
Efficient, Flexible and Secure Group Key
Management Protocol for Dynamic IoT Settings
Adhirath Kabra1, Sumit Kumar2, Gaurav S. Kasbekar3,∗

1Department of Computer Science, Aalto University, Espoo, Finland. He worked on this research while he was
with Indian Institute of Technology (IIT) Bombay. His email address is adhirathkabra@gmail.com.
2Center for Artificial Intelligence and Robotics (CAIR), Defence Research and Development Organisation (DRDO),
Bangalore, India. He worked on this research while he was with IIT Bombay. His email address is
ism.sumit@gmail.com.
3Department of Electrical Engineering, IIT Bombay, Mumbai, India. His email address is gskasbekar@ee.iitb.ac.in.

Abstract

For many Internet of Things (IoT) scenarios, group communication in the form of multicasting and
broadcasting has proven to be effective. Classical Group Key Management (GKM) schemes perform
inefficiently in dynamic IoT environments, wherein nodes frequently leave or join a network or migrate from
one group to another. In this paper, we present a highly efficient and secure GKM protocol for dynamic IoT
settings, which maintains forward and backward secrecy at all times and is completely resistant to collusion
attacks. Also, our protocol is highly flexible and can handle several new scenarios in which device or user
dynamics may take place, e.g., allowing a device group to join or leave the network or creation or dissolution
of a user group, which are not handled by schemes proposed in prior work. We evaluate the performance of
the proposed protocol via extensive mathematical analysis and numerical computations.

Received on 18 February 2021; accepted on 22 February 2021; published on 03 March 2021

Keywords: Internet of Things, Sensors, Trust, Security and Privacy

Copyright © 2021 A. Kabra et al., licensed to EAI. This is an open access article distributed under the terms of the Creative
Commons Attribution license, which permits unlimited use, distribution and reproduction in any medium so long as the
original work is properly cited.

doi:10.4108/eai.3-3-2021.168862

1. Introduction
The number of Internet connected entities was
approximately 27 billion in 2019, and is expected to
rapidly reach the enormous number of 75 billion by
2025 [1]. The modern Internet is a global network of
intelligent devices ranging from traditionally connected
devices such as desktop and laptop computers and
smartphones to objects of daily use such as watches
and spectacles, electronic home appliances (even
window shutters), sensing and actuating devices
such as patients’ medical sensors and industrially
deployed temperature sensors and machinery [2]. The
introduction of IPv6 addresses [3] has made it possible
for all these devices to connect to the Internet and
has helped in automation of tasks, decreased the need
for human intervention, increased accessibility and
convenience in functionality and data acquisition. The
ability to connect resource-constrained devices such as

∗Corresponding author.

sensors and actuators as well as everyday objects to the
Internet has led to the notion of the Internet of Things
(IoT) [4].

Compared to traditional devices such as desktop
computers and laptops, IoT devices have low compu-
tational and storage power. As a result, they are not
able to run the protocols traditionally used to achieve
secure communications in the Internet, e.g., those that
use public key cryptography [5]. At the same time,
confidentiality and message-integrity of data commu-
nicated by and to IoT devices is essential. It may relate
to the geographical coordinates of a user, medication
provided to a patient, customized use of home appli-
ances, parameters and commands exchanged by indus-
trial machinery or security alarms. This broad range
of essential functions, without sufficient security, can
potentially result in huge losses. Hence, it is crucial
to design effective security mechanisms for resource-
constrained IoT devices. A review of prior research
literature in which security mechanisms for the IoT are
proposed is provided in Section 2.

1

EAI Endorsed Transactions
on Internet of Things Research Article

EAI Endorsed Transactions on
Internet of Things

02 2021 - 04 2021 | Volume 7 | Issue 25 | e2

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

A. Kabra, S. Kumar, G. S. Kasbekar

Many present-day scenarios require communication
to and data acquisition from multiple devices with
similar functionalities, e.g., medical sensors, Industrial
Wireless Sensor Network nodes and nodes installed in
smart homes. For such scenarios, group communication
in the form of multicasting and broadcasting has
proven to be effective [6]. Group Key Management
(GKM) involves the handling, revocation, updation
and distribution of cryptographic keys to members
of various groups in a communication network [7].
GKM can be adopted in a centralized or distributed
manner [8]. Centralized GKM schemes involve a
centralized entity like a Key Distribution Center,
which generates keys and performs the aforementioned
functions. On the other hand, in distributed GKM
schemes, nodes are clustered into several groups
and cluster heads are assigned to manage keys
locally [9]. However, the latter approach incurs
high computational costs; as a result, most research,
including this paper, is based on the centralized
approach.

Now, classical GKM schemes perform inefficiently in
dynamic IoT environments, which are those wherein
nodes frequently leave or join a network or migrate
from one group to another over time [10]. In such
scenarios, whenever changes occur in the network, keys
need to be updated and distributed in such a way
that backward and forward secrecy [7] is maintained.
Apart from this, the use of asymmetric cryptography in
dynamic IoT environments limits the overall scalability
of the system. Therefore, a GKM scheme based on
symmetric cryptography is needed that can scale well
in dynamic settings.

One major goal of such a GKM scheme is to exercise
access control over the network [10]. Specifically, a
set of users, also called subscribers, send data to and
receive data from an IoT device. For example, these
users may be nursing staff appointed for a patient,
who wish to obtain periodic vital sign data from
medical sensors deployed on the patient’s body. It
is of utmost importance to provide confidentiality
and integrity of messages, as well as avoid any
unauthorized access. Sharing a group key between a
device and its subscribers is an effective way to impose
such access control. However, as users join, leave or
migrate between groups (e.g., a nurse is allocated to
or deallocated from a patient or allocated to a different
patient), real-time GKM is desired to fulfill the security
requirements.

In this paper, we present a centralized GKM scheme
for dynamic IoT environments, which maintains
forward and backward secrecy at all times. Our scheme
only employs resource-constrained network friendly
symmetric encryption, due to which the centralized
controller can efficiently handle a large number of
subscription changes, node entries and exits at any
given time. Moreover, our scheme is designed in such

a way that no user outside the network can collude
with a registered device and deduce group secrets. In
our scheme, we have also made provisions for new
scenarios in which device or user dynamics may take
place, e.g., allowing a device group to join or leave
the network or creation or dissolution of a user group,
which were not provided by schemes proposed in prior
literature [10]; this makes our proposed scheme more
flexible in handling dynamics. Finally, via mathematical
analysis and numerical computations, we evaluate the
performance of the proposed scheme and show that it
outperforms the GKM scheme proposed for dynamic
IoT environments in prior work [10].

The rest of the paper is organized as follows. In
Section 2, we review the prior research literature on
security in the IoT and GKM. Section 3 describes
our system model, problem formulation and reviews
some relevant background. In Section 4, we briefly
describe the GKM scheme ‘GroupIt’ proposed for
dynamic IoT environments in [10] and identify its
limitations. Our proposed GKM scheme is described
in Section 5. In Section 6, a mathematical analysis
of the performance of the proposed scheme in terms
of storage, computation and communication costs
is provided. In Section 7, we provide a numerical
computations based performance evaluation of the
proposed scheme. Finally, we provide conclusions and
directions for future research in Section 8.

2. Related Work

Security in the IoT has gained significant attention
in the research community– surveys of various
enabling technologies for the IoT (e.g., RFID, Zigbee,
MQTT, CoAP), including security aspects, are provided
in [5], [11], [12]. The IEEE standard 802.15.4 defines
rules for the physical and medium access control (PHY
and MAC) layers, aimed at providing low cost, low
power and low data rate wireless connectivity among
constrained devices [13]. The Internet Engineering Task
Force (IETF) has also developed protocols for various
layers to support the IoT [14]. IPv6 over Low power
Wireless Personal Area Networks (6LoWPAN) [15], an
IETF standard, is one of the technologies adopting
802.15.4. It acts as a gateway between the Internet
and constrained devices, performing various tasks such
as header compression, fragmentation and reassembly
of IPv6 packets from the Internet into sizes that can
be sent over constrained networks using 802.15.4. The
Routing Protocol for Low Power and Lossy Networks
(RPL) is another IETF standard, designed for routing
over constrained networks. DTLS header compression
and TLS-DTLS mapping [16] have also been proposed
to increase the allowed application-layer payload. The
design of secure protocols for various IoT standards is a
topic of recent research [5].

2 EAI Endorsed Transactions on
Internet of Things

02 2021 - 04 2021 | Volume 7 | Issue 25 | e2

Efficient, Flexible and Secure Group Key Management Protocol for Dynamic IoT Settings

Multifactor authentication has been extensively
studied in the past decade and a plethora of schemes
have been proposed for various IoT settings. In [17],
a novel 2-factor authentication scheme for any remote
user to securely connect with a given sensor node is
presented. Wireless Sensor Networks (WSNs) form an
integral part of the IoT. In [3], the authors propose
an efficient and lightweight 3-factor authentication and
key establishment scheme, based on Biohashing and
the Rabin Cryptosystem, for WSNs to securely connect
to the Internet. Elliptic Curve Cryptography has also
found novel applications in designing keying protocols
for constrained network architectures [18–21]. Online
validation of public key certificates is another problem
in the field of IoT security. In [22], the authors
introduced a protocol that employs a cryptographically
generated address for bootstrapping to secure the join
and certificate issuance mechanisms.

