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Abstract

Eventual Consistency (EC) model is adopted by numerous large-scale distributed systems. To ensure
performance and scalability, this model allows any replica to accept updates without remote synchronization.
Nowadays, many EC algorithms are developed to control the behavior of the replicated data in the face of
concurrent updates. Among them, those using a central server to order the updates, while others support the
decentralization. In this paper, we focus on decentralized EC algorithms. Suitability of such algorithms under
users and devices constraints such as execution time, memory requirements, messages size and quality of the
result remains to be investigated under different conditions. Evaluate such algorithms in different context and
under different parameters require a framework.

In this paper, we propose a generic framework designed to evaluate different decentralized EC algorithms,
in different context by controlling different parameters. Our framework provides a generic simulator that
generates a runnable data following different parameters.

Keywords: Distributed Systems, Eventual Consistency, Operational Transformation, Commutative Replicated Data 
Types, Collaboration, Benchmark, Performance Analysis, Framework, Data Replication.

1. Introduction
Replication is a key feature in any large distributed
systems. When the replicated data are mutable, the
consistency between the replicas must be ensured.
A different model of consistency can be established.
In the strong consistency model (aka atomic or linear
consistency), a mutation seems to occur instantaneously
on all replicas. Within a strong consistency model,
integrity constraint on the data manipulated can
be ensured through transactions. However, the CAP
theorem [6, 10] states that it is impossible to achieve
simultaneously strong consistency (C), availability (A)
and to tolerate network partition (P).

In Eventual Consistency (EC) model, the replicas are
allowed to diverge, but must eventually reach the same
value if no more mutations occur. Eventual consistency
promises better availability, performance and can be
obtained in large-scale systems [29, 41]. To handle
the structured eventual consistent data types, many
mechanisms were proposed [1, 15, 31, 39] to control
the behavior of the replicated data in the face of
concurrent updates. Set [31], Text[1, 24, 45] and Tree
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[19] are different data types used in different context.
They guarantees the consistency of the shared data
following EC model. For instance, with a replicated
structured document, adding concurrently two titles
conflicts if the document type accepts only one title.
To obtain a consistent document, set data type can
be used. In collaborative editing systems, the effect of
the concurrent modification must be the same for each
user. Operational Transformation (OT) [8, 12, 27] and
Commutative Replicated Data types (CRDTs) [24, 31]
were proposed as the text data type to maintain the
consistency of the document during the concurrent
editing. However, tree data type are widely used
to manage the concurrent updates for structured or
semi-structured documents such as XML files and
distributed file systems.

For each data type, many algorithms were proposed
and claim that satisfy the EC model and suitable for
users devices [7, 17, 26, 30, 33, 35]. Among of them,
some need a central server to order the updates, while
the other supports decentralized architecture. CRDT
[1, 7, 24, 26, 31, 45] approaches were proposed in
order to ensure convergence without blocking client
operations and without having to deal with consensus.
OT approaches [8, 27] for a decentralized architecture
have been proposed also. While, Oster et al. show that
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most of them are incorrect [12]. The most representative
OT algorithms that do not make any assumption on
using a central server for a total order broadcast of
operations are SOCT2 [33] and GOTO [35] algorithms.
In this paper, we focused on EC algorithms that support
the decentralization.

Analyze the performances of such algorithms, study
their behaviors and their suitability according to
different applications is not easy. In addition, a
theoretical evaluation is not sufficient sometimes to
meet the requirements. For instance, in collaboration
editing many algorithms support well the number
of operations during the edition, while they lose
in performance when the number of copy/paste is
important [1]. Due to their different natures, one
can expect a different performance level than others.
Until now, there is no open-source framework that
allows researchers to evaluate their EC algorithms and
compare them with others. The choice of the most
suitable approach remains open, and the suitability of
the algorithm is a question of performance and result
quality. Therefore, we require a general and objective
framework for performance comparison and analysis
that allow users to choose the suitable algorithms
according to their needs.

In this regards, we seek to provide an open
source experimental framework that provides different
decentralized EC algorithms, of different data types
(set, text and tree), and to propose an evaluation
methodology to compare them and its results on a set
of representative algorithms. We present a principled
framework that runs different algorithms in the same
experimental setting and measures their performances.
The proposed framework allows to determine if the
performances of a given approach are suitable for
some application context. It allows also to detect which
factor most affects each algorithm’s performance in
term of execution time, memory usage, messages size
and quality of merge results. Thus, depending on these
factors we help to select which algorithm is the most
adapted to which situation.

Because we are proposing a generic framework for
performance comparison and analysis, it is important
to design a mechanism in the framework that generates
the needed data. Indeed, the framework integrates a
simulator that generates a simulated data by giving
to users the complete control of the parameters. In
addition, the framework integrates a mechanism to
extract a real traces and re-play them by using different
EC algorithms. The framework supports two kinds of
data: synchronous and asynchronous data.

The framework allows to each data type algorithm to
generate an operation on their own format. It ensures
also the causality order [36] between the operations
during the experiment.

All the elements of the approach – algorithms and
simulator implementations, as well as collaboration
traces – are open-source and publicly available.

This paper is structured as follows. We begin in
Section 2 by presenting our open-source framework
that allows to compare eventual consistency algorithms
on real and simulated traces. Afterwards, we present
the different approaches evaluated. We establish then,
the theoretical space and time complexity of these
algorithms. In Section 3, we conduct the experiments
and then we analyze the experimental measurements of
the representative algorithms performance. In sections
5 we discuss about related work and finally in Section
6, we provide concluding remarks and directions for
future works.

2. The Framework
The framework is called ReplicationBenchmark. It is
developed in Java and open sourced under the terms
of the GPL license 1. It runs the different algorithms
in the same experimental conditions and it measures
their performances. It allows to understand which
experimental variables influence most the different
algorithms performances.

The Framework provides common base classes for
different real-time collaborative editing algorithms,
such as document, vector clocks [4], operations and
simulator that disseminates the operations. Each
algorithm can be implemented by derived classes.
The Framework asks the replicas of each algorithm
to generate an operation in its own format based on
the trace operation. In our Framework, the operations
generated by users (one character or copy/paste) are
represented by the TraceOperation class, while Operation
represents the operation ready to be executed by the
algorithms. Figure 1 shown an overview of classes used
in the framework.

The VectorClock class is used by some algorithms
(see next section) to detect the concurrency between
the operations. In addition, this class is used by the
simulator to disseminate the operations in the same
order than generated by the users in case of real traces.
TraceOperation class represents the operation generated
by the user. It contains some information such as
the type of operation(insert or delete), the number of
replicas, the vector clock of the current operation and
the content of the operation in case of insertion or the
size of the deletion.

However, the framework provides an interface Trace
as presented in Figure 2. Following the traces desired,
this interface is implemented in order to generate
simulated or real traces:

1https://github.com/score-team/replication-benchmarker
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Figure 1. Framework core classes

1. Simulated traces: the framework can generate
linear traces such as text used by textual data
type algorithms, or structured traces such as
XML traces used by tree data type algorithms.
The TextTrace class allows to generate textual
operations following the parameters specified in
OperationProfile class. The latter class is controlled
by the developers. Indeed, from this class, the
developer can manage the traces by controlling
many parameters such as the proportion of
insertion, number of replicas, the proportion of
copy/paste, etc. The different parameters that can
influence the experiment, are controllable by the
users. In Section 2.2, we detail more.

XMLTrace class takes in the constructor, the
XML document and an iterator from the root to
traverse the tree. XMLTrace class generates a list of
operations ready to be executed in tree data type
algorithms.

