreData/
https://developer.apple.com/library/iOS/documentation/Cocoa/Conceptual/CoreData/

J. Simon, P. Schmidt, V. Pammer-Schindler

editing. Of course, the interaction time varies widely,
with a minimum of 3, 3s and a maximum duration of
1977, 8s (≈ 33min).

Empty Cycles A total of 100.000 diffsync cycles were
analysed from the server logs. Of these, 96792 were
empty cycles. Thus, an overwhelming majority of
diffsync cycles (96.8%) are empty and waste energy.

7.3. Reduction of Energy Consumption via
Push-Based Diffsync in Mendeley
96.8% of diffsync cycles in the non-optimised Mendeley
app are empty, thereby wasting energy. The push-
based optimisation of diffsync therefore significantly
reduces energy consumption. We can quantify this,
using average use data from Mendeley usage statistics.
Assuming, a user stays 7min : in a document, and on
average 96.8% of cycles of the original diffsync are
empty, and the user has a 3G connection. The original
diffsync with a 2s cycle interval drains the battery
1.729% in these 7min. The push-based diffsync however
drains the battery only 0.084% in these 7min. For the
maximum time in a PDF observed in the usage data
we analysed, 33min, this looks even more drastic: The
original diffsync drains 8, 151% of battery power, while
the push-based diffsync uses only 0.398% of battery
power.

8. Conclusion
Differential synchronisation as realtime synchronisa-
tion algorithm for collaborative editing systems has
three potential areas for optimising energy consump-
tion: Empty cycles, tail energy (cycle intervals) and
computational complexity. We have shown theoreti-
cally, and verified in experiments, that a.) tail energy
optimisation argues for cycle intervals of ≈ 6s for 3G
and b.) the impact of computational complexity on
energy consumption can best be addressed by appro-
priate data structures that organise content into small
items. Tail energy optimisation is useful for instance
when server code cannot be changed, as the cycle inter-
val is determined by the client.
Most significantly, we have proposed the push-based
optimisation of differential synchronisation, which
eliminates empty cycles (except for initialisation pur-
poses). This optimisation is useful in collaborative edit-
ing systems where edits are rather infrequent, as is the
case in the Mendeley app which we used to showcase
the benefits of the push-based optimisation. In such
systems, the push-based optimisation of differential
synchronisation leads to a system with both higher
response time and lower energy consumption.
Overall, we emphasise, that energy optimisations of
differential synchronisation should be done based on
knowledge of a collaborative system’s usage data.

9. Acknowledgments

The Know-Center is funded within the Austrian
COMET Program under the auspices of the Austrian
Ministry of Transport, Innovation and Technology, the
Austrian Ministry of Economics and Labor and by the
State of Styria. COMET is managed by the Austrian
Research Promotion Agency FFG.

References

[1] Balasubramanian, N., Balasubramanian, A. and
Venkataramani, A. [2009], Energy consumption in
mobile phones: a measurement study and implications
for network applications, in ‘Proceedings of the 9th
ACM SIGCOMM conference on Internet measurement
conference - IMC ’09’, ACM Press, New York, New York,
USA, pp. 280–293.

[2] Bettner, P. and Terrano, M. [2001], 1500 Archers on
a 28.8: Network Programming in Age of Empires and
Beyond, in ‘Proceedings of the 15th Games Developers
Conference - GCD ’01’, San Jose, CA, USA.

[3] Burgstahler, D., Lampe, U., Richerzhagen, N. and
Steinmetz, R. [2013], Push vs. Pull: An Energy
Perspective (Short Paper), in ‘Proceedings of the
2013 IEEE 6th International Conference on Service-
Oriented Computing and Applications’, SOCA ’13, IEEE
Computer Society, Washington, DC, USA, pp. 190–193.

