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ABSTRACT
Aggregation is a crucial task in swarm robotics to ensure co-
operation. We investigate the task of aggregation on an area
specified indirectly by certain environmental features, here
it is a light distribution. We extend the original BEECLUST
algorithm, that implements an aggregation behavior, to an
adaptive variant that automatically adapts to any light con-
ditions. We compare these two control algorithms in a num-
ber of swarm robot experiments with different light condi-
tions. The improved, adaptive variant is found to be signif-
icantly better in the tested setup.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: intelligent
agents, multiagent systems

General Terms
Algorithms, Performance, Theory

Keywords
beeclust, adaptive behavior, collective decision making, ag-
gregation, swarm robots

1. INTRODUCTION
A crucial task in swarm robotics [3, 7, 4] is to aggregate the
swarm [25, 22, 20, 21]. Staying together is essential to al-
low for cooperation and interaction in robot swarms. While
sometimes it might be enough to aggregate anywhere, in
other cases we want the robot swarm to aggregate at either
a directly designated area or an area specified indirectly by
certain features. For example, a robot swarm may need to
collectively agree on an appropriate construction site before
starting construction [23, 5, 27] or the swarm may need to
aggregate on an area of a desired temperature as observed
in young honeybees [24]. We call the task of aggregating

swarm robots on an area of a desired feature ‘adaptive ag-
gregation’. In addition, the environment could be dynamic
in which case we want the robot swarm to stay adaptive to
changing conditions. If a new area of high quality emerges,
then the swarm should disperse and aggregate again at that
new area. Also note that adaptive aggregation can be inter-
preted as a collective decision-making problem because all
swarm members have to find a consensus on where to aggre-
gate. A control algorithm for the task of adaptive aggrega-
tion is BEECLUST [17, 19, 13]. Swarm systems controlled
by BEECLUST have been analyzed in depth in a variety of
models [18, 11, 9, 26, 6]. Also extensions based on fuzzy
logic have been proposed [2, 1].

In the following we investigate the adaptive aggregation task
in a swarm of simple, mobile robots. The desired aggrega-
tion area is indicated by light and the swarm is asked to
aggregate at the brightest spot. We also investigate a light
setting that has a bright light and a dimmed light at the
same time. Such a situation can be interpreted in terms
of an optimization problem, that is, we have a local and
a global optimum. Then the swarm has to create a global
awareness to avoid a greedy local aggregation because we
want the swarm not to split.

There are two main challenges in adaptive aggregation. First,
robots require the capability of kin recognition [15], that is,
they have to detect close-by robots and need to discrimi-
nate them from any other type of object in their environ-
ment. Implementing kin recognition can be a challenge de-
pending on the available sensors of the applied robot plat-
form. The second challenge is less obvious. Implementing a
self-organizing aggregation behavior that relies only on local
information requires a cluster formation behavior. Robots
form new clusters, join existent clusters (exploitation), and
leave clusters (exploration). Typically, that requires an ap-
propriate choice of waiting times for how long to stay in a
cluster in order to avoid deadlocks [12] and to achieve fast
convergence of aggregating all robots in one cluster at the
right spot. Fast convergence is achieved in a competition
between clusters and growth of clusters is implemented by
positive feedback. For example, robots in bigger clusters
wait longer than robots in smaller clusters. Appropriate
waiting times depend on the swarm size, area (i.e., swarm
density), and here the properties of the light distribution.
In the following we keep the swarm size constant (except for

BICT 2015, December 03-05, New York City, United States
Copyright © 2016 ICST
DOI 10.4108/eai.3-12-2015.2262877



Figure 1: Division of the arena into two zones: left,
zone I, bright light; right, zone II, dimmed or no
light.

small changes by individual robot hardware failures). Hence,
we are interested in adapting the robot behavior to differ-
ent light settings only and keep adaption to dynamic swarm
sizes/densities for future work. In robotics it is generally
tempting to merely optimize a robot controller for an ar-
bitrary, static environment—the robot lab. However, such
a robot controller is not adaptive to changes and arguably
makes use of global knowledge about the environment, in-
stead of generating global awareness troughout the swarm
about environmental conditions in a self-organizing process.

