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ABSTRACT
This study explores the design and control of the behaviour
of agents and robots using simple circuits of spiking neu-
rons and Spike Timing Dependent Plasticity (STDP) as a
mechanism of associative and unsupervised learning. Based
on a ”reward and punishment” classical conditioning, it is
demonstrated that these robots learnt to identify and avoid
obstacles as well as to identify and look for rewarding stim-
uli. Using the simulation and programming environment
NetLogo, a software engine for the Integrate and Fire model
was developed, which allowed us to monitor in discrete time
steps the dynamics of each single neuron, synapse and spike
in the proposed neural networks. These spiking neural net-
works (SNN) served as simple brains for the experimental
robots. The Lego Mindstorms robot kit was used for the
embodiment of the simulated agents. In this paper the topo-
logical building blocks are presented as well as the neural pa-
rameters required to reproduce the experiments. This paper
summarizes the resulting behaviour as well as the observed
dynamics of the neural circuits. The Internet-link to the
NetLogo code is included in the annex.
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1. INTRODUCTION
With the emergence of third generation artificial neural

networks (ANN), better known as ”Spiking Neurons”, neu-
ral networks not only increased their computational capa-
bilities, but also their level of realism with respect to the
simulation of biological neurons [6].

While most current ANN models are based on simplified
brain dynamics, Spiking neurons are capable of simulating a
broad (and more realistic) range of learning and spiking dy-

.

namics observed in biological neurons such as: Spike timing
dependent plasticity (STDP) [16], long term potentiation,
tonic and phasic spike, inter-spike delay (latency), frequency
adaptation, resonance, input accommodation [10].

In this paper we are especially concerned with one of the
characteristics mentioned above, that is: STDP. Our aim is
not only to understand how this learning mechanism works
at the microscopic level but also how STDP elicit behaviour
at a macroscopic level in a predictable way.

A broad body of research has been produced in recent
years [16, 4, 13], which describes the dynamics of STDP in
populations of Spiking Neurons.

However, the literature describing the use and implemen-
tation of this learning mechanism to control behaviour in
robots and agents is not as numerous.

Circuits of SNNs have been coupled with a double pheromone
stigmergy process in a simulation of foraging ants enhancing
the behaviour of the simulated swarm. [11].

In work done by [17, 7, 8, 5] circuits of SNN were used to
control the navigation of robots in real and virtual environ-
ments. STDP and other Hebbian approaches were used as
the underlying mechanism of associative learning.

Although in most of the research the spiking dynamics
of single and multiple neurons is broadly explained, there is
little focus on the topology of the neural circuits. This paper
contributes with a model of simple STDP-based topologies
of SNN used as building blocks for building controllers of
autonomous agents and robots.

2. METHODOLOGY
A spiking neural network engine was implemented in the

multi-agent modelling environment Netlogo [14]. This serves
as a platform for building and testing the neural-circuit
topologies. The engine is built in the framework of Integrate-
and-fire models [6, 10] which recreate to some extent the
phenomenological dynamics of neurons while abstracting the
biophysical processes behind it. The artificial neuron is mod-
elled as a finite-state machine [15] where the states transi-
tions (Open and refractory states) depend mainly on a vari-
able representing the membrane potential of the cell.

The implemented model does not aim to include all the
dynamics found in biological models, hence it is not suitable
for accurate biological simulations. As there are already
robust and scalable tools [3, 9, 2] to simulate large popula-
tions of spiking-neurons with complex dynamics. Instead,
the model presented here is a SNN engine for fast prototyp-
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ing of simple neural circuits and for experimentation with
small populations of SNN.

In STDP the synaptic efficacy is adjusted according to the
relative timing of the incoming pre-synaptic spikes and the
action potential triggered at the post-synaptic neuron: (1)
The pre-synaptic spikes that arrive shortly before (within a
learning window) the post-synaptic neuron fires reinforce the
efficacy of their respective synapses. (2) The pre-synaptic
spikes that arrive shortly after the post-synaptic neuron fires
reduce the efficacy of their respective synapses.

Eq. 1 [16] describes the weight change of a synapse through
the STDP model for pre-synaptic and post-synaptic neu-
rons where: j represents the pre-synaptic neuron, the arrival
times of the pre-synaptic spikes are indicated by tfj where
f represents the number of pre-synaptic spikes tni with n
representing the firing times of the post-synaptic neuron:

∆wj =

N∑
j=1

N∑
n=1

W (tni − tfj ) (1)

The connection weight resulting from the combination of
a pre-synaptic spike with a post-synaptic action potential is
given by the function W (∆t) [16, 4, 13]

W (∆t) =

{
A+ exp(∆t/τ+), if ∆t < 0

−A− exp(−∆t/τ−), if ∆t > 0
(2)

where ∆t is the time interval between the pre-synaptic
spike and the post-synaptic action potential. A+ and A− de-
termine the maximum grow and weaken factor of the synap-
tic weights respectively. τ+ and τ− determine the reinforce
and inhibitory interval or size of the learning window.