[4] Carroll, A. and Heiser, G. [2010], An Analysis of Power
Consumption in a Smartphone, in ‘Proceedings of the
2010 USENIX Conference on USENIX Annual Techni-
cal Conference’, USENIXATC’10, USENIX Association,
Berkeley, CA, USA, pp. 21–21.

[5] Crk, I., Albinali, F., Gniady, C. and Hartman, J. [2009],
Understanding energy consumption of sensor enabled
applications on mobile phones., in ‘Proceedings of the
Annual International Conference of the IEEE Engineer-
ing in Medicine and Biology Society. IEEE Engineering
in Medicine and Biology Society. Conference’, Vol. 2009,
pp. 6885–8.

[6] Cuervo, E., Balasubramanian, A., Cho, D.-k., Wolman,
A., Saroiu, S., Chandra, R. and Bahl, P. [2010], Maui:
Making smartphones last longer with code offload, in
‘Proceedings of the 8th International Conference on
Mobile Systems, Applications, and Services’, MobiSys
’10, ACM, New York, NY, USA, pp. 49–62.

[7] Damasevicius, R., Ziberkas, G., Stuikys, V. and Toldinas,
J. [2012], ‘Energy Consumption of Hash Functions’,
Electronics and Electrical Engineering 18(10), 81–84.

[8] Ellis, C. A. and Gibbs, S. J. [1989], ‘Concurrency control
in groupware systems’, SIGMOD Record 18(2), 399–407.

[9] Fangming, L., Peng, S., Hai, J., Linjie, D., Jie, Y., Di, N.
and Bo, L. [2013], ‘Gearing resource-poor mobile devices
with powerful clouds: architectures, challenges, and
applications’, Wireless Communications, IEEE 20(3), 14–
22.

[10] Fangming, L., Peng, S. and Lui, J. [2015], ‘AppATP:
An Energy Conserving Adaptive Mobile-Cloud Trans-
mission Protocol’, Computers, IEEE Transactions on
64(11), 3051–3063.

8
EAI Endorsed Transactions on

Collaborative Computing
 12 2016 - 06 2017 | Volume 3 | Issue 11 | e2

[11] Fraser, N. [2009], Differential synchronization, in
‘Proceedings of the 9th ACM symposium on Document
engineering - DocEng ’09’, ACM Press, New York, New
York, USA, p. 13.

[12] Gao, B. and He, L. [2013], Modelling Energy-Aware
Task Allocation in Mobile Workflows, in ‘Proceedings
of MobiQuitous, 2013 10th International Conference on
Mobile and Ubiquitous Systems: Computing, Network-
ing and Services’, Tokyo, Japan.

[13] Grishchenko, V. [2010], Deep hypertext with embedded
revision control implemented in regular expressions, in
‘Proceedings of the 6th International Symposium on
Wikis and Open Collaboration’, WikiSym ’10, ACM, New
York, NY, USA, pp. 3:1–3:10.

[14] Kadlček, F. and Fučík, O. [2013], Fast and Energy
Efficient AdaBoost Classifier, in ‘Proceedings of the 10th
FPGAworld Conference’, FPGAworld ’13, ACM, New
York, NY, USA, pp. 2:1–2:5.

[15] Lautamäki, J., Nieminen, A., Koskinen, J., Aho, T.,
Mikkonen, T. and Englund, M. [2012], CoRED: Browser-
based Collaborative Real-time Editor for Java Web Appli-
cations, in ‘Proceedings of the ACM 2012 Conference
on Computer Supported Cooperative Work’, CSCW ’12,
ACM, New York, NY, USA, pp. 1307–1316.

[16] Liu, H., Zhang, Y. and Zhou, Y. [2011], TailTheft:
Leveraging the Wasted Time for Saving Energy in
Cellular Communications, in ‘Proceedings of the Sixth
International Workshop on MobiArch’, MobiArch ’11,
ACM, New York, NY, USA, pp. 31–36.

[17] Myers, E. W. [1986], ‘AnO(ND) difference algorithm and
its variations’, Algorithmica 1(1-4), 251–266.