Over the years, several highly efficient Group Key
Establishment (GKE) schemes have been proposed. GKE
refers to one-time authentication and key agreement
among two or more parties in a group who wish
to exchange messages. In [23], a lightweight key
distribution protocol for Industrial IoT, based on the
Chinese Remainder Theorem, which requires only a
single message transmission, and provides backward
and forward secrecy is proposed. In [24], the authors
explored the use of Physical Unclonable Functions with
appropriate guarantees as a tool for GKE. In [25], a
context based GKE protocol, in which devices calculate
a fingerprint from their surrounding context and
generate a shared secret among them, was proposed.

However, recent literature has shown a shift towards
Group Key Management (GKM) in the IoT. Comple-
menting GKE, GKM deals with the updation, revocation
and distribution of established cryptographic keys in
a group. In [7], a broad survey and comparison of
several centralized, decentralized and distributed GKM
protocols was provided. The authors compared various
mechanisms proposed in the research literature for
GKM, including LKH, OFT, ELK and MARKS. In [6],
the authors proposed a novel batch based centralized
approach to efficiently manage group keys in generic
ad hoc networks, while limiting the computational
and communication costs due to group membership
changes caused by users joining and leaving. They
handle such membership changes and events of explicit
membership revocation at different pre-assigned times
by partitioning time into fixed length intervals. Our
scheme, on the other hand, allows more flexibility for
users by removing the need to alter memberships at
pre-assigned times. In [8], a Logical Neighbor Tree
(LNT) based approach to distribute key update mes-
sages in the events of membership changes is proposed.
The proposed scheme reduces the key update latency
from O(n) to O(log(n)), where n is the number of group
members. Unlike equally ranked group entities in our

protocol, their scheme includes a group controller for
each group, which is responsible for local security
inside the respective groups.

In [26], the Logical Key Hierarchy (LKH) approach
in which keys are arranged in a hierarchy and a Key
Distribution Center maintains and updates all the
keys was proposed. It makes use of symmetric key
encryption to multicast key update messages to group
members, which are located at the leaf nodes of a
logical tree; the communication cost of this scheme is
of the order of O(log(n)), where n is the number of
nodes in the network. As we will see later, we have
also used LKH as a basic mechanism to form groups
in our model. Later, [27] presented a Topological Key
Hierarchy (TKH) scheme for WSNs as an alternative
to LKH. TKH generates a key tree by using the
underlying sensor network topology and considering
subtree-based key tree separation. A basic difference
from LKH is that topologically adjacent entities share
similar key material, and therefore, receive similar
rekeying messages. In [28], the authors proposed a
logical tree based secure mobility management scheme
(LT-SMM) using mobile service computing for the IoT.
The model includes a group head for each group, which
is computationally more capable than other nodes in
the group. Although using the LKH scheme as in our
proposed protocol, their main focus is on reducing
excessive rekeying when a node only migrates from
one group to another– coordinating the group heads
through the Base Station helps in exchanging key
material, and completing the migration process with a
small overhead for the migrating node. In [29], a key
management protocol for the IoT, which secures group
communication as well as peer-to-peer communication,
was proposed. However, the system model considered
in [29] is different from that in our paper. In particular,
in our system model, there are multiple device groups
(DG), and multiple subscriber groups (SG), each of
which subscribes to one or more DGs, whereas in the
model in [29], the network is divided into multiple
groups, which are in turn divided into subgroups.

The closest to our research is the work [10],
which proposes a GKM scheme for dynamic IoT
environments. In [10], a system model that consists
of several groups of users, which selectively subscribe
to a desired subset of device groups and collect
data, was considered. The authors proposed a two-tier
GKM scheme, GroupIt, to handle frequent subscription
changes. They leveraged the LKH scheme and the
Chinese Remainder Theorem (CRT) to reduce the
communication overhead incurred due to node entry
and exit events. While the CRT manages keys shared
between the centralized controller and groups, LKH
handles key distribution within groups. In [10], it is
claimed that the GroupIt scheme achieves forward
and backward secrecy, as well as a low probability of
collusion attacks. However, in this paper, we propose

3 EAI Endorsed Transactions on
Internet of Things

02 2021 - 04 2021 | Volume 7 | Issue 25 | e2

A. Kabra, S. Kumar, G. S. Kasbekar

a scheme that outperforms the GroupIt scheme in
several respects; in particular, our scheme completely
eliminates collusion attacks and is more efficient since,
in contrast to the GroupIt scheme, it does not use
asymmetric encryption. Moreover, our proposed GKM
scheme is more flexible than GroupIt since the former
handles new scenarios in which device or user dynamics
may take place, e.g., allowing a device group to join or
leave the network or creation or dissolution of a user
group; GroupIt does not explicitly handle any of the
above scenarios. Finally, we show via a combination
of mathematical analysis and numerical computations
that our proposed scheme outperforms GroupIt in
terms of the computation and communication cost
incurred by users as well as devices.

3. Model, Problem Formulation and Background
We describe the system model and adversarial model in
Sections 3.1 and 3.2, respectively. Then in Section 3.3,
we provide a brief overview of the LKH scheme, which
we use as a part of our proposed scheme.

3.1. System Model
The system consists of a Key Distribution Center (KDC),
IoT devices and subscribers (users). Henceforth, the
terms “user” and “subscriber” are used interchange-
ably. The KDC is a trusted centralized entity that gener-
ates, distributes and updates key material for all devices
and users. The KDC is assumed to have high computa-
tional and storage capability; hence, while quantifying
the protocol’s efficiency, we focus on the computational
and storage costs incurred by the devices and users.
Each IoT device collects the required data and period-
ically sends it to its subscribers. For instance, devices
(sensors) attached to a patient’s body may periodically
send the patient’s vital signs to their subscribers (autho-
rized nurses).

One or more devices of similar functionality or
security classification are grouped together into a
“Device Group” (DG). Also, one or more users are
grouped together into a “Subscriber Group” (SG). Each
user (respectively, device) belongs to exactly one SG
(respectively, DG). Each SG is subscribed to one or more
DGs. In particular, a SG is a group of users subscribing
to a specific subset of DGs. Thus, if there are P DGs,
then there are 2P − 1 possible SGs, corresponding to
different non-empty subsets of the collection of the P
DGs.

Each user or device in the network has to authenticate
itself and have a secret key established with the KDC
before becoming part of any group. Also, each user or
device group has its own group key, initially provided
by the KDC. Each device can exchange encrypted data
with its subscribed users using a key that is known only
to the KDC and the communicating parties, called the

Figure 1. There are five device groups, DG1, . . . , DG5, and n
user groups, UG1, . . . , UGn. UG1 subscribes only to DG1, UG2
subscribes to DG1, DG2 and DG3, and so on.

“device key” of the device. Fig. 1 illustrates the system
model.

Our objective is to design a GKM scheme that enables
efficient updation or revocation of the cryptographic
keys assigned to different users and devices in the
network when changes take place in the network such
that forward and backward secrecy is maintained at all
times. Recall that by forward (respectively, backward)
secrecy, we mean that a leaving (respectively, joining)
user is prevented from decrypting messages exchanged
after (respectively, before) it leaves (respectively, joins)
the group [7]. The possible scenarios in which key
material needs to be updated or revoked are as follows:
A user or a device joining or leaving the network,
addition or removal of a DG, a user occupying an empty
SG and an existing user leaving the last spot in a SG.
Also, we seek to design a GKM scheme that minimizes
the computational, communication and storage costs
incurred to the users and devices in the network when
changes take place in the network.

Similar to most prior works in GKM, we make
the following assumptions. First, all network entities
use the same cipher suite and keys are sufficiently
large [18]. Second, the system is reactive to tampering;
therefore, any node capture or compromise will
be detected in practically small time, resulting in
appropriate revocation and updation of device and user
key material. Different approaches such as mobility
based [30] and control theoretic [31] modelling have
been presented in prior work to detect and revoke
compromised nodes. Finally, we assume that the
message integrity of all communication exchanged
during the network operation is protected using
standard mechanisms (e.g., message authentication
codes) [5].

3.2. Adversarial Model
In our model, the adversary may be a node outside
the network, a malicious user belonging to one of the
user groups, or a corrupted device that tries to access
data belonging to other devices. If the adversary is a
user belonging to the network, it may try to either

4 EAI Endorsed Transactions on
Internet of Things

02 2021 - 04 2021 | Volume 7 | Issue 25 | e2

Efficient, Flexible and Secure Group Key Management Protocol for Dynamic IoT Settings

Figure 2. The figure shows an example LKH tree structure.

compromise forward or backward secrecy or access the
data trasmitted by devices to which it is not subscribed.
The adversary aims to breach access control and decrypt
the periodic data transmitted by devices, which it is
not authorized to access, either by illegitimately gaining
access to key material or colluding with devices existing
in the network.