Associative learning is understood as a learning process
by which a stimulus is associated with another. In terms of
classical conditioning [12], learning can be described as the
association or pairing of a conditioned or neutral stimulus
with an unconditioned (innate response) stimulus.

The pairing of two unrelated stimuli usually occurs by re-
peatedly presenting the neutral stimulus shortly before the
unconditioned stimulus that elicits the innate response. The
simplest form of associative learning occurs pair wise be-
tween a pre- and a postsynaptic neuron.

In order to create a neural circuit of SNNs that allows
the association of an innate response to a neutral stimulus,
it is necessary to have at least the following elements: (1)
A sensory input for the unconditioned stimulus U . (2) A
sensory input for the conditioned (neutral) stimulus C. (3)
The motoneuron (actuator) M , which is activated by the
unconditioned stimulus.

Figure 1: a) Excitatory postsynaptic potentials (EPSPs) of
amplitude wc and wu at times tfc and tfu respectively. b)
Action potential triggered at postsynaptic Motoneuron M .

The neural circuit in figure 1a) illustrates the two input
neurons C and U each transmitting a pulse to postsynap-

tic neuron M . As shown in 1b) the unconditioned stimu-
lus transmitted by U triggers an action potential (reaching
threshold ϑ) at time tfm shortly after the EPSP elicited by
C at time tfc [16, 4, 13].

Given that the STDP learning window allows both LTP
and LTD, the simple topology illustrated in figure 1a), can
be extended giving it the ability to associate stimuli from
multiple input neurons with an unconditioned response. The
topology illustrated in figure 2 includes three input neurons
A, B and U . Neurons A and B receive input from two
different neutral stimuli, while U receives input from an un-
conditioned stimulus.

Figure 2: a) Spikes emitted by input neurons A, U and B
reaching the synapse with postsynaptic motoneuron M at
time tfa, tfu and tfb respectively. b) The spike emitted by A
elicits an EPSP of amplitude wa, which is followed a few
milliseconds later (tfu − tfa) by an action potential triggered
by U at time tfu. The pulse emitted by B arrives shortly
after the action potential in M at time tfb .

The circuit in figure 2a can be used to implement a sim-
ple neural circuit to control the movement of an agent or
a robot. In such a way that the agent / robot would learn
that whenever a (neutral) stimulus in A or B is presented
the agent would perform the action associated to M . Al-
though, on its own, this circuit only allows a limited margin
of actions (trigger reflex or not) in response to input stimuli,
this circuit can be taken as a building block which combined
in a larger neural topology can produce more sophisticated
behaviours.

Figure 3: Neural circuit with 2 mutually inhibitory sub-
circuits.

Connecting A and B from the circuit in figure 2 with
a second Motoneuron R allows the initially neutral stimuli
perceived by neurons A and B, to be associated to the cor-
responding actions elicited by R and M . The new neural
circuit with 2 motoneurons is illustrated in figure 3.

The top part contains the sub-circuit which creates the as-
sociation between the input stimuli received in A, B and the
action elicited by R (Action 1). While The bottom part con-
tains the sub-circuit which creates the association between
A, B and the action elicited by M (Action 2). Although
both sub-circuits share the same input neurons A and B,
the elicited behaviour in R and M will depend on the firing-



times correlation between the neutral (conditioned) inputs
A, B and the unconditioned neurons U1 and U2.

In figure 3 both Actions 1 and 2 can be performed at the
same time if the same inputs in the top and bottom parts
are reinforced in both sub-circuits. This behaviour however
can be inconvenient if the system is expected to perform one
action at the time. Inhibitory synapses between sub-circuits
provide a control mechanism in cases where actions are mu-
tually exclusive. For this, the mutually inhibitory synapses
in Motoneurons R an M work as a winner-take-all mecha-
nism where the first firing neuron elicits its corresponding
action while avoiding the concurrent activation of other sub-
circuit(s).

The neural circuit in figure 3 was used as a model to im-
plement in Netlogo a simple micro-brain to control a virtual
insect in a simulated two dimensional environment. The
simulated micro-brain was able to process three types of
sensorial information: (1) olfactory, (2) pain and (3) pleas-
ant or rewarding sensation. The olfactory information was
acquired through three receptors where each receptor was
sensitive to one specific smell represented with a different
color (black, red or green). Each olfactory receptor was con-
nected with one afferent neuron which propagated the input
pulses towards the Motoneurons. Pain was perceived by a
nociceptor whenever the insect collided with a wall (black
patches) or a predator (red patches). Finally, a rewarding
or pleasant sensation was elicited when the insect came in
direct contact with a food source (green patches).

The motor system is equipped with two types of reflexes:
1) Rotation and 2) Moving forward. Both actions produced
by Actuator 1 and Actuator 2 respectively. The number of
rotation degrees as well as the number of movement units
were set in the simulation to 5◦ and 1 patch respectively.
In order to keep the insect moving even in the absence of
external stimuli, the motoneuron M was connected to a sub-
circuit composed of two neurons H1 and H2 performing the
function of a pacemaker sending periodic pulses to M . Fig-
ure 4 illustrates the complete neural anatomy of the virtual
insect.