[18] Oliner, A. J., Iyer, A. P., Stoica, I., Lagerspetz, E.
and Tarkoma, S. [2013], Carat: Collaborative energy
diagnosis for mobile devices, in ‘Proceedings of the
11th ACM Conference on Embedded Networked Sensor
Systems’, SenSys ’13, ACM, New York, NY, USA,
pp. 10:1–10:14.
URL: http://doi.acm.org/10.1145/2517351.2517354

[19] Oster, G., Urso, P., Molli, P. and Imine, A. [2005], Real
time group editors without Operational transformation,

Research Report RR-5580, INRIA.
[20] Ra, M.-R., Priyantha, B., Kansal, A. and Liu, J.

[2012], Improving energy efficiency of personal sensing
applications with heterogeneous multi-processors, in
‘Proceedings of the 2012 ACM Conference on Ubiquitous
Computing - UbiComp ’12’, ACM Press, New York, New
York, USA, p. 1.

[21] Rachuri, K. K., Mascolo, C., Musolesi, M. and Rentfrow,
P. J. [2011], SociableSense: Exploring the Trade-offs of
Adaptive Sampling and Computation Offloading for
Social Sensing, in ‘Proceedings of the 17th Annual
International Conference on Mobile Computing and
Networking’, MobiCom ’11, ACM, New York, NY, USA,
pp. 73–84.

[22] Simon, J., Schmidt, P. and Pammer, V. [2014], An energy
efficient implementation of differential synchronization
on mobile devices, in ‘Proceedings of the 11th Inter-
national Conference on Mobile and Ubiquitous Sys-
tems: Computing, Networking and Services’, MOBIQ-
UITOUS ’14, ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineer-
ing), ICST, Brussels, Belgium, Belgium, pp. 382–383.

[23] Sun, C., Jia, X., Zhang, Y., Yang, Y. and Chen, D.
[1998], ‘Achieving convergence, causality preservation,
and intention preservation in real-time cooperative
editing systems’, ACM Trans. Comput.-Hum. Interact.
5(1), 63–108.

[24] Tan, Z., Xian, Z., Fangming, L., Hongkun, L., Qian,
Y. and Guanfeng, L. [2015], eTrain: Making Wasted
Energy Useful by Utilizing Heartbeats for Mobile
Data Transmissions, in ‘Distributed Computing Systems
(ICDCS), 2015 IEEE 35th International Conference on’,
pp. 113–122.

[25] Weiss, S., Urso, P. and Molli, P. [2008], Logoot: a P2P
collaborative editing system, Rapport de recherche RR-
6713, INRIA.

[26] Weiss, S., Urso, P. and Molli, P. [2010], ‘Logoot-
undo: Distributed collaborative editing system on p2p
networks’, IEEE Trans. Parallel Distrib. Syst. 21(8), 1162–
1174.

9
EAI Endorsed Transactions on

Collaborative Computing
 12 2016 - 06 2017 | Volume 3 | Issue 11 | e2

Analysis of Dierential Synchronisation’s Energy Consumption on Mobile Devices

	1 Introduction
	2 Use Case: Social Reference Management
	3 Related Work
	3.1 Energy Optimisation on Mobile Devices
	3.2 Delay Tolerant or Prefetch Friendly Synchronisation
	3.3 Realtime Synchronisation

	4 Differential Synchronization
	5 Potential for Energy Optimisation
	5.1 Empty Cycles
	5.2 Tail Energy
	5.3 Computational Complexity
	5.4 Experimental Verification Based on the Mendeley App

	6 Push-Based Energy Optimisation of Differential Synchronisation
	7 Push-Based Diffsync within Mendeley
	7.1 Diffsync in the Mendeley App
	7.2 Mendeley Usage Statistics
	7.3 Reduction of Energy Consumption via Push-Based Diffsync in Mendeley

	8 Conclusion
	9 Acknowledgments

