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ABSTRACT
Eye-tracking sequences can be considered in terms of com-
plex networks. On the basis of complex network represen-
tation of eye-tracking data, we define a measure, derived
from rough set theory, for assessing the cohesion of saccade
connections between object components identified in visual
stimuli used in eye-tracking experiments. Rough sets are
an appropriate tool to deal with rough (ambiguous, impre-
cise) concepts. Theoretical foundations given in the paper
are supplemented with a numerical example explaining the
proposed approach.

Categories and Subject Descriptors
H.1.2 [User/Machine Systems]: Human information pro-
cessing; E.1 [Data Structures]: Graphs and networks;
F.4.1 [Mathematical Logic]: Set theory

General Terms
Algorithms

Keywords
eye-tracking, complex networks, rough sets

1. INTRODUCTION
Many important studies on eye movements in reading

and information processing have appeared over the last few
decades. Several general tasks, investigated by researchers,

.

can be distinguished, among others, reading, typing, visual
search, and scene perception (cf. [14]). In case of read-
ing, looking at a scene, or searching for an object, people
continually make eye movements, called saccades. Between
saccades, eyes remain relatively still during fixations for a
few hundred milliseconds. Nowadays, eye movements can be
automatically recorded using eye-tracking equipment (eye-
trackers). Eye movement recordings deliver a dynamic trace
of where a person’s attention is being directed in relation to
a visual display.

In the paper, we are interested in eye movements in scene
perception. Viewers make many eye movements when look-
ing at a scene. Information gleaned from detailed eye move-
ment analyses can be used in diagnosis of various neuropsy-
chological disorders (see, for example, [1], [8], [11]). One
of the current trends is to use natural stimuli in the form
of paintings instead of artificially created stimuli for eye-
tracking examination. This problem has been considered,
among others, in one of our earlier papers [6]. Perception
of paintings is associated with activity of multiple regions of
the brain. A structure of visual stimuli, i.e., its complexity,
influences regions of the brain which are activated by vi-
sual stimuli (paintings), i.e., which cognitive functions (ba-
sic or higher) are initiated by the patient. Therefore, visual
art seems to be an efficient tool in the process of diagnosis
and therapy of some kinds of neuropsychological and emo-
tional disorders. Several findings are important in detailed
eye movement analyses. The first one is that the eyes are
quickly drawn to informative regions of the painting. The
second one is that the eyes quickly move to objects that are
out of place in the scene.

In [5], we proposed to consider eye-tracking sequences ob-
tained in the face recognition process in terms of complex
networks. A proper algorithm for transformation sequences
coming from eye-tracking into complex networks was given.
The analysis of parameters of obtained complex networks
can be helpful in better understanding and classifying hu-
man mental behaviors and activities. Transformation of eye-
tracking sequences into complex networks is the basis of the
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approach proposed in Section 3. The further analysis of eye-
tracking data is carried out over complex network models.

In case of scene perception, humans are able to classify
the image (high-level scene classification), recognize differ-
ent objects within the scene (annotation), and localize and
delineate where the objects are in the scene (segmentation).
These three elements are very important factors of total
scene understanding (cf. [7]). On the basis of annotation
and segmentation of the scene, we propose to quantitatively
assess the nature of eye movements between object com-
ponents identified in the scene. In the paper, we focus on
cohesion of eye movements between components during the
whole time of scene perception.

Rough sets proposed by Z. Pawlak [12] are an appropriate
tool to deal with rough (ambiguous, imprecise) concepts in
the universe of discourse. Therefore, we propose to apply
rough sets to define a measure expressing the cohesion of
saccade connections between object components identified
in visual stimuli used in eye-tracking experiments.