3.3. Logical Key Hierarchy (LKH)
LKH is a centralized GKM technique designed for
achieving secure and efficient rekeying and message
transmissions within a group [26], while providing
forward and backward secrecy. LKH provides methods
to update the cryptographic keys shared within a group
when a node joins or leaves the group. Moreover, it
helps to multicast messages to different nodes in the
group while incurring a low communication cost.

Under the LKH scheme, a KDC maintains a tree of
keys [7] as shown in Fig. 2. A group arranged in an
LKH tree structure has all its members occupying the
leaf nodes of the tree. Each node of the tree other than
the leaves and the root is associated with a key called
the Key Encryption Key (KEK). Also, the root node is
associated with a key called the group key. A member
knows all the KEKs belonging to its ancestors in the
tree and the group key. For example, node L122 in
Fig. 2 knows the KEKs corresponding to N12 and N1
and the group key. Note that each member stores at
most dlog2(k)e KEKs, where k is the number of group
members. Apart from this, every member also has a
secret key shared with the KDC.

An LKH tree structure helps to reduce the commu-
nication cost incurred in sending multicast messages
from the KDC to group members. In the example in
Fig. 2, if a message is to be sent to the nodes L111, L112,
L121 and L122, then a single multicast encrypted with
the KEK corresponding to the common ancestor N1 can
be sent under LKH; this is significantly more efficient
than the transmission of four separate unicast mes-
sages encrypted using the different secret keys shared
between the KDC and the four recipient nodes.

The KDC is responsible for updating the group
secrets in the events of member entry or exit so as to

Figure 3. The figure shows the LKH tree before and after node
L22 joins the group.

Figure 4. The figure shows the LKH tree before and after node
L112 leaves the group.

maintain backward and forward secrecy. Consider the
LKH tree shown in Fig. 3(a). When a new node L22
joins the group, the KDC first establishes a secret key
with it. This is followed by creation or updation of all
the keys corresponding to the ancestors of the joining
node L22 in the new LKH tree shown in Fig. 3(b) (i.e.,
the KEK corresponding to N2 and the group key) so as
to maintain backward secrecy. The KDC then sends the
newly created KEK of N2 and the updated group key
to L22 using the secret key shared between the KDC
and L22, and to other affected members who share a
common ancestor with L22 using efficient multicasts
using shared KEKs or secret keys. In this example, the
KDC sends the new KEK of N2 and the group key to
L21 using the shared secret key between the KDC and
L21, and sends the updated group key to L11 and L12
using the KEK corresponding to N1.

Similarly, if an existing member leaves the group, as
shown in Fig. 4, all its ancestral KEKs and the group key
need to be updated to maintain forward secrecy. The
KDC sends the updated KEKs and/ or the group key to
the remaining members using suitable shared KEKs or
secret keys. In this example, after L112 leaves, the KDC
sends the updated KEK corresponding to N1 and the
group key to L11 using the shared secret key between
the KDC and L11, and to L121 and L122 using the KEK
corresponding to N12. It also sends the updated group
key to L21 and L22 using the KEK corresponding to N2.

5 EAI Endorsed Transactions on
Internet of Things

02 2021 - 04 2021 | Volume 7 | Issue 25 | e2

A. Kabra, S. Kumar, G. S. Kasbekar

4. Review and Limitations of GroupIt Scheme
In Section 4.1, we briefly review the GroupIt scheme
proposed for dynamic IoT environments in [10] and in
Section 4.2, we discuss its limitations.

4.1. GroupIt
GroupIt is a scheme designed for GKM in a dynamic IoT
environment. The system model for which GroupIt is
designed is the same as the one described in Section 3.1.
GroupIt uses LKH and the Chinese Remainder Theorem
(CRT) to limit the communication overhead incurred
for key updation due to node entry and exit events.
While the CRT manages keys between the KDC and
groups, LKH handles key distribution within a group.

To initialize, the KDC generates secret keys for all
users and devices and the LKH KEKs and group keys for
all SGs and DGs, and distributes them to the respective
users and devices. Each device is associated with a
unique ID, and each DG is associated with a secret
Traffic Encryption Key (TEK), both of which are known
to each user subscribed to the device. In this way, the
user can calculate the device key, which is a function
of the device ID and TEK of the device group, for each
device to which it is subscribed. The authors enlist
four scenarios, discussed below, in which key material
(group key, KEKs, TEKs) needs to be updated, and
provide the corresponding steps to achieve forward and
backward secrecy. For all these cases, LKH is used to
update the group key and KEKs within a SG or DG.

4.1.1. New User (Ui) Joins a Group SGx. First, the KDC
establishes a secret key with the new user. It also
notifies all the DGs subscribed by SGx, and the users
subscribed to those DGs to hash-update their TEKs.
Hash update refers to the application of a cryptographic
hash function [5] to the TEK, so that backward secrecy
can be achieved. Then, the KEKs within SGx are
updated as per the LKH join algorithm described in
Section 3.3. Finally, the new user is provided the
required key material using the secret key established
between the KDC and the new user.

4.1.2. Existing User (Ui) Leaves a Group SGx. The KDC
first updates the group key of SGx. Then, for each DG
that was subscribed to by the leaving user, it broadcasts
to the other users, updated TEKs and methods to
update the device IDs of the devices, using double
encryption, i.e., two layers of encryption, first using an
asymmetric key on the message and then encrypting
the output with a symmetric key TEK. Finally, the new
TEKs and device IDs are sent to the devices subscribed
to by the leaving user.

4.1.3. New Device Joins a Group. First, the KDC
establishes a secret key with the joining device. Then,
it updates the group key and the KEKs of its DG.
Finally, the ID of the new device is shared with the users
subscribed to it.

4.1.4. Existing Device Leaves a Group. The KDC first
broadcasts over the network that the device is no longer
available, and then updates the group key and KEKs for
the other devices in the group.

4.2. Limitations of GroupIt
4.2.1. Employment of Asymmetric Encryption. When an
existing user leaves a SG, the KDC broadcasts doubly
encrypted messages to the other users, each containing
update methods for a DG subscribed to by the leaving
user. The inner layer of this encryption requires
asymmetric decryption by the other users. This has a
significant computational cost [32].

4.2.2. Collusion Attacks. The device keys are derived
from device IDs and TEKs of the DGs. If the device ID
is not updated when a user subscribed to the device
leaves, and the leaving user colludes with a device
having the new TEK, then they can combine their
knowledge to derive the other devices’ new device keys.
GroupIt has a non-zero probability that these device
IDs will not be updated when a user leaves.

4.2.3. Erroneous Steps of Key Updation. To achieve
backward secrecy, the LKH group key of the SG must
be updated when a new user joins the SG. But the
scheme does not account for such a key update. Also,
when an existing user leaves, the KEKs of the SG are
not updated. Due to this, the new group key can be
compromised by being revealed to the leaving user.
Moreover, in the double encryption performed when a
user leaves, the old TEK is available with the leaving
user and it does not add to the forward secrecy of the
system, since the user can easily decrypt the outer layer
of encryption even after leaving.

4.2.4. Low Flexibility. GroupIt does not explicitly han-
dle the cases when a new DG joins, an old DG leaves,
a new user occupies an empty SG, and an existing user
leaves the last occupied spot in a SG.

5. Proposed GKM Scheme
Our proposed GKM scheme is described in the
following subsections.

5.1. Setup and Pre-deployment
Users (respectively, devices) in a SG (respectively, DG)
are arranged in an LKH tree structure and occupy
the leaf nodes of the tree (see Fig. 5). Also, the SGs
themselves are part of a bigger (outer) LKH structure,
which we refer to as the ‘uLKH’, as shown in Fig. 6;
we refer to a KEK in the outer LKH structure as a
‘uKEK’. When we say that a SG is assigned a set of
uKEKs, it means that each user in the SG is assigned
that set of uKEKs. In the example in Fig. 6, all users in
SG111 and SG112 have uKEK11, uKEK1 and the group

6 EAI Endorsed Transactions on
Internet of Things

02 2021 - 04 2021 | Volume 7 | Issue 25 | e2

Efficient, Flexible and Secure Group Key Management Protocol for Dynamic IoT Settings

Figure 5. The LKH tree structure of four devices in a DG (left)
and five users in a SG (right).

Figure 6. The outer LKH tree structure of 8 SGs.

key, uN, corresponding to the root, uNode. Note that
uN can be used to securely broadcast a message to all
the users in the network. The group key, uN, and the
uKEKs together enable the KDC to multicast messages
to multiple SGs. In the example in Fig. 6, if a message
is to be sent to SG111, SG112, SG121 and SG122, then the
KDC will simply encrypt it with uKEK1 and multicast
the message to the four groups.

The device key for a device j is defined as:

DKj = h(IDj ||nj) (1)

where h(·) is a cryptographic hash function, IDj is
a secret and nj is a nonce, both IDj and nj are
shared between device j and the KDC, and || denotes
a concatenation.

