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ABSTRACT
In this paper we apply a Population based Ant Colony Op-
timization (PACO) algorithm for solving the following new
version of the Traveling Salesperson problem that is called
the Combined Tours TSP (CT-TSP). Given are a set of
cities, for each pair of cities a cost function and an integer
k. The aim is to find a set of k (cyclic) tours, i.e., each city
is contained exactly once in each tour and each tour returns
to its origin city, which have minimum total costs. In this
paper the case of finding two tours is studied where the costs
of one tour depends on the other tour. Each pair of cities
has a distance and a weight which influence the costs of the
tours. The weight is used to define if it is advantageous or
disadvantageous when the corresponding pair of cities is con-
tained, i.e., neighbouring, in both tours. Different heuristics
that the ants of the PACO use for the construction of the
tours are compared experimentally. One result is that it is
(often) advantageous when the heuristic for the second tour
is different from the heuristic for the first tour such that the
former heuristic uses knowledge about the first tour.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

Keywords
Ant colony optimization, population based ACO, traveling
salesperson problem, metaheuristic

1. INTRODUCTION
A variant of the Traveling Salesperson problem is intro-

duced in this paper where the aim is to find for a given set of
cities several (cyclic) tours such that each of them connects
all given cities, i.e., each tour contains each city exactly once
and returns to its origin city. The difficulty is that the costs

.

of each tour depend on the other tours and the total costs
of all tours should be minimized. In the classical Travel-
ing Salesperson problem (TSP) the aim is to find a single
shortest, i.e., cheapest, (cyclic) tour. The TSP is one of the
most investigated combinatorial optimization problems. It
is an NP-hard problem and one of the standard benchmark
problems that are used for testing metaheuristics. Many
variants of the TSP have been studied in the literature (for
an overview see Section 2).

In this paper we use the Population based Ant Colony
Optimization metaheuristic (PACO) that was proposed in
[7] to solve the new variant of the TSP. This variant is called
Combined Tours TSP (CT-TSP). An instance of the CT-
TSP consists of a set of cities, for each pair of cities a cost
function (distance function), and an integer k ≥ 1. The
aim of the CT-TSP is to find k (cyclic) tours which have
minimum total costs. The cost function for a pair of cities
(i, j) assigns for each tour that includes a drive from i to
j a corresponding cost. We are interested in particular in
cost functions where the costs that a tour has for driving
from i to j depend on how many other tours include a drive
from i to j. The notation k-CT-TSP is used for the CT-
TSP with fixed k. In this initial study on the CT-TSP we
restrict us to the 2-CT-TSP, i.e., to the case of finding k = 2
tours. Note, that 1-CT-TSP is the standard TSP problem.
Observe, that the special case where it holds for every pair
of cities (i, j) that the cost for driving from i to j is always
the same fixed value dij can be reduced to the standard
TSP problem. Simply, choosing k times the cheapest TSP
tour is the optimal solution. It follows that k-CT-TSP is an
NP-hard problem for every k ≥ 1.
As an application of the CT-TSP consider a scenario where

companies have to pay fees for using the roads between a
given set of cities. The administration that defines the road
fees uses them to regulate the traffic on the different roads.
If the administration wants to keep the traffic on the road
from a city i to a city j low it might define increasing costs
for each use of this road during a day by a company. The
first use of the road might cost a company dij , the second
use might cost wijdij where wij > 1, the third use might
cost 2wijdij , and so on. If in this application dij is the dis-
tance between city i and city j then the costs for the first use
are equal to the distance between i and j. If, on the other
hand, wij < 1 then the average costs for using the road from
i to j by the company decrease with an increasing number of
tours that use the road. Now consider a company that has
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to plan k tours for one day such that the total costs for all
k tours are minimal. Then the corresponding tour planning
problem is an instance of the k-CT-TSP.

