
Mixing of Join Point Interfaces and Feature-Oriented
Programming for Modular Software Product Line

Cristian Vidal
Universidad de Playa Ancha

Chile
cristian.vidal@upla.cl

David Benavides
University of Seville

Spain
benavides@us.es

Paul Leger
Universidad Católica del Norte

Chile
pleger@ucn.cl

José Angel Galindo
INRIA
France

jagalindo@inria.fr

Hiroaki Fukuda
Shibaura Institute of

Technology
Japan

hiroaki@shibaura-it.ac.jp

ABSTRACT
Feature-oriented programming (FOP) and aspect-oriented
programming (AOP) focus on to modularize incremental
classes behavior and crosscutting concerns, respectively, for
software evolution. So, these software development approaches
represent advanced paradigms for a modular software prod-
uct lines production. Thereby, a FOP and AOP symbiosis
would permit reaching pros and cons of both approaches.

FOP permits a modular refinement of classes collaboration
for software product lines (SPL), an adequate approach to
represent named heterogeneous crosscutting concerns. FOP
works on changes of different functionality pieces for which
to define join points is not a simple task. Similarly, AOP
structurally modularizes in a refined manner homogeneous
crosscutting concerns. Since traditional AOP like AspectJ
presents implicit dependencies and strong coupling between
classes and aspects, and the Join Point Interface JPI ap-
proach solves these classic AOP issues, this article presents
JPI Feature Modules for the FOP + JPI SPL components
modularization, i.e., collaboration of classes, aspects, and
join point interfaces along with their evolution, for a SPL
transparent implementation in a FOP + JPI context. In
addition, this article shows JPI Feature Modules of a case
study to highlight mutual benefits of FOP and JPI approaches
for a modular SPL software conception.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features; D.3.2 [Programming Languages]: Lan-
guage Classifications—Object-oriented languages

General Terms
Languages, Design

Keywords
FOP, classic AOP, JPI, SPL, modular software, JPI-FM

1. INTRODUCTION
The separation of concerns principle [15] mentions that gen-
erating modular programs is one of the main goals of pro-
gramming. In this context, for software modularity, Object-
Oriented Programming OOP represents an evolution con-
cerning structured programming because OOP encapsulates
attributes and functions as members of classes, and defines
information hiding rules to access class members. Neverthe-
less, OOP neither directly encapsulates features and product-
line architectures [3] [19], nor crosscutting concerns as inde-
pendent modules [17] for an organized software evolution.

Software development paradigms like Feature-Oriented Pro-
gramming FOP [18] and Aspect-Oriented Programming
AOP [17] look for to solve OOP issues:

• FOP modularizes collaboration of classes, named het-
erogeneous crosscutting concerns, i.e., by classes refin-
ing, FOP works on changes of different functionality
pieces for which to define join points is not a simple
task, as features, and permits the step-wise develop-
ment of software product lines [3] [10]. In addition, as
[3] [4] [6] indicate, FOP well modularizes static cross-
cutting concerns – new fields, methods, classes, and
interfaces definition. Nevertheless, [17] [6] remark that
FOP lacks adequate crosscutting modularity for soft-
ware evolution since software has to change and adapt
to fit non-predictable modifications. Particularly, for
an homogeneous crosscutting concerns, i.e., for fea-
tures which represent the same behavior that appear
in different places in the features-tree hierarchy, “FOP
does not modularize elegantly homogeneous crosscut-
ting concerns” [3] [4] [6]. For dynamic crosscutting
concerns, FOP supports only methods interception [7],
i.e., in a class refinement, it is possible to call refined
and non-refined methods.