We implement the original BEECLUST on Thymio II robots,
then we extend the original algorithm to an adaptive vari-
ant that automatically adapts to any light conditions. Then
we investigate the impact of the introduced improvement on
the performance of the algorithm in different light settings.

2. TASK: ADAPTIVE AGGREGATION
Aggregation is a standard task in swarm robotics and fol-
lowing Brambilla et al. [4] aggregation belongs to the class of
‘spatially-organizing behaviors’. It creates a swarm config-
uration that is necessary for many other swarm behaviors,
such as flocking, collective decision-making, and construc-
tion. While in general the aggregation task might not specify
a particular meeting area, here we focus on a variant that we
call adaptive aggregation. The idea is that the swarm aggre-
gates on an area of a particular environmental quality. We
assume that the robot has a sensor to measure this quality
and that it knows whether this quality should be maximized
or minimized. For example, the adaptive aggregation task
could be to aggregate at the brightest spot within a bounded
area, that is, the considered quality is light and it should be
maximized. Besides aggregation at a spot of desired quality,
we define three more requirements of adaptive aggregation.
First, in an environment that has multiple spots of maxi-
mal or approximately maximal quality we require that the
swarm is able to break that (approximate) symmetry [8].
Second, the environment is allowed to be dynamic. As a
consequence the swarm has to stay adaptive to these envi-
ronmental changes, to keep exploring the surrounding, and
has to relocate the swarm to a new spot of maximum qual-
ity. Third, all of that should be done quickly with minimal
time requirements.

The setup of the following experiments is inspired by previ-
ous work [10]. The robot arena is bounded and rectangular.
At each of two opposite sides of the arena, a light source is
fixed in centered position at a height of 107cm (see Figure 1).

We test different light settings: one bright light (only one
light source is active and is set to bright mode), one dimmed
light (only one light source is active and is set to dimmed
mode), one bright & one dimmed light. For later use we
divide the arena logically into two zones: zone I always con-
tains the brighter light source in the experiments and zone II
is either the dimmed or dark zone (see Figure 1).

3. IMPROVED BEECLUST
The BEECLUST algorithm is inspired by observations and
a behavioral model of young honeybees that navigate in
temperature gradients within beehives [17]. Young honey-
bees prefer a temperature of 36◦C and gather at such spots.
Hence, the BEECLUST algorithm generates a clustering be-
havior in robot swarms as required by the above described
task of adaptive aggregation. The original algorithm is de-
fined as follows:

1. Each agent moves straight until it encounters

an object within its sensor range.

2. If this obstacle is a wall (not another robot),

it turns away and continues with step 1.

3. If the obstacle is another robot, the robot

measures the local luminance.

4. The higher the luminance is, the longer the

robot stays stationary at that position (i.e.,

the robot switches to the stopped state).

5. After the waiting time is over, the robot turns

away from the other robot and continues with

step 1.

The waiting time used for step 4 is determined by a sigmoid
function

w(I) =
wmaxI

2

I2 + c
, (1)

where wmax is the maximum waiting time in seconds, I is
the measured luminance, and constant c = 4.86× 105 [17].

The algorithm makes use of a positive feedback mechanism.
According to the waiting time function, see Equation (1),
the higher the illumination is, the longer the robot stays
stationary after having encountered another robot. There-
fore, clusters formed at brighter spots persist for longer than
those at darker spots. Hence, clusters positioned at brighter
spots have a higher chance of growing into bigger clusters.
Also, bigger clusters cover bigger areas, which increases the
probability of being encountered by a moving robot. Fi-
nally, robots might get trapped within big clusters being
surrounded by other stopped robots. Consequently, big clus-
ters have higher growth rates than small clusters (i.e., posi-
tive feedback). In conclusion, this process results in one big
cluster typically positioned at a bright spot.