2. Real traces: the framework generates also a
real traces from a log – specified by the
developer before the execution – or from DVCS
histories. In [1], we made a real collaborative
editing experiment with students. The operations
made by users have been stored in a file. The
TraceFromFile class extracts these operations from
the file and allow the framework to reproduce the
same collaboration as in real collaboration. The
framework dispatches the operations in the same
order as produced in the experiment.

GitTrace class generates an operation from DVCS
repositories such as Git. The framework traverses
the histories of git repositories and simulate a col-
laboration composed of concurrent modifications.
To simulate this collaboration, we adapted an
open-sourced replication performance evaluation
tool of distributed optimistic replication mecha-
nisms [1].

<< interface >> 
   Trace

 Enumeration<TraceOperation> enumeration();

XMLTrace

numDoc: int
children: Iterator
...

<Constructor> XMLTrace(int docnum, Iterator children) 

<@Override>   enumeration(): Enumeration<TraceOperation>
....

   GitTrace

   TextTrace

  commitCRUD:    GenericRepository<Commit>
  patchCRUD: GenericRepository<Patch>
  initCommit:    List<Commit> 
  diffAlgorithm:     DiffAlgorithm
  gitRepo:     Repository
   .....

numberOperation:  long
delay:    long
replicas:     int  
states:     VectorClock[]; 
operation:      OperationProfile
....

<Constructor> TextTrace(long numOp, long d, long rep, 
       Operation Profile op)

<@Override>   enumeration(): Enumeration<TraceOperation>

<Constructor> GitTrace(GenericRepository<Commit> dbc, 
       GenericRepository<Patch> dbp)

<@Override>   enumeration(): Enumeration<TraceOperation>

diff(byte[] aRaw, byte[] bRaw):      List<Edition> 
....

  TracefromFile

fileName:  File
....

<Constructor> TraceFromFile(File file)

<@Override>   enumeration(): Enumeration<TraceOperation>
...

OperationProfil

perAdd:    int
perBlock:      int
sizeCopyPast: int
....

<Constructor> OperationProfil(int add, int block, int sizeCopyPast)

Figure 2. Framework trace classes
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Figure 3. Framework simulation classes

Operation and Simulator are abstract classes. Their
implementation is in the derived classes. Operation
class is implemented by each algorithm. It contains
trace operation described previously, in addition to
other methods of comparison. Simulator class is used
to disseminate the operations. It contains the main
method run implemented in Causal Dispatcher class as
presented in Figure 3. Causal Dispatcher class, allows to
each replica to generate a trace operation and dispatches
the correspondent operations in correct order. Indeed,
before disseminate or integrate the operations, run
method calls insertCausalOrder to ensure the causality.

Document class is an interface with two methods:
view() method to display the content of the document
and apply() method to integrate a remote operation
locally. MergeAlgorithm is an abstract class and extends
by each algorithm. It initializes the document and it
provides different methods to manage local and remote
operations. For instance, generate procedure takes a
traces operation in parameter and returns a list of
operations in format of specific algorithms. In other
words, it transforms the operation generated by the
users to the list of operations ready to be executed by
the algorithms. The implementation of this method is
in the derived classes for generate a specific operation
for each algorithm.

Finally, to measure the performances of different
algorithms, we can summarize the framework operation
through three fundamental phases:

1. Generate corpus: The framework gives to the
users an entire choice of the corpus that will be
used to evaluate the algorithms. Indeed, the users
can choose between simulated or real data. In case
of simulated data, the framework generates the
operations following the parameters specified by
the users such as: number of users, the proportion
of insertions, number of operations, etc. In case of
real data, the framework launches a mechanism

to extract the operations from a log. In Section
2.2, we detail about the different data that can
be generated by the framework. Whatever the
mode used, the traces generated are a sequence
of <Operation, replica, vector clock>, where the
operation specifies the type of operations and
their content, the replica is a unique identifier
given to each user, while the vector clock is
a structure used to ensure the causality [36]
between the operations. The framework allows to
each data type algorithm to generate an operation
on their own format.

2. Specify format of operations and dissemination:
The framework includes a dispatcher that dissem-
inates the operations to the replicas following the
order in the corpus. The operations are dissemi-
nated while respecting the causal order.

According the order in the corpus and the replica
that generates the operations, the framework
allows the correspondent replica to generate a
local operation in their format. The replica
executes the operation locally and the dispatcher
broadcasts this operation to all other replicas.
Each replica that receives this remote operation,
it integrates it in their copies.

3. Compute the performances: To measure the
response time of algorithms during the sim-
ulation, the framework stores the execution
time of each local and remote operation using
java.lang.System.nanoTime(). However, even using iso-
lated systems, the garbage collector of java may
affect the execution time. Thus, the framework
is able to make several runs and to analyze the
results in order to purge inconsistent values. To
measure memory occupation and message size,
the framework uses the default serialization inter-
face of Java to estimate the memory footprint of a
replica. The framework computes also the effort
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made by users to correct their document after
merges the updates.

To integrate a new algorithm in our framework,
the developer has just to implement the different
class described previously – Document, Operation and
MergeAlgorithm–, in addition to the specific classes of
the algorithm.

In the following section, we describe the different
EC algorithms implemented and integrated into the
framework.

2.1. Algorithms supported
Until now, the framework supports three different data
types: Set, Text and Tree. For each data type, numerous
algorithms that support the decentralization are
implemented. However, the framework is implemented
in generic way, it is easy to integrate another algorithm
to the existing data type or integrate another data type
such as Graph.

Set Data Type
. In our framework, the set ensures the eventual
consistency by using Commutative Replicated Data
Type (CRDT) approach [31]. A CRDT can be state-
based or operation-based. In state-based CRDTs –
aka Convergent Replicated Data Type (CvRDT) –
the data are computed by merging the state of
the local replica with the state of another replica.
Eventual consistency is achieved if the merge relation
is a monotonic semi-lattice. In the operation-based
CRDTs – aka Commutative Replicated Data Type
(CmRDT) – the data are computed by executing
remote operations on the local replica. Eventual
consistency is achieved if operations are delivered
in a certain order and if the execution of the non-
ordered operation commutes. For instance, using causal
order, the execution of concurrent (in Lamport’s
definition [16]) operations must commutes. Our
framework supports both cases: CvRDT and CmRDT.
The different algorithms implemented are published
an detailed in [5, 18, 31]. In the following, we give a
brief description of each algorithm integrated into the
framework:

LWW-Set In a Last Writer Wins Set (LWW-Set), each
element is associated with a timestamp and a
visibility flag. A local operation adds the element
if not present and updates the timestamp and
the visibility flag (true for add, false for rmv).
The CvRDT merge mechanism makes the union
of all elements and for each element the pair
(timestamp, flag) of the maximum timestamp.

In the CmRDT, the execution of a remote
operation updates the element only if the
timestamp of the operation is higher than the

timestamp associated with the element. The
both CRDTs requires tombstones and the lookup
returns elements which have a true visibility flag.

Counter-Set In this variation a counter is associated to
each element. Let k be the value of the counter
of an element. Initially 0 ,Adding an element
increments the associated counter, and removing
an element decrements it. In CmRDT A local add
can occur only if k ≤ 0 and sets the counter to 1
(δ = −k + 1). A local del can occur only if k > 0 and
sets the counter to 0 (δ = −k). The CvRDT (also
call PN-Set) payload contains the set of element,
and for each element a set P of increment and a
set N of decrement. A local add, resp. del, adds |δ|
element in P , resp. N . The merge operation is the
union of the sets. The lookup contains elements
with |P | > |N |.
In the CmRDT, each operation contains the
difference δ obtained during local execution. The
remote operation execution adds δ to the counter.
An element with a counter k = 0 can be removed,
the others must be kept. The lookup contains
elements with k > 0.