As another application of the CT-TSP consider a scenario
with set of robots in a fabrication site. Each robot has to
drive a tour that connects all machines in the fabrication
site. The fabrication site is setup in the morning so that all
lanes that the robots can use are clean and safe. When more
than r robots have used a lane between two machines it is
necessary to make a security check and to clean the lane.
Each such check of a lane might lead to fixed costs c > 0.
Then the costs for each of the first r − 1 robots that uses
a lane might be dij . For example, dij could be the length
of the lane or the time it takes a robot to drive along the
lane. The costs for the rth robot that uses the lane might
then be dij + c, i.e., the additional costs for the check of the
lane have to be paid. Analogously, the costs for the mrth
use of the lane are dij + c and for all other uses the costs
are dij , m ≥ 2. The problem to plan k tours for the robots
such that the total costs are minimum is an instance of the
k-CT-TSP.
In Section 2 we present background information on the

TSP and its variants, on the Population based ACO meta-
heuristic (PACO), and on related literature. The CT-TSP
problem is defined formally in Section 3. How the PACO
is applied to the 2-CT-TSP is described in Section 4. The
experimental setup is described in Section 5. The exper-
imental results are presented in Section 6 and conclusions
are given in Section 7.

2. BACKGROUND AND RELATED LITER-
ATURE

Formally, the TSP can be defined in graph theoretic terms
as follows. Given are a set of vertices V = {1, . . . , n}, a set of
edges E = V 2, and for each edge (i, j) ∈ E a length dij ≥ 0.
The elements of V are also called cities and value dij is called
the distance between city i and city j. A (cyclic) tour such
that each city is contained exactly once in the tour is de-
scribed as a permutation π = (π1, π2, . . . , πn) of {1, . . . , n}
such that πi+1 is the successor of πi for i ∈ {1, . . . , n − 1}
and π1 is the successor of πn. For a permutation π =
(π1, π2, . . . , πn) of {1, . . . , n} we define (i, j) ∈ π iff there
exists an h ∈ 1, . . . , n− 1 such that i = πh and j = πh+1 or
i = πn and j = π1, i.e., i and j are neighbouring in the cor-
responding tour. The problem is to find a shortest (cyclic)
tour, i.e., a permutation π = (π1, π2, . . . , πn) of {1, . . . , n},
such that the total length l(π) :=

∑
(i,j)∈π dij is minimum.

Several variants of the TSP have been studied in the liter-
ature. A short overview is given in the following (for more
information see, e.g., [8, 12]).

Some TSP variants exists where not all given cities have
to be visited. One example is the generalized TSP (GTSP),
also known as the set TSP, where the set of cities is par-
titioned into clusters [5]. Then the problem is to find a
shortest tour that contains exactly one city from every clus-
ter. In a variant of this problem the tour should contain at
least one city from each cluster. Note, that this variant is
different from the GTSP when the triangle equation does
not hold. Another example is the Prize Collecting Traveling
Salesman Problem where a salesperson receives a reward or
a penalty in every city [6]. The aim is that the salesper-
son visits a subset of the cities such that the tour length is

minimum under the restriction that a given minimum total
reward has to be earned.

Other TSP variants consider scenarios where tours have
to be planned for several days. In the period TSP one tour
must be planned for each of m ≥ 2 days such that city i is
visited on ri ≥ 1 tours for given numbers ri, i ∈ {1, 2, . . . , n}
(e.g., [21]). The aim is to minimize the total length of
the tours. A specific variant is the Single-Double Travel-
ing Salesman Problem where some cities have to be visited
every day and some cities have to be visited only every sec-
ond day. Hence, the aim is to find two tours — one for each
of two successive days.

Other variants of the TSP have different objective func-
tions. One example is the minimax version (bottleneck TSP,
BTSP) where the aim is to find a tour where the largest dis-
tance between two neighbouring cities in the tour is minimal
(e.g., [9]). Another example is the maximin version (maxi-
mum scatter TSP, MSTSP) where the aim is to find a tour
where the smallest distance between two neighbouring cities
in the tour is maximal (e.g., [9]).

Several variants of the TSP exist with several salesper-
sons. It is typical for these variants that the cities have
to be partitioned such that each salesperson visits exactly
the cities in one set of the partition. In the multiple TSP
(mTSP) there exist m ≥ 2 salespersons that start from the
same city v0 ∈ V which is called depot ([1]). The goal is
to find for each salesperson a tour that starts at the depot
and ends there such that each city is contained in one of the
tours and such that the sum of all tours is minimal. There
exist several variants of the mTSP. For example, it could be
required that the number of cities in the different tours is as
equal as possible or that each tour contains at least one city
that is different from the depot. Another variant has several
depots and each salesperson starts from a different depot.