Previous works have reported good performance of this al-
gorithm [17]. However, only if the parameters (wmax and
c) were chosen correctly which was usually done in prelimi-
nary experiments. If the parameters are not well chosen for a
given light distribution, then the waiting time in the bright-
est spots might not be long enough to complete the task.
Hence, there is the option of a straightforward improvement



that goes beyond the pre-determined relation between the
waiting time and illumination. A simple approach could be
to set the maximal waiting time wmax to a big value such
that for any light distribution robots wait long enough to
form clusters. In addition, a translation and scaling of the
waiting time function is necessary to prevent clusters to form
at places with low ambient light and to allow clustering at
relevant brightly illuminated areas. However, this requires
to include global knowledge about the experiment setup that
was acquired by a human observer beforehand (e.g., max-
imum and minimum light intensities). Therefore, we want
the robots to translate and scale the waiting time function
themselves by determining a minimum light intensity Imin

and maximum light intensity Imax. These are then used to
calculate a rescaled light intensity Ī of arbitrary range from
0 to 1500 that adapts the waiting times accordingly. We get

Ī = (I − Imin)
1500

Imax − Imin
. (2)

We use Ī instead of I in eq. (1) and hence the waiting time
function is adapted to the particular conditions of the ex-
periment. Imin is defined as baseline illumination during the
experiment, that is, the minimal illumination intensity at
maximal distance from all light sources. Imax is defined by
the illumination directly below the brightest light source. If
the intensity drops steeply (the sigmoid function is bound-
ing the function values for big Ī anyways), the maximum
illumination Imax is diminished to get better results (done
by averaging, see Sec. 4).

In this work, we present a new approach which does not
require manually adapting the waiting time function for
the experiment setup. Instead, we introduced a calibration
round which allows for an automatic adaption. In this cal-
ibration round, each robot drives around the arena, mea-
suring the illumination in regular intervals, and determines
Imin and Imax individually. For the used arena dimensions
(3m×2.5m), a calibration time of three minutes is sufficient
for random exploration to cover big parts of the arena. Once
the calibration phase is done, the actual aggregation phase
starts. In the next section, we present our experiment setup,
the capabilities of the Thymio II robot hardware, and the
implemented necessary hardware extensions.

4. EXPERIMENT SETUP AND
THE THYMIO II ROBOT

The robots move in a rectangular arena surrounded by a
wall. The size of the arena is 3m×2.5m and is inspired by
former experiments [19]. As light sources we use dimmable,
traditional filament lamps with a power consumption of up
to 100 watts. The bright light mode is set to 100% illumina-
tion, while the dimmed light mode is set to around 20%. The
light distribution in the arena is measured by manually plac-
ing the robot and saving the illumination values on a straight
line between the center of the bright and dimmed spots in
the arena, as shown in Figure 3. The adaptive waiting time
function (see Equations 1 and 2) maps the luminance dis-
tribution in the arena into suitable waiting times in these
different light settings (see Figure 4). In our experiments a
maximum waiting time (wmax) of 50 seconds is used.

The Thymio II robot (see Figure 5) measures approximately
11cm×11cm×5cm [16]. It is designed as open hardware
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Figure 2: Dimensions of the robot arena.

 0

 150

 300

 450

 600

 0  50  100  150  200  250

lu
m

in
an

ce
 [l

ux
]

distance [cm]

bright
dimmed

Figure 3: Distribution of light along a centered line
from bright light to other side.

 0

 10

 20

 30

 40

 50

 60

 0  100  200  300  400  500  600  700

w
a
it
in

g
 t
im

e
 (

s
)

luminance [lux]

bright
dimmed

Figure 4: Mapping of luminance values to wait-
ing time (equations 1 and 2) for two light settings:
bright and dimmed (black lines indicate maximal lu-
minance values and wmax is 50 seconds).



and open source software for educational purposes. The
robot features two actuators and many sensors, such as two
DC motors for differential drive; seven IR sensors (five at
the front and two at the back), which are used for commu-
nication and proximity sensing; two IR sensors directed to
the ground as ground sensors; an RC-5 capable IR sensor,
which allows controlling the robot by a remote control; a
3-axes accelerometer, which provides the values of the ac-
celeration along the three axes and could also be used to
detect collisions; a temperature sensor; several LEDs, which
are associated with the sensors and can highlight their ac-
tivations. Moreover, Thymio II robots give the opportu-
nity of installing extensions by offering attachment knobs
for LegoTM bricks on top and sockets for Lego Technic rods
on the wheels.