OR-Set In an Observed Remove Set (OR-Set) each
element is associated with a set of unique tag.
A local add creates a tag for the element and a
local rmv removes all the tag of the element. The
CvRDT contains the set of element, and for each
element a set T of tags added and a set R of
tags removed. The merge operation is the union
of each set. The lookup contains elements with
T ∩ R , {}.
In the CmRDT, each operation contains the
tag(s) added or removed. Since causal ordering is
ensured and since tag are unique, the removed tag
(and element with no tag) can be removed in the
payload. The lookup contains the elements of the
payload.

Optimized OR-Set In [5], the authors optimize the
traditional OR-Set algorithm by minimizing the
required meta-data. In OptORSet, each replica
maintains a vector that indicates the observed
n successive identifiers generated in others
replicas. When a replica generates an operation,
it increments its local counter. However, when
the add is delivered, the element should have an
effect only if it has not been previously delivered.
Otherwise, it updates the counter of the remote
replica and deletes the previous tags of the
same element delivered from the same replica.
OptORSet reduces the memory requirement by
keeping only the last tag of the element peer
replica.
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Text Data Type
. For text data type, the framework supports two
approaches that ensure the eventual consistency:
Operational Transformation (OT) approach [8, 12,
27] and Commutative Replicated Data Types (CRDT)
approach [24, 31].

Operational Transformation (OT) Algorithms: The
Operational Transformation approach was introduced
to overcome the problem of divergent copies in syn-
chronous collaborative editors by serializing concurrent
operations [8, 27, 34, 46]. It has been successfully
employed in the massive context of GoogleDocs [13]
which uses a centralized variation of the Jupiter algo-
rithm [23]. The OT approach transforms a remote oper-
ation against its concurrent operation, i.e. ones that
have changed at the same time the state of the object.
It is based on the syntactic properties of the operations
to preserve the user intentions. OT replicas store the
history of all operations received. These histories are
not necessarily the same, since the order of reception
of concurrent operations is different for each replica. To
ensure eventual consistency the transformation func-
tions should satisfy some properties known as C1 and
C2 [27]. By using a central server or a continuous global
order [37, 40], the system only requires the condition
C1. Satisfying C1 require to obtain the same result
by executing in any order a pair concurrent operation
defined on the same document state. In the general
decentralized context [43], condition C2 is required.
C2 expresses the equality between an operation trans-
formed against two equivalent sequences of operations.

Conditions C1 and C2 ensure that transforming any
operation with any two sequences of the same set
of concurrent operations in different execution orders
always yields the same result. Unfortunately, many
proposed transformation functions fail to satisfy these
conditions, as shown in [12]. To our best knowledge, the
only existing transformation functions for collaborative
editing that satisfy conditions C1 and C2 are the
Tombstone Transformation Functions (TTF) [25]. To
overcome problems, TTF approach keeps all characters
in the model of the document, i.e. deleted characters are
replaced by tombstones.

SOCT2 [34] is a representative decentralized opera-
tional transformation algorithm that requires the
properties C1 and C2 to ensure convergence of
replicas. As other decentralized algorithms [27,
35], it maintains a vector clock to ensure causality.
When a user generates an operation, it is imme-
diately executed locally, added to the local history
buffer, and sent to all other replicas. The operation
is broadcasted to other replicas with the identi-
fier of the source site and its vector clock. The
principle of this algorithm is that before a remote

operation integration, the history of already exe-
cuted operations is traversed and reordered. After
reordering, causally preceding operations come
before concurrent ones in the history buffer.

Traversing the history buffer is a costly operation,
but mandatory to achieve correctness. The history
buffer size can be reduced by removing entries
seen by every replica, but such a garbage
collection mechanism requires a consensus or a
fixed and known number of replicas [14] which
is not feasible in the general distributed context.

Commutative Replicated Data Types Algorithms:
Commutative Replicated Data Types (CmRDT) are
operation-based conflict-free replicated data types
(CRDT) [31]. CRDTs ensure consistency of highly
dynamic contents on peer-to-peer networks. Unlike OT
algorithms, CRDTs require no history of operations, and
no concurrency control to ensure consistency. Instead,
CmRDT are designed for concurrent operations to be
natively commutative by actively using the characteris-
tics of abstract data types such as lists or ordered trees.
However, CRDT algorithms have not yet been applied
to massive collaborative editing in an industrial context.

WOOT [24] merge operations contain the element to
be inserted with the preceding and the following
element. In case where two elements have not a
precedence relation between them, the priority is
given according to their identifier. To ensure the
consistency of the replicas, the deleted elements
are not deleted but just marked as invisible to
users.

WOOTO [42] improves WOOT complexity by using
element degrees to compare unordered elements
instead of the respective placement of the
preceding and next elements. This optimization
sightly improves computing time and model
space but not message size since insertions
operations still specifies the identifiers of the
preceding and the next elements along with the
degree.

WOOTH [1] is a new version of WOOT that improves
its performance by using a hash table.

RGA [28] specifies on the identifiers (aka s4vector)
the last previous element visible during its
generation. Thus, the tombstones also remain
after the deletions.

Logoot [44] CRDT generates identifiers composed of
a list of positions. The identifiers are ordered
with a lexicographic order. A position is a 3-tuple
containing a digit in a specific numeric base, a
replica identifier and a clock value. Identifiers
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are unbounded to allow for arbitrary insertion
between two consecutive elements. Unlike RGA
and WOOT algorithms, Logoot does not need to
store the tombstones since elements are not linked
through insertion operations.2

LogootSplit Unlike Logoot that takes use a single
elements granular, LogootSplit [3] algorithm
identifies a continuous sequence generated by
a user operation. Continuous sequences can
be produced by real-time copy/paste, version
patches, or operation buffering.

The major advantage of LogootSplit algorithm
is the number of identifiers which is reduced,
whereas the algorithm performance depends on
the proportion of continuous sequences inserted.

Treedoc [26] is a CRDT algorithm that represents the
document by a binary tree structure. The element
identifier is the path to the element in the tree. If
two users insert concurrently at the same position,
Treedoc creates a major-node that contains the
two elements.

Tree Data Type
. Trees are a fundamental data structure for many
areas of computer science and system engineering.
in addition, the eventual consistency is more difficult
to achieve facing complex conflict resolution. Indeed,
more the data type is complex, more conflicts appear.
For instance, in a structured data such as XML files
and file systems, modifications such as adding and
removing an element, or adding a child node while
removing the father to which it belongs, or setting
concurrently two same elements conflict. Tree data
types are useful to manage such conflicts [21]. Our
framework provide a collection of tree algorithms based
on OT and CRDT designed for hierarchical documents
and semi-structured documents. In addition, the
framework proposes a generic design to ensure eventual
consistency and control the conflicts in such structures.

TreeOpt and OTTree TreeOPT (tree OPerational
Transformation) [11] is a general algorithm
designed for hierarchical documents and semi-
structured documents. Each node contains
an instance of an operation transformation
algorithm [8, 27, 35]. The algorithm applies
the operational transformation mechanism
recursively over the different document levels. In
our experimentation, we have used this algorithm
with SOCT2 [33] algorithm and TTF (Tombstone

2Since the Logoot algorithm generates its identifiers by using a
random function and the order of these identifiers is not necessarily
the same in two different executions, we conducted four executions
and we computed the average metric.

Transformation Functions) approach [25]. For
little optimization, we save only insertion
operation in log of SOCT2 [34].