• AOP, looking for a modular behavior of classes, defines
oblivious advised classes and modularizes crosscutting
concerns as aspects, i.e., orthogonal methods non-part

BICT 2015, December 03-05, New York City, United States
Copyright © 2016 ICST
DOI 10.4108/eai.3-12-2015.2262534



of the advised classes nature [17]; so AOP solutions
are able to respect the single responsibility OOP design
principles [21]. Furthermore, AOP can modularize ad-
vanced dynamic crosscutting concerns not only meth-
ods interception. For example, AOP like AspectJ [9]
permits the use of cflow, if, execution pointcuts. As [3]
[4] [6] indicate, AOP modularizes homogeneous cross-
cutting concerns as aspects, but the modularization
of classes collaboration by aspects results in software
complex to evolve since aspects do not reflect the struc-
ture of the refined feature and its cohesion [7]. More-
over, AOP like AspectJ [9] solutions introduce implicit
dependencies between aspects and classes. Hence, as-
pects do no respect the information hiding principle,
so oblivious classes can experience non-expected be-
havior and properties changes, and by modifying the
advised behavior of classes, aspects can be spurious
and other non-effective can appear. So, in traditional
AOP like AspectJ, aspects need clearly to know about
advised classes before advising them, a great issue for
independent development [13] [14] [16].

Since, main FOP and AOP work focus are different kinds of
crosscutting concerns, thus, as [3] [5] [7] [18] argue, a symbio-
sis of FOP and AOP profit of each other to obtain modular
software. Thus, looking for a FOP and traditional AOP
like AspectJ symbiosis, regarding a collaboration-based de-
sign, [3] [8] propose Aspectual Feature Modules (AFM) to
represent modular classes and aspects along with their asso-
ciation and evolution. Nonetheless, AFM preserves already
mentioned classic AOP issues. So, given the FOP benefits to
modularize SPL heterogeneous and static crosscutting con-
cerns, as well as the JPI capability to respect OO princi-
ple and modularize dynamic and homogeneous crosscutting
concerns [13] [14] [16], hence the main goals of this article
are, 1st to present JPI Feature Modules JPI-FM to struc-
turally model JPI + FOP solutions for classes and aspects
collaboration and get associated benefits in the massive cus-
tomized software production, and 2nd, apply JPI-FM on a
simple graph to evaluate the obtainable modularity. This
article gives more details and extends previous work of [20].
Specifically, this article presents a detailed study of an ap-
plication example in order to discuss and find main points
behind this proposal.

The rest of this paper is organized as follows. The next sec-
tion presents main motivation for our research of proposing
a mixing of JPI and FOP. Afterwards, next section presents
FOP and AOP approaches as well as their traditional sym-
biosis, and an application example. After it, a section defines
our JPI-FM approach to model and highlights its benefits
and cons by means of an application example and shows part
of its code solution. Finally, a section presents conclusions
and future research work.

2. MOTIVATION
As was indicated before, traditional like AspectJ AOP and
FOP look for to solve some OOP issues for the modular
software production. This section details some pros and
cons of these programming methodologies.

1st, traditional AOP in general modularizes crosscutting

concerns of program modules, i.e., in an OOP context, or-
thogonal methods over classes. For OOP and AOP, since
classes are oblivious of aspects, some OOP design principles
for modular programs are respected such as the open-close
and single responsibility [21]. Traditional AOP like AspectJ
defines pointcut rules and advices to identify join points in
program execution and, by implicit-invocation, aspects ad-
vise on these join points. Mainly, by the use of wildcards
and pattern matching mechanisms, AOP permits refining
multiple join points by only one declaration rule, i.e., AOP
permits good modularization of homogeneous crosscutting
concerns. In addition, since AOP provides mechanisms to
advised programs based on their dynamic execution, AOP
also permits good support of dynamic crosscutting concerns
[3].

Since in traditional AOP like AspectJ, pointcut rules in-
dicate textual references to advised code, changes on ad-
vised base code can generate spurious pointcut rules, i.e.,
non-effective aspects. Furthermore, for the mentioned de-
pendency, aspects are usually non-reusable and unable for
evolution. Conversely, base code can obliviously experience
non-desirable changes by the aspect advices invasiveness,
possibly breaking assumptions over advised and non-advised
base code, i.e, advised code by aspects and related code [14].
Clearly, classic AOP like AspectJ languages violate the prin-
ciple of information hiding [3] since an aspect may affect
internals of other modules directly regardless privacy rules,
possibly even breaking module interfaces.