It should be noted, that a large class of TSP variants
is motivated by applications in tour planning and vehicle
routing. The double TSP (DTSP) is an example that is
somewhat related to the TSP variant considered in this pa-
per. A salesman has to find two tours for a set of cities:
one pick up tour and one delivery tour. The aim is to min-
imize the total lengths of both tours. However, there exist
restrictions for packing and unloading the items to the car
(e.g., the car has a certain number of stacks) such that the
sequence of pick-ups leads to restrictions for the possible
sequences for delivering the items (see, e.g., [14]). For the
area of planning and vehicle routing it is typical that several
tours are sought which are done by several vehicles, each of
them might only visit a subset of the cities. Typically, there
exist additional information and restrictions that have to be
considered. An example is that time windows for the differ-
ent cities are given which define the time intervals when the
corresponding city can be visited. Another example is that
capacities for the edges are given which restrict the maxi-
mum load that can be transported along the corresponding
edges.

Clearly, as for many combinatorial optimization problems,
also for the TSP and its variants there exist also dynamic
versions, probabilistic versions, noisy versions, online ver-
sions, and multi-criteria versions.

The ACO metaheuristic is, in general, very successful for
solving the TSP and its variants. Therefore, ACO algo-
rithms have been proposed for most of the mentioned TSP
variants. Examples are ACOs for the following problems:



the GTSP [20, 17], the Prize Collecting TSP [18], the pe-
riod TSP [21], the bottleneck TSP [10], the multiple TSP
[2, 3, 22], and for many vehicle routing problems (see, e.g.,
[15] for an overview).

The PACO metaheuristic was proposed in [7]. It is a vari-
ant of ACO [4]. Different from ACO, PACO keeps a small
population of solutions P which is used to generate the m
new solutions of the next iteration. Each new solution is gen-
erated by an artificial ant which uses artificial pheromone
information. The pheromone information in the standard
PACO algorithm for the TSP is given as a pheromone ma-
trix [τij ], i, j ∈ [1, n] with τij = τinit + nij × τsolution where
nij is the number of solutions in population P that have
(i, j) in their tour and where τinit > 0 and τsolution > 0
are parameters. In some PACO algorithms the best solu-
tion that has been found so far - the so called elitist solution
- influences the pheromone information. If that is the case
and (i, j) is included in the elitist solution, then τij is de-
fined as τij = τinit + τelite + nij × τsolution where τelite > 0
is a parameter. For symmetric TSP instances, i.e., where
dij = dji for all cities i, j, we set τij = τji.

To find a new solution an ant in PACO for the TSP starts
at a randomly chosen city. An ant that is located at city i
uses the following probabilistic rule — as in classic ACO [4]
— to decide which city should be chosen as next city:

pij =
τα
ijη

β
ij∑

h∈S τα
ihη

β
ih

(1)

where ηij is heuristic information, S is the set of cities that
are still selectable, and α > 0, β ≥ 0 are parameters.

When all m solutions of the current iteration have been
generated population P is updated as follows. The best of
the solutions — which is called iteration best solution —
is added to P and the oldest solution in the population is
removed from P (see [7] for alternative population update
strategies).

Several studies have shown that PACO is a competitive
metaheuristics that is suitable for solving the TSP. For ex-
ample, it was shown in [7] that PACO is competitive to stan-
dard ACO. In [13] it was shown that PACO is competitive
to the state-of-the-art ACO algorithms for TSP and PACO
has the advantage that it can find good solutions in a shorter
computation time. In that study a variant of PACO was
considered that uses local search and a restart mechanism
since both principles are also used by the other state-of-
the-art algorithms for the TSP. An open source framework
for evaluating and comparing TSP solvers was developed
recently in [19]. In this study several evolutionary computa-
tion methods have been benchmarked and it was concluded
that PACO is the method of choice. Several variants of
PACO for the TSP have been investigated recently in [11].

3. THE CT-TSP PROBLEM
In the TSP variant that is studied in this paper the aim is

to find several tours. However, the cost (or length) of a tour
is not independent from the other tours. We call this TSP
variant the Combined Tour TSP (CT-TSP). To the best of
our knowledge this variant of the TSP has not been studied
before in the literature.