The OTTree, an unpublished algorithm, uses only
one instance of SOCT2 for entire the tree (not
on each node) and TTF on each child list. The
operation of TTF and its integration function were
modified to include the path information.

FCEdit FCEdit [20] is a CRDT designed for collab-
orative editing of semi-structured documents. It
associates to each element a unique identifier.
FCEdit maps identif ier → node. So it uses just a
hash table to find an element in the tree. Each
child is ordered by a position identifier. Unlike
OTtree, FCEdit does not need to store an element
in tombstone. The elements are really deleted
from the tree making it more efficient in memory.

The framework proposes also a different policies to
manage the concurrent modification for trees [19]:

1. Skip: drops the orphan path.

2. Reappear: recreates the path leading to the
orphan path

3. Root: places the orphan subtree under the root

4. Compact: places the orphan subtree under its
longest non-orphan prefix.

2.2. Obtaining corpus
To observe the behavior of different EC algorithms and
study their performance, the framework needs to run
these algorithms on a large corpus. The framework
gives to users the entire choice of the evaluation: by
using a realistic data or a simulated data. Indeed, the
framework integrates a mechanism to extract a real
data and a simulator that generates a simulated corpus
following different parameters. In the following, we
explain how the framework produces both corpus.

Real Traces
. The framework can produce two kinds of real
corpus:

1. Synchronous editing corpus: There is no
publicly available corpus of collaborative editing
traces. The existing studies [17, 26, 45] were
conducted on purely randomized and private
traces or Wikipedia and/or SVN traces which are
centralized and synchronous. Centralized traces
do not contain concurrency between editions.

In [1] we performed user studies on real-time
peer-to-peer collaboration and we collected usage
traces. We modified a real-time collaborative
editor called TeamEdit [38] to log the user
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operations generated during an experiment. For
both operations insert/delete, we store a position,
a version vector that represents concurrency,
a replica identifier and a document identifier.
In addition, for insert operations, we store the
character or the block of characters inserted, while
for delete operations, we store the number of
characters deleted. We made two collaboration
experiments with groups of students. The first
collaboration was performed with three groups of
four master students during two hours. We asked
the students to write collaboratively a report
without using any other communication tools
except TeamEdit. In the second experiment, we
asked two times eighteen students to watch two
TvShow and to produce a transcription of the
episode while watching it. In Table 1 we present
some characteristics of the traces collected in [1].

Input data Report TvShow

Avg percentage of insertions 88.26% 93.23%
Avg number of operations 11993.00 9435.00
Avg number of block insertions 112.66 174.00
Avg number of block deletions 97.33 38.00
Avg number of replicas 4.00 18.00
Avg blocks size 158.89 34.45

Table 1. Characteristics of the collected synchronous traces

The framework can reproduce the same real traces
by adjusting the features presented in Table 1.

2. Asynchronous editing corpus: A large quantity
of distributed asynchronous collaborative editing
data is publicly available. Several web-based
hosting service for software development projects
such as GitHub, Assembla, or SourceForge host
numerous open-sourced software code bases.
When this code is managed with a distributed
version control system such as Git, Mercurial,
or Bazaar, anyone got access to the history of
concurrent editing. However, these histories must
be treated to be run by other algorithms.

The real concurrency information is not available
in DVCs. The most used DVCS – git, Mercurial
or Bazaar – do not manage replica information in
their data storage. The only available information
is the email of the user who produced a given
commit and the merge history. The user’s email is
not reliable since it may be invalid, a same user
may work on several replicas, or it may change
its email while working on the same replica. The
merge information is more reliable. A merge is a
commit that has more than one parent. Different

parents are different replicas or branches.3 The
inverse is not true since two consecutive commits
without merge can be produced by different
replicas.

Our framework is able to parse git repositories
to obtain large runnable traces of asynchronous
collaborative editing. First, it begins by assigning
a replica identifier to commit. It heuristically
minimizes the number of replicas.

A commit replica identifier is assigned to one of
the parents of the commit. Thus, if two commits
have the same replica identifier, there exists a path
between them.

Second, for each commit that has only one parent
the framework computes the diff [22] between
the two states. The diff result is a list of insert,
delete or update operations concerning block of
lines. For merge commits, the framework store the
state of the resulting merge commit. The relation
between the commits is represented by vector
clocks. All commits (diffs and merge states) and
their vector clocks, are stored in Apache CouchDB
database [9] in order to be used by all the runs of
the different algorithms.

In DVCSs, merging is not a fully automated
process. When a user merges, it obtains a best-
effort result – computed using three-way-merge
techniques. The user must change this result in
case of conflicts. He may also change the result,
if, for instance, the merged source code does not
compile. The stored merge state is the result of
the whole process. Our framework simulate the
same behavior during collaborative editing algorithm
evaluation. A best-effort merge is obtained using
the evaluated algorithm and a “correction” is
computed on-the-fly to obtain the result intended
by the real user that done the merge. In addition,
an algorithm that requires more corrections will
loss in performances since it will have more
operations to treat.

Simulated Traces
. Our framework implements a generator that enables
to produce randomized traces by controlling one of the
following characteristics :

(1) the proportion of user operation which are
insertion, (2) the proportion of user operation which
concern blocks, (3) the number of operations generated,
(4) the number of replica that will produce operations,
(5) the probability at each iteration that a replica
produce one operation, (6) the average delay (in number
of iteration) between generation of user operation and

3We consider branching as concurrent editing.
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reception of corresponding operation in other replicas.
(7) average size of copy/past.

The simulation ensures that each replica receives
operations in the order as defined in the logs. The
framework lets replicas of every algorithm generate
operations in its own formats for the given trace
operations provided from the simulated logs.

3. Synchronous Experiment Results
In the following, we present the experimental results
retrieved through our framework, by using syn-
chronous corpus.

Firstly, we present the different corpus obtained and
some experiments made as an example. Secondly, we
present a performance evaluation of some algorithms
for different data types.

The experiments were performed on virtual machines
of Amazon Elastic Compute Cloud (EC2). We run each
experiment a virtual machine with Intel(R) Xeon(R)
5160 one-core processor (4096K Cache, 2.27GHz,
2266.746 MHz FSB, 3.75 GiB of memory), that has
installed GNU/Linux ubuntu 12.04.

3.1. Corpus obtained
Real synchronous Traces
. Based on the characteristics presented in Table 1, we
parameter the simulator to produce the same traces.
It also provides a controlled simulation environment
that replays a trace of operations and measures
the performance of the replicated algorithms. The
simulation ensures that each replica receives operations
in the order as defined in the logs.

Simulated Traces
. To evaluate the algorithm’s performance, we pro-
duced through the framework several sets of traces. In
each experiment, the framework controls one character-
istic and keep the others static at values similar to the
[1] experiments.4. Table 2 resume our experiment.

3.2. Performance in Set Data Type Algorithms
The performance of different algorithms designed for
set data type are presented in this section. Even if the
framework supports CvRDT and CmRDT (Section ),
we present as an example in this paper only results of
CmRDT.

Since the different algorithms have different seman-
tics, we run each algorithm one hundred time and each
time in different simulated data (except for OR-set and
OptORSet in the same data since they have the same

4 To simplify algorithm analysis, we do not modify the delay and
generation probability. Also, these characteristic mostly affect the
concurrency degree which is also affected by the number of replicas.

semantics). In the following, we present the results of
two experiments: by changing the size of the data set
and the percentage of insertions. In Figure 4(a) and 4(b)
we present respectively the average execution time for
each algorithm during the generation and integration of
operations. The results of execution time indicate that:

• OptORSet and ORSet algorithms are the worst in
execution time. In local, both algorithms take time
to generate a unique tag for each element. While,
during the integration, both algorithms treat each
remote operation as a new element since they have
a different tag,

• OptORSet takes more time than ORSet in local,
since it updates the local vector while ORSet
algorithm does not,

• LWWSet and CounterSet outperforms ORSet(s)
algorithms. Indeed, they don’t need to generate a
tag for elements,

• LWWSet takes slightly more time than Coun-
terSet. This is due to the management of the
timestamp for each element. Indeed, LWWSet
traverses its model to find the previous value of
the element, and increment it. While, CounterSet
algorithm generates directly a counter.