The presented idea is based on the approach that uses
rough sets to model some ambiguities in anticipation of
states in transition and timed transition systems (which are
also, in fact, graph structures), cf. [10] and [15]. The mea-
sure can be defined on the basis of the original definition of
rough sets [12] that is rigorous in terms of set inclusion, as
well as on the basis of some extensions and generalizations of
the original definition. As an example of a more relaxed and
generalized rough set approach, we use the Variable Preci-
sion Rough Set Model (VPRSM), proposed by W. Ziarko in
[17]. The VPRSM approach was defined on the basis of the
notion of the majority set inclusion instead of the standard
set inclusion.

2. BASIC DEFINITIONS
In this section, we recall necessary definitions, notions and

notation concerning both complex networks and rough sets.
For more detailed information, we refer the readers to [2]
(for complex networks) and [13] (for rough sets).

2.1 The Rudiments of Complex Networks
Complex networks are networks whose structure is irreg-

ular, complex and dynamically evolving in time. Formally,
a complex network can be presented as a graph either undi-
rected or directed.

In our investigations, we consider complex networks rep-
resented by undirected graphs. It means that we are not
interested in directions of edges.

An undirected graph G = (N,E) consists of two sets N
and E such that N 6= ∅ and E is a set of unordered pairs
of elements of N . The elements of N = {n1, n2, . . . , nq} are
the nodes of G, while the elements of E = {e1, e2, . . . , er}
are the edges of G. The number of elements in N and E is
denoted by q and r, respectively. The size of the graph is
the number of nodes, i.e., q. In an undirected graph, each
of the links is defined by a couple of nodes ni and nj , where
i, j = 1, . . . , q, and it is denoted as (ni, nj). The link is said
to be incident on nodes ni and nj or to join the two nodes.
Two nodes joined by a link are referred to as adjacent or
neighboring.

For a graph G of size q, the number of edges r is at least

0 and at most q(q−1)
2

(when all the nodes are pairwise adja-
cent).

2.2 The Rudiments of Rough Sets
The idea of rough sets (see [12]) consists of the approxi-

mation of a given set by a pair of sets, called the lower and
the upper approximation of this set. Some sets cannot be
exactly defined. If a given set X is not exactly defined, then
we employ two exact sets (the lower and the upper approx-
imation of X) that define X roughly (approximately).

Let U 6= ∅ be a finite set of objects we are interested in.
U is called the universe. Any subset X ⊆ U of the universe
is called a concept in U . Let R be any equivalence relation
over U . We denote an equivalence class of any u ∈ U by
[u]R. With each subset X ⊆ U and any equivalence relation
R over U , we associate two subsets:

• R(X) = {u ∈ U : [u]R ⊆ X},

• R(X) = {u ∈ U : [u]R ∩X 6= ∅},

called the R-lower and R-upper approximation of X, re-
spectively. A set BNR(X) = R(X) − R(X) is called the
R-boundary region of X. If BNR(X) = ∅, then X is sharp
(exact) with respect to R. Otherwise, X is rough (inexact).
Roughness of a set can be characterized numerically. To this
end, the accuracy of approximation of X with respect to R
is defined as:

αR(X) =
card(R(X))

card(R(X))
,

where card denotes the cardinality of the set and X 6= ∅.
The definitions given earlier, in some situations, seem to

be too restrictive and rigorous. W. Ziarko proposed in [17]
some relaxation of the original rough set approach. His
proposition was called the Variable Precision Rough Set
Model (VPRSM). The VPRSM approach is based on the
notion of the majority set inclusion. Let U be the universe,
A,B ⊆ U , and 0 ≤ β < 0.5. The majority set inclusion is
defined as

A
β

⊆B if and only if 1− card(A ∩B)

card(A)
≤ β,

where card denotes the cardinality of the set. A
β

⊆B means
that a specified majority of elements belonging to A belongs
also to B. One can see that if β = 0, then the majority set
inclusion becomes the standard set inclusion.

