
A Tool for Visualizing Buffer Overflow
with Detecting Return Address Overwriting

Isao Sasano
Shibaura Institute of Technology, Tokyo, Japan

sasano@sic.shibaura-it.ac.jp

ABSTRACT
Buffer overflow is a serious problem when the software is run
as a server on the internet. Especially when the return ad-
dresses are overwritten intentionally, the control flow may
be changed as the attacker intends. Although there have
been proposed several ways to protect attacks that utilize
the buffer overflow, the number of the errors owing to the
buffer overflow have been increasing gradually. This paper
presents a tool that visualizes the buffer overflow when ex-
ecuting programs in C language, especially when the return
addresses are overwritten. The functionality is mainly tar-
geted at beginners of C programming who do not recognize
the attacks, which we expect makes the number of errors
decrease in the future.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids; D.2.6 [Software Engineering]: Program-
ming Environments—Graphical environments; D.2.6 [Soft-
ware Engineering]: Programming Environments—Inter-
active environments; D.3.4 [Programming Languages]:
Processors—Debuggers

General Terms
Security, Languages

Keywords
integrated development environment, debuggers, buffer over-
flow, visualization, GUI, C Language

1. INTRODUCTION
In programming in the language C the memory manage-

ment partly depends on programmers. In the standard of
the language C in ISO [2], the behavior of a program is
not defined when it accesses some location that is outside

.

the boundaries of arrays.1 The out-of-bound array accesses
originate in the fact that C allows addition and subtrac-
tion between pointers and integers, which result in pointers
that may point some location in the middle of an object. In
contrast, in most of the memory-safe languages like Java or
ML-family, references to an object, such as an array, only
point to a fixed location inside the object, which makes it
easy to access meta-data like the size of the object at run-
time. Most of the C compilers produce codes that do not
check the boundaries of arrays. So many programs written
in C are used without boundary checking, which may result
in buffer overflow.

Buffer overflow is a serious problem especially when the
program is run as a server on the internet. When the return
addresses are overwritten intentionally by some attacker, the
control flow may be changed as the attacker intends. Until
now there have been proposed several ways to protect at-
tacks that utilize buffer overflow. We show the number of
buffer errors (CWE-119) reported in the national vulnera-
bility database statistics [1] in Fig. 1. Despite the efforts
devoted to the buffer overflow, the number gradually in-
creases until 2014. Considering the fact that some of the
tools like StackGuard [3] is used in the commercial product,
there remain many programs run as servers on the internet
without using the tools or with the security holes being not
covered in such tools.

This paper presents a tool that visualizes the buffer over-
flow when executing programs written in C language, es-
pecially when the return addresses are overwritten. The
functionality is mainly targeted at beginners of C program-
ming who do not recognize the attacks. We believe that it
is also useful for proficient programmers who can use CUI
debuggers like gdb. The tool presented in this paper partly
bridges the gap between the current real-world status about
the buffer overflow and the tools for protecting the buffer
overflow developed until now. The tool helps C program-
mers to recognize the occurrences of the buffer overflow.

The rest of the paper is organized as follows. Section 2
shows our basic ideas and outline of our solution. Section 3
specifies the GUI and describes our implementation. Section
4 discusses related work. Section 5 describes future work and
concludes the paper.

1More precisely, when the addition or subtraction between
a pointer and an integer does not result in the array bounds
(or one past the last element), the behavior is not defined
[2, Page 93].

BICT 2015, December 03-05, New York City, United States
Copyright © 2016 ICST
DOI 10.4108/eai.3-12-2015.2262495



Figure 1: The number of CWE-119 [1]

2. BASIC IDEAS AND THE STRUCTURE
OF THE TOOL

Here we show our idea to develop a tool for visualizing
the return address overwriting. We construct the tool by
communicating with gdb through TCP/IP on text basis.

2.1 Structure of the tool
We show the structure of the tool in Fig. 2.

Figure 2: The structure of the tool

Some of the buttons on the tool correspond to gdb com-
mands and some other correspond to the functionalities for
controlling the visualization such as changing the font size.
When the user of the tool pushes a button that corresponds
to some gdb command, the command is executed on gdb.