Furthermore, as Bodden et al. [14] [13] and Inostroza et
al. [16] indicate, for traditional AOP like AspectJ method-
ologies, the independent development is non-possible since
aspects developer have to know all classes and their behavior
to define pointcut rules and associated advices adequately,
and changes on base code could demand applying changes
on aspects as well. So, the independent development and
evolution of base code and aspects is hugely compromised.
Figure 1 [14] illustrates implicit dependencies of aspects and
advised classes of a classic AOP solutions.

For a strong aspects and base code decoupling, Bodden et
al. [14] [13] and Inostroza et al. [16] propose a new AOP
methodology to define join point interfaces JPI between as-
pects and advised classes for their decoupling. In addition,
JPI permits respecting the information hiding principle since
aspects access received values from classes methods which
exhibit those aspects. Figure 2 [14] shows, for JPI solutions,
a join point interface between aspects and advised code.

2nd, FOP, by means of its hierarchical structure, permits
an explicit stepwise refinement for software architecture. As
was mentioned before, FOP modularizes features implemented
by mixin layers. A mixin layer represents a set of collaborat-
ing mixins which implement class fragments [2] [6] [3], hence
a mixin layer crosscut multiple classes. Thus, FOP presents
a good support for modularizing heterogeneous crosscutting
concerns.

According to Mezini et al. [18] and Apel et al. [2] [6] [7]
[3], FOP does not present a good support to modularize ho-
mogeneous and dynamic crosscutting concerns; clear issues
of FOP. Furthermore, since child mixins refine their parent



mixins, usually refined classes do not respect the single re-
sponsibility design principle. As a solution for these FOP
issues, [18] and [2] [6] proposed Caesar and FeatureC++ re-
spectively, languages that mix FOP and traditional AOP
like AspectJ characteristics. Nevertheless, these solutions
preserve mentioned AOP issues.

Thus, the main goals of this research are to analyze, propose,
implement, and evaluate pros and cons of a symbiosis of JPI
and a Java style FOP language to reach modular software.

3. COLLABORATION-BASE DESIGN
To represent features variation for SPL, FOP uses Feature
Models FM [3] [11]. So, a FM displays all possible products
of a SPL; but, traditionally, in a SPL context, as a con-
ceptual model, a FM only presents composition, requires,
or exclude features associations and does not show compo-
nents structure. As Apel et al. [3] mention, collaboration-
based diagrams are adequate to represent SPL hierarchical
decomposition of classes structure and their collaboration
associations.

Figure 3 [3] presents the feature model of a simple graph
system, and Figure 4 [3] shows its classes, associations, and
their evolution as a collaboration-based design.

Figure 5 [3] shows the code in Jak, a feature-oriented pro-
gramming language. Feature Colored presents homoge-
neous crosscutting concerns, the highlighted repeated code;
thus, in an AOP view, a more adequate solution should rep-
resent those crosscutting concerns as aspects.

As [3] [8] indicate, by means of an aspect-oriented instead
of a FOP solution for features modularization, since aspects
can merge different actions and behavioral roles, AOP so-
lutions also can flatten inherent object-oriented structure
of features. Thus, a mix of FOP and AOP seems more
adequate because it would permit modularizing heteroge-
neous and homogeneous crosscutting concerns. Figure 6
[3] presents an AFM for the graph example in which het-
erogeneous crosscutting concerns continue being handled by
a FOP solution meanwhile homogeneous crosscutting con-
cerns, in this example, associated to a colored graph, are
represented by a classic AOP solution. Figure 7 [3] presents
AspectJ code for the aspect Colored.

Even though, FOP and classic AOP like AspectJ symbio-
sis solutions take into account modularization advantages of
both paradigms, AFM retains issues of the last one. Thus,
our JPI-FM should produce cleaner modular solutions.

4. JPI FEATURE MODULES: JPI-FM
Given the FOP and JPI benefits, this paper proposes JPI-
FM looking for the symbiosis of both paradigms: 1st, FOP,
for software evolution, for collaboration of classes and new
elements of the system, heterogeneous and static crosscut-
ting concerns; 2nd, JPI, to avoid code replication and ad-
equately represent homogeneous and dynamic program be-
havior in terms of execution paths, dynamic homogeneous
crosscutting concerns, and to respect information hiding and
single responsibility OOP design principles.