By replacing the standard set inclusion with the majority
set inclusion in definitions of approximations, we obtain the
following two subsets:

• Rβ(X) = {u ∈ U : [u]R
β

⊆X},

• Rβ(X) = {u ∈ U : card([u]R∩X)
card([u]R)

> β},

called the Rβ-lower and Rβ-upper approximation of X, re-
spectively.

3. ASSESSMENT PROCEDURE
In the proposed approach to assessing the cohesion of sac-

cade connections between object components identified in
visual stimuli used in eye-tracking experiments, we can dis-
tinguish three main steps:

1. Transformation of a sequence of eye-tracking data (a
sequence of points in two-dimensional space) into an
undirected graph representing a complex network.



2. Identification of object components in a visual stimulus
and assignment of nodes of the complex network to
each identified component.

3. Assessment of the cohesion of saccade connections be-
tween object components identified in a visual stimu-
lus.

An example of a simple eye-tracking sequence over the
painting is shown in Figure 1.

Figure 1: An example of a simple eye-tracking se-
quence

As it was shown in [5], eye-tracking sequences can be con-
sidered in terms of complex networks. The main idea of
transformation of a sequence of eye-tracking points into a
complex network is to join close points, with respect to a
fixed radius of circle regions of interest (ROIs), into one
node in the network. The human eye cannot distinguish de-
tails located very close to each other. In Algorithm 1, for
transformation of a sequence of eye-tracking points into an
undirected graph representing a complex network, we use
the following notation:

• card denotes the cardinality of a given set,

• dist is a distance function in the two-dimensional space
(for example, Euclidean),

• first is the function that gets the first element of a
given set,

• roi is the function that gets the index of the region of
interest to which a given point belongs,

• node is the function that gets the node corresponding
to the region of interest with a given index.

An example of a complex network is shown in Figure 2.
To display this network in the graphical form, a specialized
tool called Pajek has been used (see [3]). Pajek is a program
for the analysis and visualization of large networks.

Identification of object components in a visual stimulus
used in the eye-tracking experiment can be performed, for
example, on the basis of the approach presented in [7]. Li et

Algorithm 1: Algorithm for transformation of a se-
quence of eye-tracking points into an undirected graph
representing a complex network.

Input : T = 〈t1, t2, . . . , ts〉 - a sequence of
eye-tracking points, ρ - a radius of circle
regions of interest (ROIs).

Output: G = (N,E) - an undirected graph
representing a complex network.

N ← ∅;
E ← ∅;
Π← ∅;
p← 1;
Create a new circle region of interest Πp;
Πp ← Πp ∪ {t1};
Create a new node np corresponding to Πp;
N ← N ∪ {np};
for i = 2, . . . , s do

exists← false;
for j = 1, . . . , card(Π) do

tc ← first(Πj);
if dist(ti, tc) ≤ ρ then

Πj ← Πj ∪ {ti};
exists← true;
break;

end

end
if exists = false then

p← p+ 1;
Create a new circle region of interest Πp;
Πp ← Πp ∪ {ti};
Create a new node np corresponding to Πp;
N ← N ∪ {np};

end

end
for i = 2, . . . , s do

l1 ← roi(ti);
l2 ← roi(ti−1);
if l1 6= l2 then

e← (node(l1), node(l2));
if e /∈ E then

E ← E ∪ {e};
end

end

end
Create an undirected graph G = (N,E);
Return G;

al. showed a hierarchical generative model that, for a given
image, classifies the overall scene, recognizes and segments
each object component, and annotates the image with a list
of tags. If we have identified object components, we can
assign, to each component, a set of nodes of the complex
network which correspond to regions of interest including
eye-tracking points covered by this component.

In the set of nodes of the complex network, we can distin-
guish:

• Nodes corresponding to object components.

• Nodes corresponding to eye-tracking points not cov-
ered by any object component. Such nodes are called
insignificant nodes.



Figure 2: An example of a complex network corresponding to eye-tracking data

Let O = {o1, o2, . . . , ov} be a set of all object components
identified in the visual stimulus. We use the following nota-
tion:

• N = {No1 , No2 , . . . , Nov} denotes a family of sets of
nodes corresponding to object components.