2.2 Buttons
We made several buttons corresponding to the gdb com-

mands. We show the screenshot of the buttons just after
launching the tool and pushing the run button in Fig. 3.

The button “run” is for running the program until enter-
ing the main function. The button “quit” is for quitting
the execution of the program. The button “step” is for ex-
ecuting the program in one step, corresponding to the step
command in gdb. The button “finish” is for finishing the
function that is currently being executed, corresponding to
the finish command in gdb. The buttons “view up” and
“view down” are for moving up or down the focus on the
memory location. The button “place” is for switching on
and off whether or not the memory addresses are depicted
in the slots of the memory. The button “memory” is for
switching on and off whether or not the values stored in the
memory are depicted in the slots of the memory. The but-
tons“zoom in”and“zoom out”are for zooming in or out the
area for the memory. The buttons “size up”and“size down”

are for changing the font size in the area for the memory.

Figure 3: Buttons [5]

We show a screenshot of gdb in Fig. 4. The first portion
surrounded by the red line shows the gdb command “info
frame” and the response. The command is executed when
the run button is pushed on the tool, in order to obtain the
address of the bottom of the activation record for the first
invocation of the main function. The second and the third
portion show two gdb commands and the responses. These
commands are executed when the step button is pushed on
the tool, in order to obtain the contents of the stack area
from the location pointed by the stack pointer to the bot-
tom of the activation record for the main function obtained
above.

Figure 4: A screenshot of gdb corresponding to some
sequence of pushing the buttons run and step on the
tool [7]

Fig. 5 shows some other portion of the stack when some
functions are called from the main function. The portion
surrounded by the blue line is an activation record in the
stack and the location surrounded by dotted red line is for
holding the return address. Using this kind of commands
and understanding the result of the commands require some
knowledge of the gdb and the structure of the stack area in
the memory.

Figure 5: A screenshot of gdb with showing some
portion of the stack [7]

3. SPECIFICATION AND IMPLEMENTATION
OF THE VISUALIZATION



In this section we specify the visualization functionality
and describes our implementation.

3.1 Specification

Problem 1 (Visualization). When a return address
is changed while running the code, it is displayed on some
GUI system and the code execution is suspended.

Note that when a return address happens to be overwrit-
ten with the same address the system does nothing.

3.2 Implementation
Based on the basic ideas described in Section 2 we have

implemented a tool for visualizing the buffer overflow. The
tool is implemented for gcc on 32bits MinGW (on Windows)
on IA-32 architecture firstly [7] and an extended tool for gcc
on 64 bits Vine Linux on x86-64 architecture secondly [5].
We plan to make public the implementation available on the
internet in the future.

3.2.1 Structure of the tool
The tool is implemented in Java on the platform described

above. The buttons on the tool are associated with methods
in Java, some of which send commands of gdb, correspond-
ing to the pushed button, to the standard input of gdb. On
gdb the command is executed and then the output to the
standard output is sent back to the tool. The communica-
tion between the tool and gdb is done through TCP/IP.

The current implementation is a tentative one. In partic-
ular, the tool and gdb communicate on text basis. When
pushing the step button on the tool, the text “step” is sent
to gdb, the step command is then executed on gdb, and the
tool takes the result from the standard output of the gdb
process after waiting a fixed amount of time (say 500ms).

3.2.2 Coloring memory locations
When a return address is overwritten, the location holding

the return address is colored with red. Two other colors are
used in the tool. Yellow is used for coloring the memory
locations for return addresses not yet overwritten. Blue is
used for coloring the memory locations that are rewritten
but are not for holding the return addresses, although the
examples in this paper do not use blue.

We have to store the values in the stack area in order to
color each memory slot as described above. This is done
just by memorizing all the values in the stack area when
the step button is pushed and compare the values with the
stored values one step before. We assume the return address
is stored in the bottom of each activation record.