Each device j encrypts messages containing its
periodic data using DKj and multicasts it to all the SGs
subscribed to device j. Each user subscribed to a device
j knows its device key DKj .

At the beginning of the network operation, the KDC
performs the following actions:

• Establishes secret keys with each user and device.

• Generates and distributes the group key GKy for
each device group DGy.

• Generates and distributes the group key SKx for
each subscriber group SGx.

• Generates and distributes the KEKs for the LKH
tree of each SG and DG.

• Generates the device IDs and nonces for all
devices, distributes them to the respective devices
and computes the device keys for all devices.

• Distributes the device key of each device j to all
the SGs subscribed to device j.

• Generates and distributes the uKEKs and the
group key for the outer SG tree.

5.2. When a New User Joins
When a new user Ui joins a non-empty user group SGx,
the following actions are performed:

• The KDC establishes a secret key with the new
user Ui .

• The KDC sends a broadcast message that all
devices from the DGs to which SGx subscribes
and the old users from SGs subscribed to those
DGs should hash update the device keys, say DKj ,
and that the users in SGx should hash update the
group key SKx. The above updates are performed
as follows:

1. DK ′j = h(DKj)

2. SK ′x = h(SKx)

This ensures backward secrecy.

• The KDC sends the updated KEKs, say KEK ′s,
corresponding to the ancestors of Ui in the new
LKH tree of SGx to the members of SGx encrypted
by the appropriate secret keys or shared KEKs.

• The KDC sends the updated uKEKs, say uKEK ′s,
of the outer LKH tree to the SGs having a common
ancestor with SGx, encrypted by the appropriate
group keys or shared uKEKs.

• The KDC shares the relevant secret information
(DK ′j , SK

′
x, KEK ′s, uKEK ′s) with the new user Ui .

5.3. When an Existing User Leaves
Suppose an existing user leaves its SG, say SGx, but
SGx continues to be non-empty. Then a simple hash
updation of secret information will not suffice, and
therefore, the following procedure is adopted. The exit
of the user not only affects the SG, SGx, from which
the user left, but also the SGs that subscribe to the
devices to which the leaving user subscribed, called the
“concerned SGs”. As a result, we first update the uKEKs
in the outer LKH tree and then send the updated device
keys using them to the concerned SGs. The following
actions are performed:

• The KDC sends a message to the devices
subscribed to by the leaving user to update their
nonces. The nonce can be simply incremented
by one, i.e., n′j = nj + 1. This update does not
require any unicast communication between the
KDC and the devices, thus helping in limiting

7 EAI Endorsed Transactions on
Internet of Things

02 2021 - 04 2021 | Volume 7 | Issue 25 | e2

A. Kabra, S. Kumar, G. S. Kasbekar

the communication cost. The new device key is
calculated in the same way as before by the
devices:

DK ′j = h(IDj ||n′j)

This helps in achieving forward secrecy.

• The KDC sends the updated KEKs for the users
having a common ancestor with the leaving user
in the LKH tree of SGx and the updated group
key, SK ′x, to the appropriate members of SGx,
encrypted by appropriate secret keys or KEKs.

• The KDC sends the updated uKEKs to the SGs
having a common ancestor with SGx in the outer
LKH tree, encrypted by the appropriate group
keys or shared uKEKs.

• For each DG subscribed to by SGx, the KDC
sends a multicast containing the updated device
keys to the SGs subscribed to the DG, using the
appropriate updated uKEKs.

5.4. When a New Device Joins
The new device, say Dk , is added to one of the DGs,
say DGy. The KDC creates a secret identity, IDk , and
a secret nonce, nk , for Dk . The following actions are
performed:

• The KDC establishes a secret key with the device,
provides it with IDk and nk , and both the KDC
and the device Dk derive the device key as follows:

DKk = h(IDk ||nk).

• The KDC sends a message to the existing devices
in DGy to hash update their group key: GK ′y =
h(GKy). This helps in achieving backward secrecy.

• The KDC sends the updated KEKs corresponding
to the ancestors of Dk in the LKH tree of DGy
to the appropriate devices in DGy, encrypted by
appropriate secret keys or shared KEKs.

• The KDC securely multicasts the device key
DKk to the SGs subscribed to DGy using the
appropriate uKEKs.

5.5. When an Existing Device Leaves
Suppose an existing device, say Dk , leaves a DG, say
DGy, but DGy continues to be non-empty. Then the
following actions are performed:

• The KDC sends a broadcast message to all SGs
indicating that device Dk is no longer available.
This broadcast message is sent using the group
key of the outer LKH tree, i.e., the key, uN,
corresponding to the root uNode.

• The KDC sends the updated KEKs and the
updated group key, GK ′y , of the LKH tree of DGy
to the appropriate members of DGy, encrypted
using the appropriate secret keys or shared KEKs.

5.6. When a New User Occupies an Empty Group
When a new user, say Ui , joins an empty SG, say SGx,
the following actions are taken:

• The KDC establishes a secret key with the user Ui .

• The KDC creates a new LKH tree for the group
SGx and derives its group key SKx.

• The KDC sends a broadcast message announcing
that all devices to which SGx subscribes and the
old users subscribed to those devices should hash
update the device keys: DK ′j = h(DKj). This helps
in achieving backward secrecy.

• The KDC modifies the outer LKH structure,
uLKH, to add SGx to it; in particular, the KDC
sends the updated uKEKs, say uKEK ′s, and the
updated group key, say uN ′ , corresponding to
uNode to the SGs having a common ancestor with
SGx, encrypted by the appropriate group keys or
shared uKEKs.

• The KDC shares the relevant secret information
(DK ′j , SKx, uKEK ′ , uN ′) with the user Ui , by
encrypting it using the secret key shared between
the KDC and user Ui .

5.7. When an Existing User Leaves the Last Spot in
a SG
When an existing user leaves the last spot in a SG,
say SGx, the LKH tree keys of the SG need not be
updated since new keys are derived if and when the SG
starts re-populating. Nevertheless, we need to update
the uKEKs in the outer LKH tree and then send device
keys using them to the concerned SGs as in Section 5.3.
The following actions are performed:

• The KDC sends a message to the devices
subscribed to by the leaving user to update their
nonces as in Section 5.3: n′j = nj + 1. The new
device key will be DK ′j = h(IDj ||n′j). This helps in
achieving forward secrecy.

• The KDC sends the updated uKEKs to the SGs
having a common ancestor with SGx, encrypted
by appropriate group keys or shared uKEKs.

• For each DG subscribed to by the leaving user,
the KDC sends a multicast containing the updated
device keys to the SGs subscribed to the DG, using
the updated uKEKs.

8 EAI Endorsed Transactions on
Internet of Things

02 2021 - 04 2021 | Volume 7 | Issue 25 | e2

Efficient, Flexible and Secure Group Key Management Protocol for Dynamic IoT Settings

5.8. When a New DG Joins
Recall that a SG is a group of users subscribing to
a specific subset of DGs. So when a new DG joins,
the possible number of SGs will change from 2P − 1
to 2P+1 − 1, where P is the number of DGs before the
new DG joined, i.e., it will approximately double. Also,
a given SG may be split into two unique SGs– one
with users with the same subscriptions as the original
SG, and the other with users who opt to additionally
subscribe to the new DG.

This splitting is performed as follows: in the outer
LKH tree, the two newly formed SGs become child
nodes of the node corresponding to the original SG.
In the example in Fig. 7, when SG12 splits, SG121 and
SG122 become child nodes of the node corresponding
to SG12. Also, the group key of SG12 becomes the
uKEK for both the child nodes after splitting; this
uKEK is uKEK12 in Fig. 7. As a result, splitting does
not necessitate updation of uKEKs to maintain forward
or backward secrecy. However, we observe that the
inner LKH trees of the newly formed SGs need to be
constructed appropriately based on which users from
the original SG opt to subscribe to the new DG. The
KDC constructs these inner LKH trees, securely sends
their KEKs and group keys to the newly formed SGs,
and sends, to the newly formed SGs that subscribe to
the newly joined DG, the device keys of the devices
of the DG. The splitting of a SG can cost heavy
communication overhead to the network; however,
since in practice, a new DG would only rarely join
the network, this overhead would be small. We will
later show that even under this rare event, the per
user computation is small under our proposed protocol
(see Sections 6.2.7 and 6.3.7). The following actions are
performed:

• For each SG that splits into two SGs, the KDC
modifies the outer LKH tree by making the new
SGs the child nodes of the original SG’s node as
explained above.

• Whenever a SG is split into two SGs, the KDC
constructs the inner LKH trees of the two SGs
appropriately and securely distributes the group
keys and KEKs of the newly formed SGs to the
members of the SGs.

• The KDC arranges the devices of the new DG in a
LKH tree and generates its group key and KEKs.

• As in Section 5.4, the KDC establishes a secret key,
creates a secret identity and a nonce for each of the
devices in the newly joined DG.