Thymio II robots use the seven horizontal IR sensors for
communication. In our experiments, this feature is used for
kin recognition. After the calibration round each robot con-
stantly tries to communicate by a pulsed signal which allows
a robot to discriminate the wall from a robot. The robots
can communicate up to a maximum distance of about 25cm,
as long as at least one of the seven horizontal IR sensors is
within the line of sight of a horizontal sensor of the other
robot. However, the seven IR sensors do not provide cir-
cumferential view such that angular displacement decreases
the communication range dramatically. The sides of the
Thymio II have no IR sensors (see Figure 5), leaving large
blind spots for communication. Therefore, robots fail to rec-
ognize their kin sometimes (e.g., when encountering the side
of another robot), that is, they classify a closeby robot as
wall. We addressed this problem by letting the robots rotate
while in the ‘stopped state’ (i.e., robots rotate but do not
cover any distance), which vastly increases the chances of
kin recognition.

Figure 5: Thymio II robot with a Raspberry Pi and
an ambient light sensor attached on top.

Off-the-shelf Thymio II robots are not equipped with any
sensors for visible light. A hardware extension including a
Raspberry Pi and the TSL45315 ambient light sensor was
designed and attached to the robots (see Figure 5). The
TSL45315 provides direct output in lux with wide dynamic
range (from 3 lux to 2.2×105 lux), and is interfaced with the
Raspberry Pi through the I2C bus. The Raspberry Pi, which
is considered here as the main processing unit, is connected
to the Thymio II robot through the USB port and the D-
Bus interface. In our setting, the Thymio II robot is treated
only as a sensor/actuator unit that reacts to global events

sent by the Raspberry Pi and passes on events raised by the
Aseba VM1 [14].

We exploited the RC-5 capabilities of the Thymio II robots
by using a universal remote control to start/stop the main
program on the Raspberry Pi (i.e., to start an experiment).
The robots are initially placed in an evenly spaced grid,
before starting an experiment. When the main program
starts, the Raspberry Pi instructs the robot to take a random
turn then, in the case of running the improved BEECLUST,
starts the calibration period which lasts for three minutes.
During the calibration phase the light intensity is measured
every two seconds (90 samples in total) and stored. The av-
erage of the five lowest measurements defines the minimum
light intensity Imin and the average of the five highest mea-
surements defines the maximum intensity Imax (thereby tak-
ing into account the comparatively steep intensity dropoff of
the light distribution). Then the algorithm is executed for
20 minutes. In the case of the original BEECLUST algo-
rithm, the calibration phase is left out and the robot di-
rectly starts the BEECLUST algorithm. When two robots
approach each other and the kin recognition is successful
then the Aseba VM raises an appropriate event which is
passed to the Raspberry Pi. The Raspberry Pi measures
the sensor values, calculates the waiting time according to
equation (1), then issues commands for the Thymio II robot
to stop, spin, and later turn, and move straight. The im-
proved BEECLUST algorithm for the Thymio II robot is
defined as shown in Figure 6.