Formally, the CT-TSP is defined as follows. An instance
of the CT-TSP consists of a set of cities V = {1, . . . , n}, for
each pair of cities (i, j) ∈ V , i �= j a cost function (distance

function) cij , and an integer k ≥ 1. Let π(1), . . . , π(k) be

k (cyclic) tours, i.e., permutations of V . Then cij(π
(1), . . . ,

π(k))(m) are the costs assigned to πm for driving from i to
j, m ∈ [1, k]. For the cost function it is assumed in this

paper that cij(π
(1), . . . , π(k))(m) = 0 when (i, j) �∈ πm, i.e.,

when i and j are not neighbours in the tour πm. Otherwise,
cij(π

(1), . . . , π(k))(m) ≥ 0. The total costs of tour πm are de-

fined as
∑

(i,j)∈πm
cij(π

(1), . . . , π(k))(m) and are denoted by

c(π(1), . . . , π(k))(m). The total costs of k tours π(1), . . . , π(k)

are defined as
∑

m∈[1:k] c(π
(1), π(2), . . . , π(k))(m) and are de-

noted by c(π(1), . . . , π(k)). The CT-TSP problem is to find k

tours, i.e., k permutations π(1), . . . , π(k) of {1, . . . , n}, such
that that the total costs c(π(1), . . . , π(k)) are minimal. If k
is fixed we call the problem the k-CT-TSP.

In the following we consider the CT-TSP only for the case
of k = 2, i.e., the 2-CT-TSP. The particular cost function
that we study is defined in the following. To define the cost
function, for each pair of cities (i, j) are given a distance
dij ≥ 0 and a weight wij ≥ 0. The cost for two permutations
π1, π2 and each pair of cities (i, j), i �= j is defined by

cij(π1, π2)(1) := dij (2)

and

cij(π1, π2)(2) :=

{
dij ∗ wij if (i, j) ∈ π1

dij else
(3)

Observe, that weight wij < 1 indicates that it is an advan-
tage for the second tour π2 when the edge (i, j) is used by
the first tour π1 (in the sense that wij < 1 reduces the cost
of driving from i to j for the second tour). Correspondingly,
if wij > 1 it is a disadvantage for the second tour when (i, j)
is included also in the first tour.

For comparison with the standard TSP problem we define
for a tour π that l(π) :=

∑
(i,j)∈π dij , i.e., l(π) is the total

length of the tour π. Note, that if wij = 1 for all pairs
of cities (i, j) that are part of both tours, i.e., for which
(i, j) ∈ π1 and (i, j) ∈ π2, then c(π1, π2) = l(π1) + l(π1).
This equation holds also if there does not exist a pair of
cities that is included in both tours. Note also, that it is
possible that there exist tours π1 and π2 with c(π1, π2) <
2× l(π�) where π� is a shortest tour, i.e., π� is the optimal
TSP solution. Clearly, this is possible only if at least one
pair of cities (i, j) exists that is part of both tours and for
which wij < 1 holds.

4. THE PACO FOR THE 2-CT-TSP
In this paper we apply the Population based Ant Colony

Optimization (PACO) metaheuristic for solving the 2-CT-
TSP. The proposed PACO uses two pheromone matrices τ =
[τij ] and τ ′ = [τ ′

ij ] with i, j ∈ [1, n] and n is the number of
cities in the 2-CT-TSP instance that has to be solved. For
the construction of the first tour (second tour) pheromone
matrix [τij ] (respectively [τ ′

ij ]) is used as in the PACO for
the standard TSP. Pheromone value τij := τinit + xij ×
τelite + nij × τsolution if nij solutions in the population P
have the pair of cities (i, j) in their first tour and where xij

is an indicator variable that is 1 if (i, j) is in first tour of
the elitist solution and 0 otherwise. Here, τinit > 0 and
τsolution > 0 are two parameters. Similarly, τ ′

ij := τinit +



x′
ij × τelite +n′

ij × τsolution if n′
ij solutions in the population

P have the pair of cities (i, j) in their second tour and where
x′
ij is an indicator variable that is 1 if (i, j) is in second tour

of the elitist solution and 0 otherwise.
To find a new solution an ant starts at a randomly chosen

city and constructs the first tour iteratively as follows. When
the ant is at city i it uses the probabilistic rule in Formula
1. When the first tour π1 is finished the ant constructs the
second tour π2. Again it starts at some randomly chosen city
and proceeds analogously as for the first tour. The difference
to the construction of the first tour is that pheromone matrix
τ ′ and heuristic η′ are used.