• The KDC provides each of the devices in the
newly joined DG with the respective individual
(identity and nonce) and group (group key and
KEKs) secrets using the established shared secret

Figure 7. The figure on the left (respectively, right) shows the
outer LKH tree before (respectively, after) SG12 splits into two
SGs– SG121 and SG122. The group key of SG12 becomes the
uKEK, uKEK12, for the users in the two SGs.

keys between the devices and the KDC. Then the
KDC as well as the devices derive the device keys.

• Whenever a SG is split into two SGs, the KDC
securely multicasts, to the members of the newly
formed SG that subscribes to the newly joined DG,
the device keys of the devices of the DG, using the
group key of the inner LKH tree of the SG.

5.9. When an Existing DG Leaves
This case is exactly opposite to the case when a new
DG joins (Section 5.8). In particular, recall that a SG
is a group of users subscribing to a specific subset
of DGs. So when an existing DG leaves, the possible
number of SGs will change from 2P − 1 to 2P−1 − 1,
where P is the number of DGs before the existing DG
leaves, i.e., it will approximately halve. Also, merging
of pairs of SGs may be needed. Specifically, suppose
before the DG left, there were two SGs, SGX and SGY,
which subscribed to the same set of DGs, except that
SGX (respectively, SGY) subscribed (respectively, did
not subscribe) to the leaving DG. Then after the DG
leaves, SGX and SGY will be subscribed to the same
set of DGs and hence need to be merged, forming a
bigger SG, say SGXY. Under our proposed protocol, this
merging is performed as follows. The inner LKH tree
structures of SGX and SGY are not changed; also, the
root nodes (corresponding to group keys) of the two SGs
become children (corresponding to KEKs) of the new
root node of SGXY. Fig. 8 shows the inner LKH trees of
two SGs, SGX and SGY, before merging and Fig. 9 shows
the inner LKH tree of the new SG, SGXY, formed after
merging. The nodes (root nodes) corresponding to the
group keys, SKX and SKY, of the two SGs become child
nodes, corresponding to the KEKs KEKX0 and KEKY0,
respectively, of the new root node corresponding to the
group key SKXY. Also, SKXY can simply be the hash
of the group key of the bigger group out of SGX and
SGY, say SGY. Additionally, similar to Section 5.7, the

9 EAI Endorsed Transactions on
Internet of Things

02 2021 - 04 2021 | Volume 7 | Issue 25 | e2

A. Kabra, S. Kumar, G. S. Kasbekar

Figure 8. The figure shows the inner LKH trees of the groups
SGX and SGY before merging.

LKH tree keys of the leaving DG need not be updated
since new keys are derived if and when the DG starts re-
populating. Also, the KDC sends a broadcast message to
all SGs that the devices in the leaving DG are no longer
available. For each instance of merging of two SGs, SGX
and SGY, into a bigger SG, SGXY, the following actions
are performed:

• The KDC arranges the LKH trees of the two SGs
as shown in Fig. 9, and the KDC and users in the
bigger SG, SGY, calculate the new group key of the
merged group SGXY as SKXY = h(SKY).

• The KDC securely multicasts SKXY to all the users
of the subscriber group SGX by encrypting it using
the key KEKX0.

Also, unlike Section 5.8, modification of the outer
LKH tree post-merging is, in general, non-trivial and
depends on which pairs of SGs are merged. The KDC
constructs the new outer LKH tree obtained after
merging, and securely distributes its updated uKEKs
to all the SGs using appropriate uKEKs or group keys.
Although this may incur significant communication
cost, since the leaving of an existing DG would typically
be a rare event in practice, the resulting overhead would
be small. Also, the per user computational cost incurred
when an existing DG leaves is small (see Sections 6.2.8
and 6.3.8).

5.10. Collusion
In [10], the authors discussed about a possible collusion
attack, which can occur under their proposed scheme,
GroupIt, wherein a leaving user colludes with an
existing device. This happens because the old user is
aware of the device IDs of all the subscribed devices and
the existing device knows the updated TEK. They can
combine their knowledge to derive the other devices’
new device keys. However, in our proposed scheme,
users are not aware of any device’s ID. Even if a user
knows the device keys of all its subscribed devices,
whenever a user leaves, the device keys are updated as
explained in Section 5.3 and Section 5.7. Hence, there is

Figure 9. The figure shows the inner LKH tree of the group SGXY
obtained by merging of the SGs SGX and SGY. Note that SKXY
is securely multicast to UX1, UX2, UX3 and UX4 by encrypting it
using KEKX0.

no possibility of a collusion attack under our proposed
scheme.

5.11. Discussion
Throughout, we have focused on designing a
lightweight, flexible and secure GKM scheme. The
incorporation of the outer LKH tree structure in the
proposed scheme makes key distribution (especially
that of device keys) across SGs highly efficient. Unlike
GroupIt, which uses asymmetric encryption, the use of
only symmetric encryption under our proposed scheme
has also added to its efficiency. Also, we have provided
increased flexibility by including the ability to handle
the cases where a new DG joins, an old DG leaves, a new
user occupies an empty SG, and an existing user leaves
the last occupied spot in a SG in our proposed scheme;
note that GroupIt does not explicitly handle any of the
above events. We have also achieved better security
as compared to GroupIt by maintaining forward and
backward secrecy during all events of user and group
dynamics, as well as completely preventing collusion
attacks.

6. Performance Analysis
In Sections 6.1, 6.2, and 6.3, we analyze the storage,
communication, and computational costs, respectively,
of our proposed protocol and compare them with those
under the GroupIt protocol. Table 1 lists the notation
used in this and the next section.

6.1. Storage
Under our proposed protocol, a user of group SGx
stores at most YxMmax device keys (the total number
of DGs subscribed to by the user multiplied by the
maximum number of devices in a DG, since there is
a key for each device in each subscribed DG), at most

10 EAI Endorsed Transactions on
Internet of Things

02 2021 - 04 2021 | Volume 7 | Issue 25 | e2

Efficient, Flexible and Secure Group Key Management Protocol for Dynamic IoT Settings

Table 1. Notation used in Sections 6 and 7.

Notation Meaning
Ly No. of SGs subscribed to DGy
Nx No. of users in SGx
My No. of devices in DGy
Mmax Maximum no. of devices in any DG
Yx No. of DGs subscribed to by SGx
dxe Ceiling of x
P No. of DGs
Q No. of SGs

Dec Symmetric Decryption
AsyDec Asymmetric Decryption

Hash Cryptographic hash function

dlog(Nx)e KEKs (for multicast communication within
SGx), one secret key (for message communication
between the KDC and the user), one group key (for
multicast messages between the KDC and the users
of SGx), and at most P uKEKs, which includes the
key corresponding to the root uNode (for message
communication using the outer LKH tree keys). On the
other hand, a device of group DGy stores one ID and
one nonce (for device key generation), at most dlog(My)e
KEKs (for multicast communication within DGy), one
secret key (for message communication between the
KDC and the device), and one group key (for multicast
communication between the KDC and devices of DGy).

In GroupIt, a user of group SGx stores at most YxMmax
device IDs, Yx TEKs, at most dlog(Nx)e KEKs, one secret
key, and one group key. On the other hand, a device of
group DGy stores one ID, at most dlog(My)e KEKs, one
secret key, one TEK, and one group key.

We can see that in terms of storage, both our
proposed protocol and GroupIt have a similar overhead
for devices, and depending on the values of P and
Yx, GroupIt may marginally outperform the proposed
protocol with respect to the costs borne by the users.

6.2. Communication

6.2.1. New User Joining Group SGx. Under our proposed
protocol, the KDC establishes one secret key with the
user, sends one broadcast message for the updation of
device keys and the group key of SGx, at most dlog(Nx)e
multicasts to update KEKs, at most P multicasts to
update uKEKs and one unicast to share key material.
Under GroupIt, the KDC establishes one secret key with
the user, sends one broadcast message to update TEK,
at most dlog(Nx)e multicasts to update KEKs and one
unicast to share key material. The communication cost
under our proposed protocol is higher than that under
GroupIt; however, this is because of the provision of
backward secrecy under our proposed protocol, but not
under GroupIt (see Section 4.2.3).

6.2.2. Existing User Leaving Group SGx. Under our
proposed protocol, the KDC sends one broadcast
message to the devices subscribed to by the leaving
user for the updation of device keys, at most dlog(Nx)e
multicasts to update KEKs and the group key, at most
P multicasts to update uKEKs and Y xP multicasts
for the updation of device keys with the remaining
users. Under GroupIt, the KDC sends at most dlog(Nx)e
multicasts to update KEKs and the group key, at
most YxMmax multicasts and Yx broadcasts for devices
subscribed to by the leaving user and users subscribed
to those devices to update their TEKs, respectively, and
at most Yx log(Mmax) multicasts to update device IDs.
Hence, the proposed protocol is highly efficient in terms
of communication overhead when an existing user
leaves. This efficiency further improves if the number of
devices within a DG increases or if the SG is subscribed
to a large number of DGs. Through our solution, we
have also eliminated the possibility of collusion, which
exists under the GroupIt protocol (see Section 4.2.2).