In Figure 5(a) and 5(b) we present respectively the
memory requirement for each algorithm per percentage
of insertion and size of data set. The performances
obtained indicate that:

• Contrary to what we expect, OptORSize does not
reduce the memory size. Indeed, the vector used
to detect the partial order of elements hide the
memory saved,

• The memory used by LWWSet and CounterSet
algorithms remains stable. Whatever the percent-
age of insertion, these algorithms keep all ele-
ments (inserted and deleted),

• More the percentage of insertion grows and more
the replica lost in memory. Gradually, the memory
becomes stable since the elements will be existed
in the set,

• The memory requirements are proportional with
the size of the data set. Indeed, the number of
elements in the replica set depends on the size of
data used.

To validate this analysis and make sure that this
difference is significant, we use ANOVA technique5.

5one-way analysis of variance. The result is significant if p − value
<.05
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Experiment Operations Insertions
Blocks vocabulary

Replicas
for text for set

Operations 20 000
+100000−−−−−−−−−→40 000 10 000 10 000 10 000 10 000

Replicas 10 10 10 10 2
×5−−−→50

Blocks % 15% 15% 0%
+10%−−−−−−→100% - 15%

Insertions % 80% 50%
+5%−−−−−→100% 80% 80 80%

vocab. size - - - 10
×2−−−→10240 -

Avg blocks size 100 100 100 - 100
Generation w.p. 0.1 0.1 0.1 0.1 0.1

Delay 5 5 5 5 5

Table 2. Experiment for Text/Set data type algorithms.
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Figure 4. Execution time in set data type

The (p − value) obtained from the results of algorithms,
demonstrate clearly that all results are very significant.
Indeed, for execution time, p − value = 0.00 and for
memory p − value = 0.03. In both experiments, p −
value < 0.05.

3.3. Performance in Text Data Type Algorithms
In [1], we evaluated through our framework different
collaborative editing algorithms in real traces described
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Figure 5. Memory occupation in set data type

above. However, in this paper we extend the perfor-
mance evaluation with two other algorithms that we
did not in [1]. In addition, we perform another kind of
performance evaluation such as memory requirements
and size of messages in different large corpus.

In this section, we present the results of two exper-
iments: i) the performance of algorithms on simulated
data inspired from collecting synchronous real traces, ii)
algorithm’s performance in a real asynchronous traces
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obtained from github. As an example, we measured the
performances of six algorithms: SOCT2/TTF, WOOTH,
RGA, TreeDoc, Logoot, and LogootSplit. We conducted
four experiments, each one varying a different charac-
teristic of the simulated traces. To obtain a significant
results, we ran each experiment five times.

In this section, we conducted an experiment in
two different traces: synchronous and asynchronous.
In [44] the authors evaluated Logoot algorithm on
Wikipedia traces, and assume that such histories
as traces extracted from synchronous collaborative
editing. Also, in [26] Treedoc algorithm was evaluated
on SVN repositories. In this experiment, we evaluate the
algorithms on Git repositories to validate the result of
synchronous experiment.

To understand the behaviors of algorithms during the
experiment, we conduct in the following a theoretical
evaluation before presenting the results.

Theoretical Evaluation
. In [1], we provided a comparison in time complexity
of Logoot, WOOTs, RGA and SOCT2 algorithms
(Section 2.1). In the following, we specify the time
complexity of two other algorithms that we do not
presented in [1]. These algorithms are Treedoc and
LogootSplit. In contrary to the previous algorithms
that are based on character operations, Treedoc and
LogootSplit support block granularity.

In addition, in the previous work [1], we do not
provide a comparison of space complexity. Then, we
presented also a comparison of all algorithms described
above in space complexity.

Average-case Time Complexity Analysis Considering
the execution time complexity we differentiate the local
execution time – treatment of a user operation – and
the remote execution time – treatment of a remote
operation. The dissemination mechanism is not taken
into account since it is independent of the merge
mechanism.

During local execution, the algorithms treat either
an insert operation (ins) or delete operation (del).
These operations may concern a continuous sequence
of elements (e.g. cut or paste a block of text). The
algorithms must find in their inner model the position
of the user operations. During local operation execution
the remote operations that will be sent to other replicas
are generated. During remote execution, operations are
specific to each algorithm. The average case complexity
for each of the above described algorithms is presented
in 4. We denote by :

• R the number of replicas,

• H the number operations that had affected the
document,

Algorithm
avg. local avg. remote

ins del ins del

LogootSplit O(H) O(H) O(H.log(H)) O(H.log(H))
TreeDoc O(H) O(H2) O(H) O(H2)

Table 3. Worst time complexities

Algorithm
avg. local avg. remote

ins del ins del

LogootSplit O(n/l + k) O(n/l + k) O(k.log(n/l)) O(k.log(n/l))
TreeDoc O(c.p + l) O(l.p) O(c.p + l) O(l.p)

Table 4. Average time complexities

• N the total number of inserted elements, in worst
case N = H ,

• c the average number of operations concurrent to
a given one,6 in worst case c = H ,

• n the size of the document view ,

• k the average size of Logoot identifier : in best case
k = 1 and in worst case k = N ,

• p the average length of TreeDoc paths : in best case
p = 1 and in worst case p = N ,

• l the size of elements present in one operation
(blocks), in worst case l = 1 or l = N depending
if the algorithm manages continuous sequence or
not,

Both algorithms have its computational complexity
impacted by l, the average number of elements present
in user operations.

• LogootSplit algorithm uses identifier of O(k)
average size. Its model contains n/l blocks, and
the local operations must sum up the block sizes
to retrieve operation effect position. The local
insertion generates n/l new identifier, while the
remote complexity is impacted by the binary
search upon identifier in O(k.log(n/l)) average
complexity [3].

• TreeDoc algorithm must follow one path of length
p in the tree to find user operation effect position
and remote operation identifiers. Each node along
this path which is a super node [26] must be
linearly traversed. So there will be c.p in average,
nodes traversed. ins operations of a continuous
sequence produce only one remote operation
while del operations produce l remote operations.

6c depends on the network latency and user operations frequency.
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Space complexity We establish the space occupied by
the models used by each algorithm and the size of the
message composed of remote operations corresponding
to one user operation.

• SOCT 2/T T F stores the history of operations
O(H) each one with a vector clock O(R). The l
remote operations contains also a vector clock
O(R).

• WOOT algorithm family and RGA store O(N )
elements with their fixed-size identifiers. A user
operation produces l remote operations.

• Logoot stores O(n) elements with their identifier
of size O(k). A user operation produces l remote
operations with identifier. A user operation
produces l remote operations.

• LogootSplit stores only O(n/l) elements. A user
insert operation produces one operation of size
O(k + l): an identifier and a content. A user delete
operation produce in average n/l2 – the number of
elements divided by l – remote operations with an
identifier.

• T reedoc stores a tree of O(n) elements. A user
insert operation produces one operation of size
O(p + l). A user delete operation produces l
remote operations with identifier in O(p).