As heuristics η and η′ one of the three heuristics η(1), η(2),
and η(3) that are defined in the following are used in this
paper. Heuristic η(3) can only be used for the construction
of the second tour π2 since it assumes that the first tour π1

of an ant is already known. For a pair of cities (i, j) define

η
(1)
ij := 1/dij (4)

η
(2)
ij := 1/(dij ∗ wij) (5)

η
(3)
ij :=

⎧⎪⎨
⎪⎩
1/(dij ∗ wij) if (i, j) ∈ π1

1/dij else

(6)

where π1 denotes the first tour that has been constructed
by the ant.

Note, that η(1) is the standard TSP heuristic which is typ-
ically used in ACO for the TSP ([4]). Heuristic η(2) prefers
a city j that has a small distance to the city i where the
ant is located and where the corresponding weight is small.
Heuristic η(3) is only used for the construction of tour 2 since
it assumes that the first tour is already known. Heuristic η(3)

considers the weight wij of a pair of cities (i, j) only if (i, j)
is already contained in the first tour of the ant.

5. EXPERIMENTAL SETUP
Pairs of cities (i, j) which have a weight wij > 1 are in-

teresting when solving the 2-CT-TSP because ideally only
one of the solutions includes such an edge (unless wij ∗dij is
relatively small compared the alternative pairs of cities dur-
ing the construction of the second tour). The case of pairs
of cities (i, j) with weight wij < 1 is mainly only interesting
when there exist other pairs of cities that are similarly close
and attractive for constructing the tours. In that case, ide-
ally both tours should include the same pair of cities. How-
ever, in most (real world metric) TSP instances the shortest
tour is unique. In that case the ants can basically simply
try to find a shortest tour for both solutions and then profit
automatically from edges with w < 1. Therefore, in the ex-
periments the main focus is on problem instances where all
edges have a weight of at least one.

For the experiments symmetric 2-CT-TSP instances have
been used, i.e., dij = dji and wij = wji for all i, j ∈ 1, . . . , n,
i �= j. For the first experiment 2-CT-TSP instances were
created where some pairs of cities have weight 5 and all
other pairs of cities have weight 1. Which pairs of cities
have weight 5 was chosen randomly with uniform probabil-
ity. Test instances with different number of pairs of cities
with weight 5 have been created. The second experiment is
a variant of the first experiment. The difference is that each

Table 1: Experiment 1: Average solution quality
and standard deviation (in brackets) of PACO with
different heuristics for berlin52 instance with differ-
ent number of pairs of cities with weight 5

Heuristics # pairs of cities with weight 5
100 700 1300
mean mean mean

(η(1), η(1)) 16135.2 19696.7 24278.2
(201.0) (467.5) (488.2)

(η(1), η(2)) 15733.5 19083.2 24349.1
(122.8) (252.8) (459.3)

(η(1), η(3)) 15812.9 17608.5 18580.6
(117.0) (133.4) (226.3)

(η(2), η(2)) 16113.9 22793.2 26456.8
(152.9) (285.3) (622.8)

(η(2), η(3)) 15734.5 18907.7 20150.8
(93.1) (199.9) (217.9)

pair of cities has weight 0.2 or weight 5. For the third experi-
ment 2-CT-TSP instances were created where the weight for
each pair of cities was chosen randomly with uniform prob-
ability from the interval [1, 5].

For defining the distances dij we used the TSP test in-
stances berlin52 and eil101 from the standard benchmark
library TSPLIB [16]. Note, that the total number of cities
(pairs of cities) is 52 (respectively 1326) for berlin52 and
101 (respectively 5050) for eil101. The test parameter val-
ues that were used are (if not stated otherwise): 10 ants
per iteration, population size |P | = 5, α = 1, β = 5,
τinit = 1/(n − 1), τsolution = 0.3, and τelite = 0.2. Note,
that parameter values α = 1 and β = 5 are typically used
in ACO algorithms for the TSP (e.g., [4]) and it has been
shown that a small population size works well for PACO and
the TSP ([7]). Each test run was done over 1000 iterations
and has been repeated 50 times. The results given in Section
6 are averages over these 50 runs.