6.2.3. New Device Joining Group DGy. Under our
proposed protocol, the KDC establishes one secret key
with the device, sends one unicast containing the ID
and nonce, one multicast for other members of the DG
to update the group key, at most dlog(My)emulticasts to
update KEKs and at most Ly multicasts for delivering
the device’s key to its subscribed users. Under GroupIt,
the KDC establishes one secret key with the device,
sends one multicast for other members of the DG to
update the group key, at most dlog(My)e multicasts to
update KEKs, one broadcast containing the device’s ID
for the subscribed users and one unicast to share key
material with the new device. We can see that if Ly > 1,
then depending on the positions of the SGs subscribed
to the DG of the new device in the outer LKH tree,
GroupIt may have a lower communication cost in this
case as compared to our proposed scheme.

6.2.4. Existing Device Leaving Group DGy. Both under our
proposed protocol and GroupIt, the KDC sends one
broadcast notifying about the exit of the device, and
at most dlog(My)e multicasts to update the KEKs and
group key of the devices in DGy.

6.2.5. New User Occupying an Empty SG. Under our
proposed protocol, the KDC establishes one secret
key with the user, sends one broadcast message for
the updation of device keys with the users who have
common subscriptions with the new user, at most P
multicasts to update uKEKs and one unicast to share
key material with the new user. GroupIt does not
explicitly handle this scenario.

6.2.6. Existing User Leaves the Last Spot in Group SGx.
Under our proposed protocol, the KDC sends one
broadcast message to the devices subscribed to by the
leaving user for the updation of device keys, at most
P multicasts to update uKEKs and Y xP multicasts for

11 EAI Endorsed Transactions on
Internet of Things

02 2021 - 04 2021 | Volume 7 | Issue 25 | e2

A. Kabra, S. Kumar, G. S. Kasbekar

the updation of device keys with the remaining users.
Again, GroupIt does not explicitly handle this scenario.

6.2.7. New Device Group DGy Joins. We saw earlier
that depending on which users subscribe to DGy, the
communication cost for KEK updates may vary. In the
worst case scenario, for a subscriber group SGx, of
which every alternate member, going from left to right
in its inner LKH tree, opts for this subscription, the
KDC needs to send Nx unicasts encrypted with the
respective shared secret keys, one to each member of
the two groups formed after SGx splits. The unicasts
contain KEKs and group keys for the newly formed
SG that does not subscribe to DGy, and they contain
KEKs, group keys and the new devices’ keys for the
newly formed SG that subscribes to DGy. Additionally,
under our proposed protocol, the KDC performs My
key establishments, one with each of the devices of
the new DG, and sends My corresponding unicasts
containing IDs, nonces, group key and KEKs. GroupIt
does not explicitly handle this scenario.

6.2.8. An Existing DG Leaves. Under our proposed
protocol, the KDC sends one broadcast notifying about
the exit of the DG. For each instance of merging of
two SGs, the KDC sends one multicast to the users
of the bigger SG to hash their group key, and sends
one multicast to the users of the smaller SG containing
the new group key. We also observe that the number
of uKEK updates required depends on the positions
of different SGs in the outer LKH tree, and in the
worst case scenario, the KDC sends one multicast to
the members of each SG after merging, containing the
updated uKEKs encrypted by the respective group keys.
As before, GroupIt does not handle this scenario.

6.2.9. Summary. We observe that when a new user joins,
our proposed protocol requires more multicasts than
GroupIt to update uKEKs, which helps in achieving
backward secrecy under our proposed protocol, which
is not provided under GroupIt. However, GroupIt is
significantly outperformed by our scheme when an
existing user leaves, owing to the use of symmetric
encryptions under our proposed protocol, unlike under
GroupIt, which uses asymmetric encryption. In case of
a device joining or leaving, both schemes have similar
communication overhead.

6.3. Computation
In this section, we analyze the computational costs per
user and per device.

6.3.1. New User Joining Group SGx. Under our proposed
protocol, a device needs to perform one hash to update
its device key. Each existing user performs one hash
to update the group key, at most YxMmax hashes to
update device keys and two symmetric decryptions
to update KEKs and uKEKs, whereas the new user

performs one symmetric decryption to get the key
material. Under GroupIt, each device needs to perform
two hashes to update its device key. Each existing
user performs O(log(Nx)) symmetric decryptions to
update KEKs, whereas the new user performs one
symmetric decryption to get the key material. Hence,
our proposed protocol outperforms GroupIt in terms of
the computational cost for both devices and users.

6.3.2. Existing User Leaving Group SGx. Under our
proposed protocol, a device needs to perform one hash
to derive the new device key. Each remaining user
performs two symmetric decryptions to update KEKs
and uKEKs, and Yx symmetric decryptions to get the
updated device keys. Under GroupIt, a device needs to
perform two symmetric decryptions and two hashes to
derive the device keys. Each remaining user performs
two symmetric and one asymmetric decryptions to gain
KEKs and update information, and at most YxMmax
hashes to derive the new device keys. It is evident
that our proposed protocol significantly improves upon
GroupIt in terms of the overhead for devices, and also
eliminates the need for asymmetric decryption, which
is computationally expensive, for users.

6.3.3. New Device Joining. Under both our proposed
protocol and GroupIt, the new device performs one
symmetric decryption and one hash to derive its device
key, whereas each existing device performs one hash to
update the group key and one symmetric decryption to
get the updated KEKs. Each subscribed user under our
protocol performs one symmetric decryption to get the
new device’s device key, while it needs to perform an
additional hash computation under GroupIt.

6.3.4. Existing Device Leaving. Under both our proposed
protocol and GroupIt, each remaining device needs to
perform one symmetric decryption to get the updated
KEKs and group key, and users need not perform any
computation.

6.3.5. New User Occupying an Empty User Group SGx.
Under our proposed protocol, each device needs to
perform one hash to update the device key. Each
user having common subscriptions with the new user
performs YxMmax hashes to update device keys and
each user in a SG having a common ancestor with
SGx performs one symmetric decryption to update
uKEKs, whereas the new user performs one symmetric
decryption to get the key material. GroupIt does not
explicitly handle this scenario.

6.3.6. Existing User Leaving the Last Spot in Group SGx.
Under our proposed protocol, each device needs to
perform one hash to derive the new device key. Each
user in an SG having a common ancestor with SGx
performs one symmetric decryption to update uKEKs,
and Yx symmetric decryptions to get the updated device
keys. Again, GroupIt does not explicitly handle this
scenario.

12 EAI Endorsed Transactions on
Internet of Things

02 2021 - 04 2021 | Volume 7 | Issue 25 | e2

Efficient, Flexible and Secure Group Key Management Protocol for Dynamic IoT Settings

6.3.7. New DG Joining. Under our proposed protocol,
each user that occupies a new leaf node in an inner LKH
tree after splitting of an SG performs one symmetric
decryption to get the updated KEKs, group keys and
new devices’ keys (if subscribed). Each device in the
new DG needs to perform one symmetric decryption
and one hash to get the key material and derive its
device key. GroupIt does not handle this scenario.

6.3.8. An Existing DG Leaving. Under our proposed
protocol, for every instance of merging of two SGs,
each of the users in the bigger SG performs one hash,
while each of the users in the smaller SG performs one
symmetric decryption to get the new group key. A user
needs to perform at most one symmetric decryption to
get the updated uKEKs. As before, GroupIt does not
handle this scenario.

6.3.9. Summary. Evidently, our proposed scheme out-
performs GroupIt in every user join or leave scenario.
When a new user joins, our scheme requires only
two symmetric decryptions per user, in contrast to
GroupIt, for which this number of decryptions scales
with Nx. When a user leaves, under our proposed
protocol, devices need not perform any decryptions,
whereas they perform two decryptions each under
GroupIt. Users also gain a significant advantage under
our proposed protocol since asymmetric decryption is
not required. Also, in case of a new device joining, our
proposed protocol marginally outperforms GroupIt in
terms of the computation costs borne by users.

7. Numerical Results
In this section, via numerical computations, we
compare the performance of our protocol with that
of GroupIt for the events of user joining and leaving
a group SGx, in terms of the communication cost
(Section 7.1) and computation cost (Section 7.2).
Suppose there are P = 10 DGs and Q = 2P − 1 = 1023
SGs. Also, suppose each DG contains M devices, each
SG contains N users, each SG is subscribed to Y DGs
and L SGs are subscribed to each DG. Note that since
Q = 2P − 1, the number of SGs subscribed to each DG
will be 2P−1; therefore, L = 512.

In [33], the performances of Advanced Encryption
Standard (AES), the SHA-256 cryptographic hash
function, and Elliptical Curve Cryptography (ECC)
in commercial and research sensor nodes were
compared. This study shows that ECC is much more
computationally intensive as compared to AES, which
is, in turn, more computionally intensive than SHA-256.
As in [10], for concreteness, we assume that hashing
(Hash) using SHA-256 takes T0 = 460 ns, encryption
(Enc) or decryption (Dec) using AES-256 of block
size 64 takes T1 = 800 ns = 1.74T0, and asymmetric
decryption (AsyDec) using ECC-224 takes T2 = 114000
ns = 247.83T0. Note that these absolute values are for

Figure 10. The figure shows the communication costs under
GroupIt and the proposed protocol versus the number of DGs
subscribed to by the user for the case when a user leaves group
SGx.

a particular processor; however, the relative trends that
we observe in the following numerical results hold for
other processors as well.