Figure 4: Neuro-inspired controller of the virtual insect

The simulation environment was connected with a Lego
Mindstorms EV3 robotic platform [1] with the the following
architecture, which served as embodiment for the simulated
virtual insect described above: The olfactory system of the
insect was simulated using the EV3 colour sensor camera po-
sitioned in front of the robot and looking towards the floor.
If the captured colour was black, red or green, the respective
receptor in the neural circuit was activated. The nociceptive

input was simulated using the EV3 ultrasonic sensor posi-
tioned in front of the robot. This sensor reported distance to
objects and values less than 5 cm were assumed to be as col-
lision and consequently the nociceptor in the neural circuit
was activated. The reward input was simulated using the
EV3 touch sensor positioned on top of the robot. In case
of pressing, it activated the reward receptor of the neural
circuit. The movement and rotation of the robot was con-
trolled by a differential drive assembly of the motors. When
the motoneuron M fired, the simulation environment sent
a forward command to the EV3 platform for 500 millisec-
onds. When the motoneuron R fired, the simulation sent a
command to the EV3 platform requesting the activation of
both servo motors rotating in opposite directions, resulting
in a spin of the robot. The floor was made up of coloured
squares including the three associated to the nociceptive and
rewarding stimuli. Other colours were taken by the robot as
empty space. Objects of the same hight as the ultrasonic
sensor were positioned in the centre of the black and red
squares. This aimed to activate the nociceptor of the neural
circuit every time the robot came closer to the black and red
patches. The touch sensor was manually pressed by the ex-
perimenter every time the robot moved over a green square.
This activated the reward receptor of the neural circuit.

3. RESULTS
At the beginning of the training phase (Figure 5 left)

the insect moves along the virtual-world colliding indiscrim-
inately with all types of patches. The insect is repositioned
on its initial coordinates every time it reaches the virtual-
world boundaries. As the training phase progresses it can be
seen that the trajectories lengthen as the insect learns to as-
sociate the red and white patches with harmful stimuli and
consequently to avoid them (See Figure 8 right). After ap-
proximately 15000 iterations, the insect moves collision free
completely avoiding red and black patches while looking for
food (green patches).

Figure 5: Short trajectories at the training phase. Insect
collides and escapes the world repeatedly (left). Long tra-
jectory shows insect avoiding red and black patches (right).

The artificial insect is able to move collision free after
about 15 thousand simulation iterations. This number de-
pends on the parameters set for the circuit neural-dynamics
and the STDP learning rule. Table 1 shows the learning
behaviour in terms of iterations required for a collision free
movement, using different values for the learning constants
A+ and A- (eq. 3) to respectively potentiate or depress the
synaptic weights between the afferent and Motoneurons:

The behaviour observed in the simulation was reproduced



Table 1: Learning behaviour with different A+ and A− pa-
rameters

Symmetric LTP/LTD
A+, A-

Number of iterations before collision
free movement

0.01 19,000
0.02 15,000
0.03 9,000
0.04 7,000

with the EV3 robot. However, it was necessary to adjust the
parameters A+, A- to 0.08 and the number of rotation and
movement units in order to speed up the training phase given
that in the simulation environment the neural circuit iterates
at about 2000 steps per second while in the real world the
robot was interacting with the neural circuit at about 50
iterations per second. The lower iteration speed was was an
optimisation issue in the communication interface between
the robotic platform and the simulation environment which
was programmed by the experimenters. In any case the
robot was able to show the same learning and adaptation
abilities originally observed in the simulated insect.

4. CONCLUSION
SNN mimic their biological counterparts in several ways

but possibly their most relevant characteristic is their ability
to use spatio-temporal information for communication and
computational purposes in a similar way to biological neu-
rons. With their ability to represent information using both
rate and pulse codes, SNN become an efficient and versatile
tool to solve several time dependent problems. Although
some traditional ANNs can include temporal dynamics by
the explicit use of recurrent connections, the inherent no-
tion of time in the nature of SNNs makes them by design
closer to the biological observed entities. This makes the
dynamics of SNN more plausible than those of traditional
ANNs. SNNs are becoming very efficient because they are
capable of replacing large ensembles of traditional ANNs.
This makes them very suitable for application in situations
where high performance and low power consumption are im-
portant. In robotics this is of particular interest as reduc-
ing power consumption and increasing computational power
mean higher levels of autonomy and performance in situa-
tions where robots are operating in real time or near to real
time. The impact of SNNs new computational model will
be key in the development of new bio-inspired robotics and
new artificial agents, allowing for unprecedented evolution
in the field. The model presented in this paper is a first
step in showing how to design and control the behaviour of
agents and robots using simple circuits of spiking neurons,
and it will hopefully seed future developments in the area.

5. ANNEX
The Netlogo model SpikingLab is available at http://

modelingcommons.org/browse/one_model/4455
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