For each of the previously mentioned three light settings
(one bright light, one dimmed light, and one bright & one
dimmed light) a set of five experiments was conducted for
each algorithm implementation (the original and improved
BEECLUST). We investigate the adaptivity to light con-
ditions and of the improved BEECLUST algorithm and its
performance by comparing it to the original BEECLUST. In
the case of the original BEECLUST, the minimum light in-
tensity Imin and the maximum intensity Imax were manually
set to appropriate values of the bright light setting only (see
Figure 3). That way we are able to show that, on the one
hand, the original BEECLUST algorithm works well once
correctly parameterized (here in the bright light setting).
On the other hand, however, it performs poorly compared
to the improved BEECLUST if it is not well parameterized
(here in the dimmed light setting). We investigate a robot
swarm of size nine. The performance of an algorithm is
evaluated by monitoring the number of robots in stopped
state in zone I during a ten-minute window of the experi-
ment. The philosophy of the BEECLUST algorithm is to
stay adaptive to changes in the environment (on- and off-
turning lights). As a consequence it does not converge to a
state where all robots are stopped. Instead there are always
a few robots exploring the arena. Therefore, we measure
the performance during an interval of ten minutes once the
influence of the initial position of robots is negligible. In the
next section, we report results of the previously mentioned
experiments, followed by a quick discussion and conclusion.

1Aseba VM is a virtual machine running on Thymio II robot,
which handles the low-level control of the sensors and ac-
tuators and provides a high-level abstraction for programs
which run on this virtual machine.



1. Each robot waits for a start signal from the

remote control.

2. When a start signal is received, each robot

takes a random turn and starts a calibration

phase for three minutes.

3. During the calibration phase each robot moves

straight while taking light intensity measure-

ments every two seconds.

4. If the robot encounters any obstacle (robot or

wall), it turns away and continues with step 3.

5. When the calibration phase ends, the aggrega-

tion phase starts and the robots start to try

to communicate by pulsed signals.

6. Each robot moves straight until it detects an

object within its sensors range.

7. If a communication signal is not received, it

means that the robot has encountered a wall

and consequently, it immediately turns away and

continues with step 6.

8. If a communication signal is received, the

robot measures the light intensity then starts

spinning around its axis to announce its pres-

ence (increasing chances for kin recognition).

9. The higher the illumination is, the longer the

robot stays stationary.

10. After the waiting time is over, the robot u-

turns and continues with step 6.

Figure 6: Improved BEECLUST swarm control al-
gorithm for the Thymio II robot.

5. RESULTS
In Figure 9 we show the results of the robot experiments for
all six experiment settings (one bright light, one bright & one
dimmed light, one dimmed light) and each with the original
BEECLUST parameterized for the bright light setting and
the improved BEECLUST algorithm that calibrates auto-
matically. Each diagram shows the minimum, maximum,
and median number of robots in stopped state in zone I
out of all n repetitions with n ∈ {4, 5, 6} depending on the
experiment setting.

Considering the original BEECLUST experiments in gen-
eral, the robots have shown successful clustering behavior to-
wards the brightest spot (an example of good clustering be-
havior from our experiments can be observed in Figure 7a).
Specifically, in the one bright light and one bright & one
dimmed light experiments (see Figures 9a and 9c). For the
one bright light experiments, we analyze the maximal clus-
ter sizes of aggregated robots in stopped state in zone I (i.e.,
the brighter zone) that were observed during the whole time
interval for each repetition. These maxima range between
cluster sizes of seven and nine robots indicating effective ag-
gregation. The one bright & one dimmed light experiments
have shown slightly lower performance, with maxima of clus-
ter sizes ranging from six to eight. An example is shown in

Figure 7b, where a cluster of seven robots is formed in zone I
and a cluster of two robots is formed in zone II. In contrast,
the robots have shown an expected (according to previous
analysis in [17]) poor clustering behavior in the one dimmed
light experiments, where the maxima of cluster sizes range
from only four to six robots (see Figure 9e). An example of
this poor clustering behavior is shown in Figure 7c, where
only four robots form a cluster in zone I. As mentioned in
the previous section, the waiting function was not manu-
ally re-adapted to the different light distributions in the one
bright & one dimmed light and the one dimmed light set-
ting. Therefore, in the one dimmed light experiments the
maximum illumination was configured to a value 80% higher
than the actual maximum. That results in too short waiting
times at the brightest spot in the arena and a poor clustering
behavior. A scouting behavior of some robots was observed
during the experiments, where one or more robots would
leave the cluster then move around randomly. This behav-
ior is useful, as it allows for the detection of changes in the
environment (e.g., emergence of a brighter area).