Figure 8 illustrates an application of our JPI-FM proposal

Figure 1: Implicit Dependencies of Advised Base
Code and Aspects of Classic AOP Solutions

Figure 2: Dependencies of Base Code and Aspects
with JPI Solutions

Figure 3: Feature model of a graph

Figure 4: Structural feature modules of a graph

Figure 5: Code of FOP solution of feature Colored



Figure 6: AFM of a graph example

Figure 7: AspectJ code of aspect Colored for the
graph example

for a system that presents a base layer and two layers of
refinement:

• Base layer (Layer 1) presents a set of N classes, a
set of M join point interfaces, and a set of M as-
pects, i.e., Class1,..., ClassN ; � jpi� Interface1(<
args >), ..., � jpi � InterfaceM(< args >); �
aspect � Aspect1, ..., � aspect � AspectM respec-
tively. Note that JPI units are exhibited by classes
and implemented by aspects, and aspects, like in tra-
ditional AOP like AspectJ present before, around, and
after advices. Clearly, our modeling proposal stereo-
typed classes to identify JPI elements. In addition,
our model tries to be consistent with JPI ideas [14];
hence, each class that exhibits a join point interface
also defines a pointcut PC rule to identify join point
occurrences, and aspects implement those � jpi �
interfaces.

• Layer 2 presents the refinement of previous layer ele-

Figure 8: General application of JPI-FM

Figure 9: JPI-FM of the graph example

ments, particularly for this example, Class1, ClassN ,
� jpi � InterfaceM , and � aspect � AspectM .
Layer 2 presents the use of template to indicate a re-
finement of previous layer elements. Note that a re-
finement of join point interface requires a refinement
of an associated advised class and aspect.

• Layer 3 preserves elements of Layer 2, and add a new
class, ClassN+1, a new join point interface, � jpi �
InterfaceK(< args >), and a new aspect,� aspect�
AspectK . Note that ClassN+1 exhibits� jpi� InterfaceK(<
args >), and � aspect � AspectK implements that
� jpi� interface.

It is important to know that, for the product lines defini-
tion, classes of a layer or of previous layers can exhibit a
join point interface JPI. Note that our proposal only con-
siders join point interfaces definition between classes and
aspects. As part of a current research project, additional
characteristics of FOP and JPI are going to be added to our
proposal. Next, Figure 9 illustrates an application of JPI-
FM on the graph example, and Figure 10 shows part of the
associated code for layers Weighted and Colored, specifically
for class Edge, and aspect Colored along with JPIColored
respectively. Note that class Edge of layer Weighted is a
class refinement of itself from layer Basic Graph which ex-
hibits the JPI JPIColored for the execution of its method
print(), and aspect Colored implements JPIColored before.
Thus, clearly our proposal mixes JPI and FOP nature for
the SPL development.

5. CONCLUSIONS
JPI-FM continues using FOP main properties to produce
massive customized software applications presenting mod-
ularization advantages for SPL respecting AFM since JPI
exhibits notable modularization improvements over classic
AOP. Thus, JPI-FM models a high-level massive modular
software in a FOP-JPI symbiosis context. Exactly, to pro-
duce a complete FOP and JPI symbiosis is our future main
goal. In this context JPI-FM has to support a symbiosis of
FOP and closure join points [12].

In addition, to evaluate JPI-FM modularization pros and
cons regarding its source FOP and JPI approaches, we want
to define a case study to apply our whole SPL development
proposal.



Figure 10: JPI-FM code for the graph example

6. REFERENCES
[1] Sven Apel, Don Batory, Christian Kstner, and Gunter

Saake. Feature-Oriented Software Product Lines:
Concepts and Implementation. Springer Publishing
Company, Incorporated, 2013.

[2] Sven Apel, Thomas Leich, Marko RosenmÃijller, and
Gunter Saake. FeatureC++: Feature-Oriented and
Aspect-Oriented Programming in C. In Proceedings of
the International Conference on Generative
Programming and Component Engineering, Springer,
2005.