7.1. Communication Cost
We now calculate the number of messages exchanged
when a user leaves group SGx, as a function of the
aforementioned variables. The following equations are
derived from Section 6.2.2.

First, we fix N = 100 and M = 20, and vary the
number of DGs subscribed to by the leaving user (Y).
Under our proposed scheme, the number of messages
exchanged is:

1 Broadcast + (dlog(N)e + 2P) Multicasts
= 1 Broadcast + 27 Multicasts

Under GroupIt, the number of messages exchanged is:

Y Broadcasts + (dlog(N)e + Y dlog(M)e) Multicasts
+MY Unicasts

= Y Broadcasts + (7 + 5Y) Multicasts + 20Y Unicasts

The communication costs for both the protocols are
depicted in Fig. 10. Evidently, our scheme outperforms
GroupIt as the number of messages required is low
and does not depend on the value of Y . However, for
GroupIt, it increases linearly in Y .

Next, we fix Y = 3 and M = 20 and vary N . The
number of messages exchanged under our proposed
scheme is:

1 Broadcast + (dlog(N)e + 20) Multicasts

The number of messages exchanged under GroupIt is:

3 Broadcasts + (dlog(N)e + 15) Multicasts + 60 Unicasts

13 EAI Endorsed Transactions on
Internet of Things

02 2021 - 04 2021 | Volume 7 | Issue 25 | e2

A. Kabra, S. Kumar, G. S. Kasbekar

Figure 11. The figure shows the communication costs under
GroupIt and the proposed protocol versus the number of users
in group SGx for the case when a user leaves group SGx.

Figure 12. The figure shows the communication costs under
GroupIt and the proposed protocol versus the number of devices
in a DG for the case when a user leaves group SGx.

Again, as shown in Fig. 11, our proposed protocol has
lower communication cost than GroupIt.

Next, we fix Y = 3 and N = 100 and vary the number
of devices in each DG (M). Under our proposed
protocol, the number of messages exchanged is:

1 Broadcast + 27 Multicasts.

On the other hand, under GroupIt, the number of
messages exchanged is:

3 Broadcasts + (7 + 3dlog(M)e) Multicasts
+3M Unicasts.

Fig. 12 shows that the communication cost under our
proposed protocol does not increase in M, whereas
that under GroupIt increases in M. The cost under our
proposed protocol is lower than that under GroupIt
when M is sufficiently large.

Figure 13. The figure shows the total computational load for
all devices under GroupIt and the proposed protocol versus the
number of devices in a DG for the case when a new user joins.

7.2. Computation Cost
We now study the computational costs borne by users
and devices in the network under the proposed protocol
and GroupIt when a new user joins and when an
existing user leaves. We fix Y = 3 in the rest of this
section. The following computational costs are derived
from Sections 6.3.1 and 6.3.2.

First, when a new user joins SGx, the total
computational load for all devices under the proposed
protocol is:

MY Hash = 3T0M

For GroupIt, the load is:

2MY Hash = 6T0M

Both the above costs are plotted versus M in Fig. 13.
Thus, when a new user joins SGx, the computational
load for devices under our proposed protocol is half that
under GroupIt.

Now, when a new user joins SGx, the total
computational load for all users under our proposed
protocol is:

LN Hash + N Hash + log(N) Dec + P Dec
= 513T0N + 1.74T0 log(N) + 17.4T0

= (513N + 1.74 log(N) + 17.4)T0

For GroupIt, the corresponding load is:

LN Hash + LN Hash + log(N) Dec
= 1024T0N + 1.74T0 log(N)
= (1024N + 1.74 log(N))T0

Fig. 14 shows the above costs versus the number of
users in a SG (N). We can see that for all, except very

14 EAI Endorsed Transactions on
Internet of Things

02 2021 - 04 2021 | Volume 7 | Issue 25 | e2

Efficient, Flexible and Secure Group Key Management Protocol for Dynamic IoT Settings

Figure 14. The figure shows the total computational load for all
users under GroupIt and the proposed protocol versus the number
of users in a SG for the case when a new user joins.

small values of N , our proposed protocol outperforms
GroupIt. This advantage increases linearly in N .

Next, we examine the device computation cost when
an existing user leaves SGx. Under our proposed
protocol, the total computation cost for all devices is:

MY Hash = 3T0M

Under GroupIt, the corresponding cost is:

MY Dec + Y log(M) Dec + 2MY Hash
= 5.22T0M + 5.22T0 log(M) + 6T0M

= (11.22M + 5.22 log(M))T0

Fig. 15 shows that our proposed protocol significantly
outperforms GroupIt in terms of the total computa-
tional load for all devices in the case when a user
leaves SGx. This is due to the introduction of ‘nonces’
as a part of the device key calculation in our proposed
protocol, which eliminates the requirement to perform
any decryption operation during device key updates.

Finally, we consider the computational load incurred
by users when an existing user leaves SGx. Under
our proposed protocol, the total computational cost
incurred by all the users is:

log(N) Dec + log(Q) Dec + MYL Dec
= 6.64 × 1.74T0 + 10 × 1.74T0 + 512 × 3 × 1.74T0M

= (28.95 + 2672.64M)T0

The corresponding cost under GroupIt is:

log(N) Dec + MYL Dec + MYL AsyDec
= 6.64 × 1.74T0 + 1536 × 1.74T0M

+1536 × 247.83T0M

= (11.55 + 383339.52M)T0

Fig. 16 shows the total user computation costs under
both the schemes for the case when a user leaves SGx

Figure 15. The figure shows the total computational load for
all devices under GroupIt and the proposed protocol versus the
number of devices in a DG for the case when a user leaves SGx.

Figure 16. The figure shows the total computational load for all
users under GroupIt and the proposed protocol versus the number
of devices in a DG for the case when a user leaves SGx.

(note that the y-axis is on a log scale). The plot shows
that our proposed protocol outperforms GroupIt by
several orders of magnitude. This gain is achieved due
to the use of symmetric encryptions under our proposed
protocol in place of asymmetric double encryption, as
well as due to the introduction of the outer LKH tree
structure in our protocol.

8. Conclusions and Future Work
We presented a highly efficient and secure GKM
protocol for dynamic IoT settings, which maintains
forward and backward secrecy at all times. Our
proposed protocol uses only symmetric encryption, and
is completely resistant to collusion attacks. Also, our
protocol is highly flexible and can handle several new
scenarios in which device or user dynamics may take
place, e.g., allowing a device group to join or leave
the network or creation or dissolution of a user group,

15 EAI Endorsed Transactions on
Internet of Things

02 2021 - 04 2021 | Volume 7 | Issue 25 | e2

A. Kabra, S. Kumar, G. S. Kasbekar

which are not handled by the GroupIt scheme. We
evaluated the performance of the proposed protocol
via extensive mathematical analysis and numerical
computations, and showed that it outperforms the
GroupIt scheme in terms of the communication and
computation costs incurred by users and devices. In
this paper, we used the LKH scheme for GKM within
SGs and DGs as well as by constructing an outer LKH
tree structure, of which all the SGs are a part. One
interesting direction for future work is to improve the
performance of our proposed protcool by replacing
LKH with other GKM schemes proposed in prior work
such as OFT, ELK, MARKS etc.

References
[1] G. Maayan, “The iot rundown for 2020: Stats, risks, and

solutions,” Security Today, 13 Jan. 2020.
[2] A. Das, A. Sutrala, V. Odelu, and A. Goswami, “A secure

smartcard-based anonymous user authentication scheme
for healthcare applications using wireless medical sensor
networks,” Wireless Pers Commun, vol. 94, pp. 1899–
1933, 2017.

[3] Q. Jiang, S. Zeadally, J. Ma, and D. He, “Lightweight
three-factor authentication and key agreement protocol
for internet-integrated wireless sensor networks,” IEEE
Access, vol. 5, pp. 3376–3392, 2017.

[4] R. Weber, “Internet of things- new security and privacy
challenges,” Computer Law & Security Review, vol. 26,
pp. 23–30, 2010.

[5] J. Granjal, E. Monteiro, and J. S. Silva, “Security for the
internet of things: A survey of existing protocols and
open research issues,” IEEE Communications Surveys &
Tutorials, vol. 17, no. 3, pp. 1294–1312, 2015.

[6] L. Veltri, S. Cirani, S. Busanelli, and G. Ferrari, “A novel
batch-based group key management protocol applied
to the internet of things,” Ad Hoc Networks, vol. 11,
pp. 2724–2737, 2013.

[7] S. Rafaeli and D. Hutchison, “A survey of key
management for secure group communication,” ACM
Comput. Surv., vol. 35, no. 3, p. 309–329, 2003.