Algorithm model message

SOCT2/TTF O(H.R) O(l.R)
WOOTs O(N ) O(l)
RGA O(N ) O(l)
Logoot O(k.n) O(l.k)
LogootSplit O(k.n/l) O(k + l)|O(k.n/l2)
TreeDoc O(n) O(p + l)|O(p.l)

Table 5. Space complexity analysis of meta-data

Discussion The theoretical analysis shows that no
algorithm performance surpass all the others whether
in worst case or average case. However, RGA and
TreeDoc seem good candidates, but must be compared
with each other and with LogootSplit which follows
a different approach. Since the theoretical analysis
is not sufficient to rank the different algorithms, an
experimentation is required. Why, an implementation
of a framework that allows an experimental evaluation
is needed. In the following section, we present a
framework to experiment the algorithms in realistic
settings.

Remote execution time
. The figures 6(a) and 6(b) present the performance
of the remote operations execution in two different
experiments: number of operations and number of

replicas. The figures vertical axis presents the average
time taken to execute the remote operation – or the
set of remote operations – corresponding to a user
operation appearing in the trace. This axis uses a
logarithmic scale. The horizontal axis presents the
experimental parameter value, one label per trace.
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Figure 6. Remote execution time in text data type

Operations experiment WOOTH and RGA perform
very stably. Logoot performance decrease when the
number of operations grows. This is due to a growing
identifiers for Logoot. Identifier growing also affect
TreeDoc and LogootSplit but only slightly.

Replicas experiment We can observe that the CRDT
algorithms perform very stably when the number
of replica increases. The SOCT2/TTF performance
eventually degrades but less quickly than the number
of replicas. This loss is due to increased c concurrency
and not the number of replicas, since the algorithm does
not traverse the vector clocks during remote execution.
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Local execution time
. The figures 7(a) and 7(b) present respectively the
average local execution time for the user operations by
insertions proportion and replica numbers. The vertical
axis uses a logarithmic scale. The execution of a user
operation includes the creation of the corresponding
remote operations.
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Figure 7. Local execute time in text data type

Insertion experiment The algorithms using tomb-
stones (RGA, WOOTH and TTF) perform worst when
the proportion of insertion grows. Indeed, the must
traverse their model – which becomes slightly larger
– to find user effect operation position. Logoot per-
forms worst due to growing Logoot identifiers. The
TreeDoc and LogootSplit algorithms performances have
improved since, in both algorithms, an insert operation
requires only one treatment per block contrary to delete
operations.

Replicas experiment As for remote execution, Tree-
Doc, Logoot and LogootSplit perform very stably facing

the increasing number of replicas. RGA and WOOTH
sightly loss in performance due to increased concur-
rency. In contrary to remote execution, SOCT2 remains
stable since it does not use the vector in local.

Memory requirement
. In this subsection we present algorithm’s perfor-
mance concerning memory usage. Figure 8(a) presents
the average memory, computed using Java serialization,
required by one replica during the replicas experiment.
The results also include the average size of the docu-
ment (Lookup), i.e. the size of the view presented to the
user. The difference between the document size and the
replica size indicates the overhead of an algorithm.
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Figure 8. Memory occupation in text data type

As for execution time, the number of replicas does not
affect the memory required by the algorithms, except
for SOCT2/TTF since it uses vector clocks to detect
concurrent operations. All other algorithm behaviors
remains very stable during the whole experiment.
The worst algorithm is SOCT2/TTF that requires
tombstones and buffer history. More surprisingly, and
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contrary to [44] experiments that use a line granularity,
the second worst algorithm is Logoot which does not
require tombstones but non-bounded identifier for each
character. Logoot requires an overhead of one hundred
times the document’s size. The following are, in order,
RGA, WOOTH, TreeDoc, and LogootSplit. Despite
having the best performance, LogootSplit requires an
overhead of a twenty times the document’s size.

Figure 8(b) presents the average memory occupied
by one replica during the block experiment. Except
LogootSplit, the memory occupied increases for all
algorithms and for the document view, since more
blocks implies more characters. The ranking between
the algorithms and their relative overhead remains
the same than in the replica experiment. LogootSplit
performance has a different behavior. With 0% block
it has similar performance than the other. With more
than zero block, its performance is stable even if the
document size increases. With 60% block, its overhead
is only three times the document size, far below the
other algorithms.

Message size
. To evaluate the bandwidth required the algorithms,
we compute the size of the remote messages generated
by the algorithms. Figure 9 presents the average size
of the message serialized depending on proportion of
operations that manipulate the blocks. Not surprisingly,
the behavior and the ranking between the algorithm
is the same than for the model size results. However,
in the experiment with 0% block, TreeDoc performs
worse compare to all other CRDT algorithms and as
badly as SOCT2/TTF. Indeed, in the TreeDoc model
the identifiers representation is compacted into the
tree, but not into the remote message. Over the
time, SOCT2/TTF produces an important flow in the
network. The algorithm sends in its messages the vector
clock of the current operation. That is why, SOCT2/TTF
does not scale.

Figure 9. Size of messages in text data type

3.4. Performance in Tree Data Type Algorithms
In [19], we measured through the framework a
performance evaluation of tree data type algorithms:
TreeOpt, OTTree and FCEdit algorithms. We evaluated
these algorithms with different policies described in
section 2.1, and compared them with other algorithms
deployed on layered approach[19].

3.5. Discussion
The results obtained trough our framework are consis-
tent with the theoretical analysis. Such consistency val-
idates the evaluated implementation of the algorithms.
Despite the random nature of our different experi-
ments, their results are consistent with each other.

Our experiments demonstrate that our framework
is able to detect which parameter has more effect
on the algorithms. In addition, Analyzing the results
obtained by our framework, we were able to select
which algorithm is adapted to which situation.

The framework provided also for the first, an
experimental evaluation of set data type algorithms,
and provided a more performance evaluation of text
data type algorithms than published in [1]. For instance,
study the impact of execution time by number of
replicas, the memory requirement and sizes of messages
for text data type has never been studied.

As shown by our experimental results, the choice of
the best algorithm depends highly on the application
and user context. For the set data type algorithms,
CounterSet is the best choice in execution time and
for application with a large dataset. While, LWWSet
algorithm is good for applications that require low
memory. We found also, OptORSet algorithm designed
to reduce the memory requirement does not. Indeed,
the vector used to detect the partial order of elements
hide the memory saved.

For text data type algorithms, TreeDoc is a very
good generic algorithm. It performs the best or among
the best for almost all experiment. However, we
cannot recommend it for every usage. For collaborative
activities with a very large number of participants, RGA
and WOOTH are more suitable. Indeed, their remote
execution times are the best. For usages on limited
devices, LogootSplit is a good choice since it has a low
memory and bandwidth overhead and good execution
time performance.

4. Asynchronous Editing Experiment
In asynchronous editing, the documents are modified in
a different manner compared to synchronous editing.
Operations are grouped in patches and the users
usually control when they apply remotes modifications,
introducing more concurrency. In this Section, we
evaluate the behavior of the studied collaborative
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editing algorithms in the context of asynchronous
collaboration.

As explained Section 2.2, our framework is able
to extract collaborative editing corpus from git
repositories and to run a different algorithm against
these histories. These experiments are run in the same
Amazon EC2 setting than above.

We use different statistical metrics to evaluate the
algorithms. We establish the average performance of an
algorithm to manage three whole repositories and to
treat a user operation: commit or merge. We analysis the
correlation between their performances and the edition
characteristics per file. Finally, we evaluate the quality
of the automatic merge result.