The influence of the different heuristics was tested. In
particular, it was tested how important it is to use a heuristic
for the construction of the second tour that takes the first
tour into account. Therefore, heuristics η(1) and η(2) have
been tested for the construction of the first tour of an ant
and all three heuristics η(1), η(2), and η(3) have been tested
for the construction of the second tour. We use notation
(η(i), η(j)) for a test run where heuristic η(i) is used for the

construction of the first tour π1 and heuristic η(j) is used for
the construction of the second tour π2, i, j ∈ {1, 2, 3}.

6. RESULTS AND DISCUSSION
Table 1 shows the results of the PACO for the 2-CT-TSP

instances of Experiment 1 when using the different heuristics
and for different number of pairs of cities with weight 5. The
relative quality of PACO with the different pairs of heuristics
can also be seen in Figure 1. The pair of heuristics (η(1), η(3))
is best for nearly all different number of pairs of cities with
weight 5 that have been tested. An exception is the case with
a small number of only 100 pairs of cities with weight 5. In
this case the pairs of heuristics (η(1), η(1)) and (η(1), η(2))
perform best. Thus, most often it is best when the first
tour π1 is constructed with the standard TSP heuristic and
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Figure 2: Experiment 1: convergence behaviour of
PACO for berlin52 instance with 700 pairs of cities
with weight 5

for the second tour π2 the heuristic η(3) which considers the
weights and considers also which pairs of cities are already
included in tour π1. Clearly, in the extreme cases when all
edges have the same weight heuristics η(1) and η(2) become
equal. In the experiments using η(1) instead of η(2) for the
first tour π1 is always better. The solution quality difference
between using the two heuristics for π1 is particularly large
when only few pairs of cities with weight 1 exist. When using
η(1) for tour π1 it is nearly always better to use η(3) for π2

instead of using η(2). The results for the eil101 instances
are very similar to the corresponding results for berlin52
instances (see Figure 1).

Figure 2 gives an example that shows the convergence be-
haviour of PACO for the case of 700 pairs of cities with
weight 5. It can be seen that the quality differences between
the different PACO versions occur already after a few iter-
ations and that the algorithms have mostly converged after
1000 iterations.

The number of pairs of cities of weight 5 that are included
in the solutions of Experiment 1 are shown in Figure 3 for
PACO with heuristics (η(1), η(3)) and (η(2), η(3)). Note, that
in the extreme cases of instances with only pairs of cities
with weight 1 and with only pairs of cities with weight 5
each tour includes zero, respectively 52, pairs of cities with
weight 5. Since heuristic η(1) does not consider the weights,
the number of pairs of cities with weight 5 in the first tour
π1 increases linearly with the total number of pairs of cities
with weight 5 in the problem instance. The effect of using
heuristic η(3) for the second tour π2 is that the second tour
contains less pairs of cities with weight 5. When heuristic
η(2) is used for tour π1 there are clearly fewer pairs of cities
with weight 5 in tour π1. This holds in particular for in-
stances with a medium total number of pairs of cities with
weight 5. In these cases it is relatively easy to avoid using
pairs of cities with weight 5 for the second tour.

Table 2 shows the quality of the following variants of
PACO: 1) β = 2, i.e., the influence of the heuristic is re-
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Figure 3: Experiment 1: average number of pairs
of cities with length 5 in the first tour π1 and the
second tour π2, for PACO with (η(1), η(3)) (top) and

(η(2), η(3)) (bottom)

Table 2: Experiment 1: average solution quality
of PACO for berlin52 instance with different num-
ber pairs of cities with weight 5, for each version
of PACO also the best combination of heuristics is
shown

Algorithm # pairs of cities with weight 5
version 100 700 1300

τelite = 0.2 16620 18771 19843

β = 2 (η(1), η(3)) (η(1), η(3)) (η(1), η(3))
τelite = 0.2 16054 18201 19408

β1 = 5, β2 = 2 (η(2), η(3)) (η(1), η(3)) (η(1), η(3))
τelite1 = 0.2 15824 17658 18644

τelite2 = 0 (η(1), η(2)) (η(1), η(3)) (η(1), η(3))
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Figure 4: Experiment 2 (each pair of cities has
weight w = 0.2 or w = 5): relative average solution
quality for different number of pairs of cities with
weight 5

duced, 2) β = 5 is used for the construction of tour π1 and
β = 2 is used for the construction of tour π2, i.e., the influ-
ence of the heuristic is smaller for the second tour, and 3) the
elitist solution is only used for the construction of the first
tour π1 but not for the second tour π2 (i.e., a different value
for parameter τelite was used for π1 (τelite1 = 0.2) and π2