[8] O. Cheikhrouhou, A. Koubâa, G. Dini, H. Alzaid, and
M. Abid, “Lnt: A logical neighbor tree secure group
communication scheme for wireless sensor networks,”
Ad Hoc Networks, vol. 10, pp. 1419–1444, 2012.

[9] C. Esposito, M. Ficco, A. Castiglione, F. Palmieri, and
A. D. Santis, “Distributed group key management for
event notification confidentiality among sensors,” IEEE
Transactions on Dependable and Secure Computing, vol. 17,
no. 3, pp. 566–580, 2018.

[10] Y. Kung and H. Hsiao, “Groupit: Lightweight group
key management for dynamic iot environments,” IEEE
Internet of Things Journal, vol. 5, no. 6, pp. 5155–5165,
2018.

[11] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao,
“A survey on internet of things: Architecture, enabling
technologies, security and privacy, and applications,”
IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1125–
1142, 2017.

[12] S. Sicari, A. Rizzardi, L. Grieco, and A. Coen-Porisini,
“Security, privacy and trust in internet of things: The

road ahead,” Computer Networks, vol. 76, pp. 146–164,
2015.

[13] J. Gutierrez, M. Naeve, E. Callaway, M. Bourgeois,
V. Mitter, and B. Heile, “IEEE 802.15.4: a developing
standard for low-power low-cost wireless personal area
networks,” IEEE Network, vol. 15, no. 5, pp. 12–19, 2001.

[14] Z. Sheng, S. Yang, Y. Yu, A. Vasilakos, J. Mccann,
and K. Leung, “A survey on the IETF protocol suite
for the internet of things: standards, challenges, and
opportunities,” IEEE Wireless Communications, vol. 20,
no. 6, pp. 91–98, 2013.

[15] L. Schrickte, C. Montez, R. Oliveira, and A. Pinto,
“Integration of wireless sensor networks to the internet
of things using a 6LoWPAN gateway,” in 2013 III
Brazilian Symposium on Computing Systems Engineering,
(Niteroi), pp. 119–124, 2013.

[16] Y. Yang, L. Wu, G. Yin, L. Li, and H. Zhao, “A survey on
security and privacy issues in internet-of-things,” IEEE
Internet of Things Journal, vol. 4, no. 5, pp. 1250–1258,
2017.

[17] M. Turkanovic, B. Brumen, and M. Hölbl, “A novel
user authentication and key agreement scheme for
heterogeneous ad hoc wireless sensor networks, based on
the internet of things notion,” Ad Hoc Networks, vol. 20,
pp. 96–112, 2014.

[18] P. Porambage, A. Braeken, C. Schmitt, A. Gurtov,
M. Ylianttila, and B. Stiller, “Group key establishment
for secure multicasting in iot-enabled wireless sensor
networks,” in 2015 IEEE 40th Conference on Local
Computer Networks (LCN), (Clearwater Beach, FL),
pp. 482–485, 2015.

[19] A. Das, S. Kumari, V. Odelu, X. Li, F. Wu, and X. Huang,
“Provably secure user authentication and key agreement
scheme for wireless sensor networks,” Security and
Communication Networks, pp. 3670–3687, 2016.

[20] C. Chang and H. Le, “A provably secure, efficient, and
flexible authentication scheme for ad hoc wireless sensor
networks,” IEEE Transactions on Wireless Communica-
tions, vol. 15, no. 1, pp. 357–366, 2016.

[21] N. Ferrari, T. Gebremichael, U. Jennehag, and M. Gid-
lund, “Lightweight group-key establishment protocol
for iot devices: Implementation and performance anal-
yses,” in 2018 Fifth International Conference on Internet
of Things: Systems, Management and Security, (Valencia),
pp. 31–37, 2018.

[22] C. Park, “A secure and efficient ecqv implicit certificate
issuance protocol for the internet of things applications,”
IEEE Sensors Journal, vol. 17, no. 7, pp. 2215–2223, 2017.

[23] M. Eldefrawy, N. Pereira, and M. Gidlund, “Key
distribution protocol for industrial internet of things
without implicit certificates,” IEEE Internet of Things
Journal, vol. 6, no. 1, pp. 906–917, 2019.

[24] A. Robinson and R. Steinwandt, “Group key establish-
ment with physical unclonable functions,” Journal of
Information and Optimization Sciences, vol. 40, pp. 69–80,
2019.

[25] N. Ferrari, “Context-based authentication and
lightweight group key establishment protocol for
iot devices,” Master’s thesis, Mid Sweden University,
Faculty of Science, Technology and Media, Department
of Information Systems and Technology, 2019.

16 EAI Endorsed Transactions on
Internet of Things

02 2021 - 04 2021 | Volume 7 | Issue 25 | e2

Efficient, Flexible and Secure Group Key Management Protocol for Dynamic IoT Settings

[26] C. Wong, M. Gouda, and S. Lam, “Secure group
communications using key graphs,” SIGCOMM Comput.
Commun. Rev., vol. 28, no. 4, p. 68–79, 1998.

[27] J. Son, J. Lee, and S. Seo, “Topological key hierarchy
for energy-efficient group key management in wireless
sensor networks,” Wireless Pers Commun, vol. 52, no. 359,
2009.

[28] M. Mughal, P. Shi, A. Ullah, K. Mahmood, M. Abid, and
X. Luo, “Logical tree based secure rekeying management
for smart devices groups in iot enabled wsn,” IEEE
Access, vol. 7, pp. 76699–76711, 2019.

[29] M. Kandi, H. Lakhlef, A. Bouabdallah, and Y. Challal,
“A versatile key management protocol for secure group
and device-to-device communication in the internet of
things,” Journal of Network and Computer Applications,
vol. 150, p. 102480, 2020.

[30] M. Conti, R. Pietro, L. Mancini, and A. Mei, “Emergent
properties: detection of the node-capture attack in

mobile wireless sensor networks,” in Proceedings of
the First ACM Conference on Wireless Network Security,
WISEC 2008, (Alexandria, VA, USA), 2008.

[31] T. Bonaci, L. Bushnell, and R. Poovendran, “Node
capture attacks in wireless sensor networks: A system
theoretic approach,” in 49th IEEE Conference on Decision
and Control (CDC), (Atlanta, GA), pp. 6765–6772, 2010.

[32] X. Wang, J. Zhang, E. Schooler, and M. Ion, “Performance
evaluation of attribute-based encryption: Toward data
privacy in the iot,” in 2014 IEEE International Conference
on Communications (ICC), (Sydney, NSW), pp. 725–730,
2014.

[33] A. de la Piedra, A. Braeken, and A. Touhafi, “A
performance comparison study of ecc and aes in
commercial and research sensor nodes,” in Eurocon 2013,
(Zagreb), pp. 347–354, 2013.

17 EAI Endorsed Transactions on
Internet of Things

02 2021 - 04 2021 | Volume 7 | Issue 25 | e2

	1 Introduction
	2 Related Work
	3 Model, Problem Formulation and Background
	3.1 System Model
	3.2 Adversarial Model
	3.3 Logical Key Hierarchy (LKH)

	4 Review and Limitations of GroupIt Scheme
	4.1 GroupIt
	4.1.1 New User (Ui) Joins a Group SGx
	4.1.2 Existing User (Ui) Leaves a Group SGx
	4.1.3 New Device Joins a Group
	4.1.4 Existing Device Leaves a Group

	4.2 Limitations of GroupIt
	4.2.1 Employment of Asymmetric Encryption
	4.2.2 Collusion Attacks
	4.2.3 Erroneous Steps of Key Updation
	4.2.4 Low Flexibility

	5 Proposed GKM Scheme
	5.1 Setup and Pre-deployment
	5.2 When a New User Joins
	5.3 When an Existing User Leaves
	5.4 When a New Device Joins
	5.5 When an Existing Device Leaves
	5.6 When a New User Occupies an Empty Group
	5.7 When an Existing User Leaves the Last Spot in a SG
	5.8 When a New DG Joins
	5.9 When an Existing DG Leaves
	5.10 Collusion
	5.11 Discussion

	6 Performance Analysis
	6.1 Storage
	6.2 Communication
	6.2.1 New User Joining Group SGx
	6.2.2 Existing User Leaving Group SGx
	6.2.3 New Device Joining Group DGy
	6.2.4 Existing Device Leaving Group DGy
	6.2.5 New User Occupying an Empty SG
	6.2.6 Existing User Leaves the Last Spot in Group SGx
	6.2.7 New Device Group DGy Joins
	6.2.8 An Existing DG Leaves
	6.2.9 Summary

	6.3 Computation
	6.3.1 New User Joining Group SGx
	6.3.2 Existing User Leaving Group SGx
	6.3.3 New Device Joining
	6.3.4 Existing Device Leaving
	6.3.5 New User Occupying an Empty User Group SGx
	6.3.6 Existing User Leaving the Last Spot in Group SGx
	6.3.7 New DG Joining
	6.3.8 An Existing DG Leaving
	6.3.9 Summary

	7 Numerical Results
	7.1 Communication Cost
	7.2 Computation Cost

	8 Conclusions and Future Work