4.1. Corpus obtained
In Table 6 we present the characteristics of some
projects retrieved from the GitHub repository. The head
commits sha1 used to run our experiments is presented
above each repository name. The characteristics are
computed per file. For each file, we extracted the
number of commits that affected the file, the total
number of lines modified, the number of simulated
replicas, the proportion of insertions, the average block
size in number of lines (as computed by the diff), and
the number of merge commits. These repositories are
selected among the most popular projects available on
GitHub web site.7

General performance The Table 7 presents the
execution time of the different algorithms on three git
repositories (git/git, joyent/node and twitter/bootstrap). The
“commit” measure is the time required to execute all
the local operations affecting the files in a repository
divided by the number of commits. The “merge”
measure is the time required to execute all the remote
operations affecting the files in a repository divided
by the number of commits. Thus, these measures
correspond to the relative performance a user should
observe in a DVCS based on one of these algorithms.

In local execution, the ranking between the perfor-
mances of the algorithms is the roughly the same than
in the synchronous experiment. we can classify the
algorithms on three sets: algorithms based on blocks
which perform better – LogootSplit and Treedoc – algo-
rithms based on tombstones which perform worse –
WOOTH, RGA and SOCT2/TTF – and Logoot some-
where in the middle. However, the rankings within
these sets can vary due to collaboration characteristics.
For instance, LogootSplit seems more stable than Tree-
Doc, and RGA seems more stable than WOOTH.

7https://github.com/popular/starred

In remote execution, the results are more sur-
prising compared to the synchronous experiments.
SOCT2/TTF performances remain the worst, requiring
hundreds time more than the average CRDT. RGA,
TreeDoc, Logoot and LogootSplit performance remains
very good. However, contrary to asynchronous experi-
ment, Logoot performs slightly better than LogootSplit.
Also, WOOTH behavior was not expected. It is the worst
CRDT algorithm on bootstrap and node project. This
behavior seems due to few of the most edited files in
these projects that cause problems to the WOOT lineari-
sation algorithm. Indeed, Table 6 shows that these two
projects contains files which are much more edited than
the git one.

Tendencies To detect which characteristic affect the
algorithms performances, we correlate the performance
to the editions characteristic. We consider the inde-
pendent performances result of each file edited of one
repository: git/git.8 The presented results consider only
the most edited files, i.e. more than the average which
is 60 block edited.

We computed the bivariate analysis correlation
between each local and remote execution time and
four characteristics. The execution time is the average
execution time per line edited. The four characteristics
are the average size of blocks, the proportion of
insertion operations, the number of lines, and the
number of simulated replicas. We noticed that the
execution times correlate strongly with the average
size of blocks. So, we computed the partial correlation
between execution time and each other characteristic
controlling the block size.

4.2. Remote Editing Experiment
Table 8 presents the correlations between remote
execution time and edition characteristics. Figures 10(a)
and 10(b) present respectively, the scatter graph for
execution time and number of lines and number of
replicas. The execution time is presented on logarithmic
scale.

Algorithm
Lines Replicas

Bivariate Partial Bivariate Partial

SOCT2/TTF 0.99 0.99 0.45 0.3
WOOTH 0.07 0 0.07 0.03
RGA -0.06 -0.12 0.02 0.03
Logoot 0.18 -0.01 0.07 -0.06
LogootSplit 0.34 -0.25 0.075 -0.02
TreeDoc -0.01 -0.08 0.02 0.02

Table 8. Correlation on remote execution time.

8The two other projects contains less files and/or few heavily edited
files which makes the tendencies more difficult for analysis.
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Project git/git twitter/bootstrap joyent/node
Head sha1 8c7a786b6c8 cd42f56178 9f29785783

Files 2496 250 2588
Characteristics max min avg max min avg max min avg

Commits 1742 2 75.75 633 12 84.21 631 2 21.75
Merge 451 0 12.92 55 0 7.44 37 0 0.88

Lines edited 25304 149 1953.49 119594 964 18104.65 123340 276 7400.23
Avg block size 28.13 1.84 6.78 80.93 12.35 32.06 761.25 7.65 97.45

Table 6. Projects characteristics

Algorithm
git node bootstrap

Commit Merge Commit Merge Commit Merge

SOCT2/TTF 337 6723 1816 18153 1373.0 33485.8
WOOTH 306 15 2232 133 1936.9 612.4
RGA 365 13 1662.2 49.3 1709.1 64.1
Logoot 159 24 1138.2 64.7 1337.0 76.0
LogootSplit 99 63 135.2 90.1 188.5 97.7
TreeDoc 96 18 200.4 41.9 595.0 76.1

Table 7. Average commit and merge time (in µs)

The table and the figures obtained through the
framework demonstrates that

• the tendency remote performances and ranking
between the algorithms are consistent with
synchronous editing experiments;

• all CRDT performances are very stable against all
edition characteristics with negative or very low
(under 0.1) partial correlations;

• the SOCT2 algorithm remote performances are
impacted by the number of operation and number
of replica;

• LogootSplit gains in performance during the
edition process – number of lines, -0.25 partial
correlation.

4.3. Local experiment

The visual analysis of the scatter charts is less obvious
than for remote execution. Why, statistical analysis of
the data may require to ensure consistency with our
other experimental results. The analysis of the local
execution time is presented in Table 9.

Algorithm Blocks
insertion Replicas

Bivariate Partial Bivariate Partial

SOCT2/TTF 0.69 0.16 0.32 0.11 -0.12
WOOTH 0.83 0.02 0.29 0.34 -0.01
RGA 0.77 0.09 0.32 0.21 -0.11
Logoot 0.51 0.24 0.33 -0.01 -0.01
LogootSplit 0.87 -0.09 0.01 0.15 -0.09
TreeDoc 0.68 -0.15 -0.15 0.13 0.13

Table 9. Correlation on local execution time

The correlation values indicate that:

• The local performances and ranking between
the algorithms are consistent with synchronous
editing experiments;

• The performance of all algorithms does not
affected by the number of replicas;

• Treedoc algorithm has the best performance. It
improves the performance since it identifies each
line by unique identifier and the size of major-
nodes decreases by the percentage of insertion.
However, LogootSplit remains stable since all
operation on Git are based on line. However,
Logoot algorithm and the algorithms based on
tombstones (RGA, WOOTH and SOCT2) are less
efficient;

• The partial correlation shows that the insertion
proportion impact tombstone-based algorithms
(similar to synchronous experiments);
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Figure 10. Remote execution time

• All algorithms, including SOCT2, performs very
stably when the number of replicas grows. The
partial correlation in Table 9 is around 0 for all
algorithms;

• As for remote execution, the hierarchy between
the performance scalability of LogootSplit and
TreeDoc is less obvious than in synchronous
experiment.

4.4. Memory requirement
Table 10 presents the total memory occupied by
the algorithms during the experiments and their
average message size. We also present the space
occupied by the git software in its .git directory. The

obtained results are consistent with the synchronous
experiment. The ranking between the algorithm is
respect except than Logoot performs relatively better
in the asynchronous one. The algorithms based on
tombstones – SOCT2/TTF, RGA and WOOTH in this
order – have the worst performances since they do not
delete the elements. TreeDoc and LogootSplit obtain the
best performances.

CRDT algorithms memory is lower or comparable
to the corresponding .git directory size despite the
poor performances of the Java serialization mechanism
and the compression made by the git software.9

However, git software is able to retrieve any past
states of the document. This feature is achievable in
OT and in CRDT by using tombstones, thus, without
supplementary memory cost for RGA and WOOTH.
Indeed, any element identifier in a CRDT model
contains a clock.