3.2.3 Various functionalities
The tool provides a functionality for stepping into a func-

tion. When we need to step into library functions, we need
the compiled code of the library functions with the debug-
ging information. We implement this functionality just by
searching the source code of the library functions.

The tool also provides a functionality for highlighting the
location where the control flow is now. The tool supports
programs that consist of multiple files.

3.3 An example

We show a screenshot of the overwriting of a return ad-
dress in Fig. 6. The screenshot is taken just after a return
address is overwritten, when the execution of the program
is suspended.

Figure 6: A screen shot of detecting the return ad-
dress overwriting [5]

4. RELATED WORK
In order to protect software systems from the attacks uti-

lizing the buffer overflow, there have been presented some
systems. A system used in the real-world is StackGuard [3],
which is a C compiler that attaches some number, which is
called Canary word, next to the return address with a little
performance penalties. When the control is about to return
to the caller of the function, it is checked whether or not the
Canary word is changed. If it is the case, the program is
forced to be halted. Stack Shield [8] is a tool for protecting
software systems from the attacks utilizing the buffer over-
flow and it supports gcc on Linux. In both of StackGuard
and Stack Shield no source code changes are required.

Fail-safe C [6] is a completely memory-safe compiler for
the ANSI C standard, which is comparable to memory-safe
languages like Java or ML-like languages. It increases mem-
ory usage at runtime.

As for programming environment with visualization, a
system called AZUR [4] was developed. It visualizes block
structures and shows the control flow real time by anima-
tion. The system is implemented in Java, communicating
with gdb.

As we mentioned in Section 1, the number of buffer over-
flow increases until 2014 despite the efforts like the above.
The present work aims at helping C programmers, espe-
cially beginners, to recognize the occurrences of the buffer
overflow. It may reduce the number of buffer overflow that
might occur in the future.

5. CONCLUSIONS AND FUTURE WORK
We presented a tool which partly bridges the gap between

the current real-world status about the buffer overflow and
the tools for protecting the buffer overflow developed until
now. The tool helps C programmers to recognize the oc-
currences of the buffer overflow. In the future we plan to



experiment with around 100 students in the class of learn-
ing programming in C by using the tool presented in the
present paper.

6. ACKNOWLEDGMENTS
We would like to thank the anonymous referees for many

helpful comments. The idea of visualizing buffer overflow
was presented and a tool was implemented based on the
idea in Bachelor’s thesis of Koji Okada [7] and Takahiro
Ogawa [5] under the supervision of the author. This work
was partially supported by JSPS KAKENHI Grant Number
25730047.

7. REFERENCES
[1] National vulnerability database statistics.

https://web.nvd.nist.gov/view/vuln/statistics.

[2] ISO/IEC 9899, Information technology —
Programming languages — C, 2011.

[3] Crispan Cowan, Calton Pu, Dave Maier, Jonathan
Walpole, Peat Bakke, Steve Beattie, Aaron Grier, Perry
Wagle, and Qian Zhang. Stackguard: Automatic
adaptive detection and prevention of buffer-overflow
attacks. In Proceedings of the 7th USENIX Security
Symposium, 1998.

[4] Toshiyuki Imaizumi, Hiroaki Hashiura, Saeko
Matsuura, and Seiichi Komiya. A programming learning
environment ”AZUR” : Visualizing block structures and
program function behavior. In IEICE Techinical Report
KBSE2010-45, pages 61–66, 2011. in Japanese.

[5] Takahiro Ogawa. Bachelor’s thesis, Shibaura Institute
of Technology, Japan, 2015. in Japanese.

[6] Yutaka Oiwa. Implementation of the memory-safe full
ANSI-C compiler. In Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language
Design and Implementation, pages 259–269, 2009.

[7] Koji Okada. Bachelor’s thesis, Shibaura Institute of
Technology, Japan, 2012. in Japanese.

[8] Vendicator. Stack shield: A ”stack smashing” technique
protection tool for Linux.
http://www.angelfire.com/sk/stackshield/.