(τelite2 = 0)). One hypothesis why PACO variants (2) and
(3) might be good is that the construction of the second tour
should depend on the first tour that has already been con-
structed by the ant. The reason is that some pairs of cities
should be avoided for the second tour that are included al-
ready in the first tour. In these cases a strong influence of
a heuristic or of the elitist solution might lead the ants in
the wrong direction. However, the results show that this
hypothesis does not hold. None of the three PACO variants
(1) - (3) results in a better solution quality.

The results of Experiment 2 where each pair of cities has
either weight 0.2 or 5 are shown in Figure 4. For small
and medium numbers of pairs of cities with weight 5 the
relative solution quality of the PACO versions shows differ-
ences to the results of Experiment 1. For less than 800 pairs
of cities with weight 5 heuristics (η(2), η(3)) are better than

(η(1), η(3)). Heuristics (η(2), η(2)) is the worst combination
for each problem instance in Experiment 1. However, in
Experiment 2 (η(2), η(2)) is the second best combination for
small and medium numbers (200 - 600) of pairs of cities with
weight 5. This shows, that the existence of a large enough
number of pairs of cities with a small weight (<1) is useful
for a heuristic that prefers pairs of cities with small weight
for tour π2 when they are already included in the first tour
π1.

For the evaluation of Experiment 3 all pairs of cities where
classified with respect to their weight. Four classes are
considered with weights in one of the following intervals:
[1.0, 2.0), [2.0, 3.0), [3.0, 4.0), and [4.0, 5.0]. Figure 5 shows
the fraction of pairs of cities in the different classes that are
included in the first tour π1 and in the second tour π2. It can
be seen that the percentage of pairs of cities that are used by



tour π1 is nearly the same in all weight classes when heuristic
η(1) is used for the construction of π1. This is different when
heuristic η(2) is used for the construction of π1. In that case,
pairs of cities with small distance are preferred and a higher
percentage of pairs of cities in class [1.0, 2.0) is contained in
π1 than for pairs of cities in class [4.0, 5.0] (the percentage
for the former class is approximately 15 times higher). This

holds also for tour π2 when heuristic η(2) is used and this re-
sult is relatively independent from the heuristic that is used
for the first tour.

The results are very different when η(3) is used for the con-
struction of the second tour π2. If in that case η(2) is used for
tour π1, the percentage of pairs of cities in tour π2 is much
higher for class [4.0, 5.0] than for class [1.0, 2.0). The reason

is that heuristic η(3) can differentiate if a pair of cities with
large weight is included in π1 or not. If not, such a pair of
cities can be chosen for tour π2 without the disadvantage of
increased costs. When heuristic η(3) is used for the second
tour π2 together with heuristic η(1) for tour π1 the percent-
age of pairs of cities in π2 is smaller for class [4.0, 5.0] than
for class [1.0, 2.0). Here, tour π1 includes already many pairs
of cities with small distance and large weight. These pairs
of cities should not be chosen for tour π2.

7. CONCLUSIONS
A new version of the Traveling Salesperson problem (TSP)

which is called the Combined Tours TSP (CT-TSP) was
defined in this paper. The aim of the CT-TSP is to find
several (cyclic) tours that connect given cities such that each
city is contained exactly once in each tour. The total costs of
all tours should be minimum. The problem is that the costs
of one tour may depend on the other tours. In this paper
the particular version of CT-TSP where two tours are sought
was studied (2-CT-TSP). For the studied cost function each
pair of cities has a length and a weight. The quality of
a solution of the corresponding 2-CT-TSP depends on the
total lengths of both tours but also on the weights of the
included pairs of cities. The weights are used to indicate if
it is advantageous or disadvantageous when a pair of cities
is contained in both tours. A Population based Ant Colony
Optimization (PACO) algorithm was applied for solving the
2-CT-TSP. It was investigated how different heuristics that
the ants use for the construction of the tours influence the
solution quality. It was shown that it can be important that
an ant uses a different heuristic for the construction of the
first tour and the second tour. In particular, the heuristic for
the construction of the second tour should use the knowledge
about which pairs of cities are included in the first tour.
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