4.5. Message size
The message size of the algorithms in asynchronous
traces presented in table 10, follow the same ranking
to the one obtained through synchronous experiment.
Indeed, the worst algorithm is SOCT2. It produces the
largest message size since it sends the vector clock.
SOCT2 does not scale. RGA and WOOTH specifies the
previous and next element in their messages, while
Logoot adds its identifier. Treedoc and LogootSplit that
are based in blocks are the best, since their identifiers
are not voluminous.

4.6. Merge quality
In [2], we proposed a methodology to evaluate the
algorithms in merge quality. The framework reproduces
the same collaboration as in the histories of DVCS
and observe the effort made by users when conïňĆicts
occur. The framework returns the number of blocks
that conflict and number of lines introduced by users to
correct their document. Depending of the algorithms,
the collaboration produces less conflict and then user
makes less effort to correct the document.

4.7. Discussion
This experiment on asynchronous traces validate the
result obtained in synchronous experiment. The hier-
archy between the algorithms in term of local/remote
performances and messages size is similar to the one
obtained through synchronous experiment. The frame-
work re-plays the traces in the same conditions and uses
the same technique to compute the performances.

9git software stores supplementary information concerning manage-
ment of directory states. However, this information can be considered
much smaller than file states.
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Algorithm git/git twitter/bootstrap joyent/node messages
.git 60 26 171 -
SOCT2/TTF 125.36 39.50 223.51 147.40
WootH 55.84 18.38 88.14 107.85
RGA 63.94 21.41 101.24 116.87
Logoot 45.21 8.10 67.30 113.58
LogootSplit 29.22 6.32 44.98 66.105
Treedoc 38.69 7.61 22.85 73.40

Table 10. Total memory occupation (in mo)

The tool computes also the developer effort in terms
of number of modifications that have to be made
to correct their document in the merged document.
Our framework allows also to evaluate, compare
and improve merge algorithms. This is an important
information in the software development field where
the concurrent edition of document represents a large
and fundamental part of the activity.

Using our tool and method, one can evaluate and
compare more complex algorithms such as syntactical
or semantical merge tools.

5. Related Work

With the development of Web 2.0, the explosion
of Internet-based and peer-to-peer services, achieving
eventual consistency for large scale distributed systems
becomes difficult to achieve. Studied the techniques to
achieve eventual consistency and offer a tool to evaluate
them have been an active focus point in recent research.
However, until now there is no public tool that allows
researchers to compare and evaluate their techniques.

A first evaluation of eventual consistency algorithms
was performed for text data types and was presented
in [17]. However, this work was made on unknown tool.
In addition, they consider only one variation of OT
algorithm and not CRDTs approaches.

In [30] OT algorithm (called ABST) suitable for inter-
mittent connections in mobile devices was proposed
and its evaluation was provided. However, the algo-
rithm was compared with only one another algorithm
(ABT), the researchers limited their evaluation with
only the ratio of insertions, and the evaluation was
made on mobile devices by using a closed source imple-
mentation. Treedoc [26] and Logoot [44, 45] were evalu-
ated on memory usage using centralized asynchronous
traces but not on execution time. RGA is evaluated on
[28] but not compared with other algorithms. WOOT
and RGA algorithms were never evaluated on their
memory requirements. However, all these experiments
were made independently and there is no framework
that allows a comparison in the same environment.

In [1], we deployed our framework and we evaluated
for the first time a comparison of different text data
type algorithms in execution time, and by using a
real synchronous traces. In this experiment we did not
assess the memory space required and messages size
produced.

In [19], we evaluated also through our framework the
performance of the different tree data type. However,
we presented just the results without explaining in
detail what the framework provides.

At this time, the framework was not able to use an
asynchronous traces.

In [2], we evaluated the text data type in asyn-
chronous traces. We used the framework to observe the
cases where the conflict occurs and after we proposed
a methodology to evaluate the algorithms in merge
quality.

For the set data types, in [7] the authors improved
OR-Set algorithm and presented the result of its
performance. The authors implemented a Java client
library and perform the experiment in the real database,
but the tool used remains private. Until now, the
different set data type studied have not been compared
with each other, and there is no tool which able to
compare them.

In this regard, this is the first paper that presents
an open-source framework that allows an evaluation
of different eventual consistency algorithms. The
framework provides a simulator to produce traces
and a mechanism to extract and re-play the histories
of Git. In addition, the framework allows users to
control different parameter and observe the behavior
of algorithms. All algorithms integrated were written
in the same language. The framework computes the
performance of algorithms such as execution time,
memory occupation, memory requirement, messages
size and quality of merges.

6. Conclusion and Future work

Achieving consistency in large-scale distributed sys-
tems is not an easy task. Since the CAP theorem [6, 10]
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which states that any distributed computer system can-
not provide simultaneous guarantees for consistency
(C), availability (A) and to tolerate network partition
(P), many decentralized algorithms for different data
types are developed and claim that ensure eventual
consistency. However, evaluation of such algorithms,
compare with each other and know which algorithm is
suitable for which situation, require tools that provide a
same experimental environment and guarantee consis-
tent results.

In this paper, we proposed a framework to automatically
measure the performances of different decentralized
EC data type algorithms. The framework provides
a simulator to generate traces in synchronous and
asynchronous mode, and allow to each algorithm
to specify the operation on their own format. The
framework provides also a mechanism to extract the
DVCS history to simulate an editing session.

Moreover, the framework gives to the user the entire
control of different parameters during the simulation.
Depending of these factors, the framework allows
to detect which factor most affects the algorithms
performances. It helps to select which algorithm is the
most suitable for which situation.

We found out that CRDT algorithms are suitable
for synchronous and asynchronous application. More-
over, they outperform some representative operational
transformation approaches that were well established
for real-time collaboration. However, We found that
the choice of algorithms depends on the target of the
application and the type of collaboration.

For the set data type algorithms, CounterSet is the
best choice in execution time and for application with
a large dataset. While, LWWSet algorithm is good for
applications that require low memory. We found also,
OptORSet algorithm designed to reduce the memory
requirement does not. Indeed, the vector used to detect
the partial order of elements hide the memory saved.

However, for text data type algorithms, we found
that the major factor that affects the algorithms based
on tombstones are the size of insertions and number
of operations in addition to the number of replicas
for OT algorithms. We found also that the algorithms
based on blocks are more suitable for state-based
approaches than operation-based approaches. indeed,
in state-based approaches, the operations are composed
of commit and merge operations (treated by lines),
Whereas operation-based approaches are based on char-
acters granularity. On memory, LogootSplit and Treedoc
are the most appropriate for the both approaches. OT
algorithms take the worst performance, it exceeds 50 ms
in real-time collaboration. Following [32], SOCT2/TTF
is not suitable for real-time collaboration. In addi-
tion, it occupies much memory to store all elements.
SOCT2/TTF algorithm cannot be applied on applica-
tion as mobile since it requires a large performance.

In this paper, we conducted different experiments
for different eventual consistency algorithms. Firstly,
we gave an overview of the framework. We studied
how the framework generates traces, presented the
different data type supported and the different
algorithms implemented. Secondly we conducted two
experiments in synchronous and asynchronous mode
and we analyzed the performance results. The results
obtained are consistent and significant in synchronous
and asynchronous traces, and compatible with the
theoretical analysis. Such consistency validates the
evaluated implementation of our framework.

The framework is built upon an open-source
performance evaluation tool and will be itself open-
sourced10. Thus, eventual consistency tool developers
will be able to evaluate and select the suitable algorithm
for their needs. Also, computer scientists who design EC
algorithms will be able to evaluate and to compare with
others.

We plan to extend our framework by adding a
mechanism to manage file system traces.
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