Regarding the improved BEECLUST experiments, the robots
show a relatively similar clustering behavior as in the origi-
nal BEECLUST implementation for the one bright light and
one bright & one dimmed light experiments (see Figures 9b
and 9d). Starting with the one bright light experiments, the
maximal cluster sizes observed during each of the repetions
range from eight to nine stopped robots in zone I. Unfor-
tunately, the total number of robots in the one bright &
one dimmed light experiments is only eight due to a robot
hardware failure. That should be taken into account when
comparing the absolute cluster sizes to those achieved by the
original BEECLUST algorithm. However, the performance
still is competitive with maximal cluster sizes of seven dur-
ing the repetitions. Finally, in the one dimmed light experi-
ments, maximal cluster sizes range from seven to nine robots
(see Figure 9f). The one dimmed light experiment is crucial
to determine whether the automatic calibration of the im-
proved BEECLUST algorithm is beneficial. Figure 8 shows
the box-plots for the pooled data points (robots in stopped
state in zone I) from the full ten-minute time interval of all
repetitions. According to the Wilcoxon Rank-Sum Test the
performance of the improved BEECLUST algorithm is sig-
nificantly better (p-value < 2.2×10−16). The better perfor-
mance is also noticeable by comparing the number of robots
in stopped state in Figures 9e and 9f). This proves that
the improved BEECLUST algorithm is able to perform un-
der different light conditions without requiring the manual
adaptation of the waiting function.

6. DISCUSSION AND CONCLUSION
We have proposed an adaptive variant of the original BEE-
CLUST swarm robot control algorithm. The two variants
were compared in a number of swarm robot experiments
with different environmental conditions. The adaptive vari-
ant performs significantly better in the dimmed light condi-
tion and slightly better in bright light conditions (i.e., it suc-
cessfully adapts to different light conditions). We have not
tested the improved algorithm with a dynamic environment
where the minimum and maximum brightness might change
over time. That is left for future work but has been shown
for the original BEECLUST algorithm [18]. Also we have
not tested the improved algorithm in a symmetry-breaking
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Figure 9: The minimum, maximum, and median number of stopped robots in zone I (brighter zone) during
a ten-minute time interval for each experiment setting.



(a) one bright light

(b) one bright & one dimmed light

(c) one dimmed light

Figure 7: Typical situations observed during the ex-
periment for different light settings.
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Figure 8: Comparison between the performance of
both BEECLUST implementations in terms of the
number of stopped robots in zone I during the last
ten minutes time interval in the one dimmed light
experiments.

problem but also that has been shown before for the original
BEECLUST algorithm [8].

There are still many options of further improvements. In
future work we plan to investigate the following options. In-
stead of only measuring the light distribution in a previous
calibration phase the maximum and minimum light intensity
can also be measured during the actual execution of the ex-
periment. Older measurements could be neglected and that
way the robots could achieve fully autonomous adaptivity
to dynamic environments. Instead of cue-based communi-
cation only (robot–robot recognition), the robots could also
explicitly communicate and share maximum and minimum
light intensities and increase the consistency of their behav-
ior and performance. Finally, we also want to introduce
adaptiveness to changing swarm sizes/densities (i.e., adapt-
ing the maximal waiting time wmax), for example, due to
hardware failures, an opened door making more space avail-
able, or because robots are added later during the experi-
ment. This would require to estimate the swarm size from
local measurements (note that usually we want to avoid use
of identification numbers in swarms because that approach
does not scale; hence, just accumulating a list of IDs is not a
promising option). That way we could achieve a fully adap-
tive robot swarm that solves its task efficiently also when
swarm size, swarm density, or the light distribution are dy-
namic.
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[20] O. Soysal and E. Şahin. Probabilistic aggregation
strategies in swarm robotic systems. In Proceedings of
the Swarm Intelligence Symposium (SIS 2005), pages
325–332. IEEE, 2005.
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