[3] Sven Apel, Don Batory, Christian Kstner, and Gunter
Saake. Feature-Oriented Software Product Lines:
Concepts and Implementation. Springer Publishing
Company, Incorporated, 2013.

[4] Sven Apel, Don Batory, and Marko RosenmÃijller. On
the structure of crosscutting concerns: Using aspects or
collaborations. In In Workshop on Aspect-Oriented
Product Line Engineering, 2006.

[5] Sven Apel and Christian Kästner. Overview of
Feature-Oriented Software Development. Journal of
Object Technology (JOT), 2009.

[6] Sven Apel, Thomas Leich, Marko RosenmÃijller, and
Gunter Saake. Combining feature-oriented and
aspect-oriented programming to support software
evolution. In Walter Cazzola, Shigeru Chiba, Gunter
Saake, and Tom TourwÃl’, editors, RAM-SE, pages
3–16. FakultÃd’t fÃijr Informatik, UniversitÃd’t
Magdeburg, 2005.

[7] Sven Apel, Thomas Leich, and Gunter Saake.
Aspectual mixin layers: Aspects and features in
concert. In Proceedings of the 28th International

Conference on Software Engineering, ICSE ’06, pages
122–131, New York, NY, USA, 2006. ACM.

[8] Sven Apel, Thomas Leich, and Gunter Saake.
Aspectual Feature Modules. IEEE Transactions on
Software Engineering, 34(2):162–180, 2008.

[9] Eclipse. The AspectJ Project. [Online]. Available:
https://eclipse.org/aspectj/. [Accessed: 25- Sep- 2015].

[10] Don Batory. A tutorial on feature oriented
programming and the ahead tool suite. In Proceedings
of the 2005 International Conference on Generative and
Transformational Techniques in Software Engineering,
GTTSE’05, pages 3–35, Berlin, Heidelberg, 2006.
Springer-Verlag.

[11] David Benavides, Sergio Segura, and Antonio
Ruiz-Cortés. Automated analysis of feature models 20
years later: A literature review. Inf. Syst.,
35(6):615–636, September 2010.

[12] Eric Bodden. Closure joinpoints: Block joinpoints
without surprises. In Proceedings of the Tenth
International Conference on Aspect-oriented Software
Development, AOSD ’11, pages 117–128, New York,
NY, USA, 2011. ACM.

[13] Eric Bodden, Eric Tanter, and Milton Inostroza. A
brief tour of join point interfaces. In Proceedings of the
12th Annual International Conference Companion on
Aspect-oriented Software Development, AOSD ’13
Companion, pages 19–22, New York, NY, USA, 2013.
ACM.

[14] Eric Bodden, Éric Tanter, and Milton Inostroza. Join
point interfaces for safe and flexible decoupling of
aspects. ACM Transactions on Software Engineering
and Methodology, 23(1):7:1–7:41, February 2014.

[15] Edsger W. Dijkstra. The structure of the
multiprogramming system. In Communications of the
ACM, page 11(5):341âĂŞ346. Springer-Verlag, May
1968.

[16] Milton Inostroza, Éric Tanter, and Eric Bodden. Join
point interfaces for modular reasoning in
aspect-oriented programs. In Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering,
ESEC/FSE ’11, pages 508–511, New York, NY, USA,
2011. ACM.

[17] Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Lopes, Jean marc Loingtier, and
John Irwin. Aspect-oriented programming. In ECOOP.
SpringerVerlag, 1997.

[18] Mira Mezini and Klaus Ostermann. Variability
management with feature-oriented programming and
aspects. SIGSOFT Softw. Eng. Notes, 29(6):127–136,
October 2004.

[19] Christian P|rehofer. Feature-oriented programming: A
fresh look at objects. pages 419–443. Springer, 1997.

[20] Cristian Vidal, David Benavides, José Galindo, and
Paul Leger. Exploring the Synergies between Join Point
Interfaces and Feature-Oriented Programming. JISBD
2015, Santander, Spain, 2015.

[21] Dean Wampler. Aspect-oriented design principles:
Lessons from object-oriented design. In Proceedings of
the Sixth International Conference on Aspect-Oriented
Software Development (AOSD’07), pages 615–636,
Vancouver, British Columbia, March 2007.