• N	 denotes a set of insignificant nodes.

In the proposed approach, we are interested in eye move-
ments (saccades) between identified object components. Be-
havior of viewers looking at a scene can be characterized by
some ambiguities of eye transitions between object compo-
nents. It means that fixations on some object component of
the visual stimulus do not uniquely point out fixations on
other object components in neighboring time moments. For
example, if the eyes of the viewer were focused on the table,
it would mean that they were focused earlier or later, on
the vase on the table only. Such ambiguities influence the
cohesion of saccade connections between components. We
propose to assess ambiguities of saccade connections using
rough sets. A measure based on rough sets is built over a
complex network corresponding to eye-tracking data. In the
presented approach, both a standard definition of rough sets
and the VPRSM approach are used.

Let O = {o1, o2, . . . , ov} be a set of all object components
identified in the visual stimulus used in the eye-tracking ex-
periment and G = (N,E) be an undirected graph represent-
ing a complex network, corresponding to eye-tracking data
and built by means of Algorithm 1. As it was mentioned
earlier:

N = No1 ∪No2 ∪ · · · ∪Nov ∪N
	.

Moreover, let us assume that we are interested in the cohe-
sion of saccade connections between two selected object com-
ponents identified in the visual stimulus, oi and oj , where

i, j = 1, 2, . . . , v. More precisely, we are interested in the
cohesion of saccade connections from the object component
oi to the object component oj . It is worth noting that the
defined measure will not be symmetrical.

For each node n ∈ No1 ∪ No2 ∪ · · · ∪ Nov , we define its
inter-component saccade neighborhood:

ICSN(n) = {n′ : (n, n′) ∈ E ∧ ∃
o∈O

(n′ ∈ No ∧ n /∈ No)}.

Analogously to rough approximation of sets defined in
rough set theory (see Section 2.2), we can define rough ap-
proximation of the inter-component saccade neighborhood
(from oi to oj) over the graph G.

The lower approximation ICSN(oi → oj) of the inter-
component saccade neighborhood, from oi to oj , is given
by:

ICSN(oi → oj) =
= {n ∈ Noi : ICSN(n) 6= ∅ ∧ ICSN(n) ⊆ Noj}.

One can see that the lower approximation ICSN(oi → oj)
of the inter-component saccade neighborhood consists of all
nodes Noi which are connected by inter-component edges
with nodes from Noj only.

The upper approximation ICSN(oi → oj) of the inter-
component saccade neighborhood, from oi to oj , is given
by:

ICSN(oi → oj) = {n ∈ Noi : ICSN(n) ∩Noj 6= ∅}.

The upper approximation ICSN(oi → oj) of the inter-
component saccade neighborhood consists of all nodes Noi

which are connected at least by one inter-component edge
with nodes from Noj .

The set:

BNICSN (oi → oj) = ICSN(oi → oj)− ICSN(oi → oj)



will be referred to as the boundary region of approximation
of the inter-component saccade neighborhood from oi to oj .
If BNICSN (oi → oj) = ∅, then the approximation is ex-
act. In the opposite case (i.e., BNICSN (oi → oj) 6= ∅), the
approximation is rough (inexact). The accuracy of approx-
imation of the inter-component saccade neighborhood can
be defined analogously to the accuracy of approximation in
rough set theory, i.e.:

αICSN (oi → oj) =
card(ICSN(oi → oj))

card(ICSN(oi → oj))
.

We treat αICSN (oi → oj) as a measure of the cohesion
of saccade connections from the object component oi to the
object component oj . One can see that if αICSN (oi → oj) =
1, then the connections are the most coherent ones.

Figure 3: An example of the the fragment of a com-
plex network over the visual stimulus

By replacing the standard set inclusion with the major-
ity set inclusion in the original definitions of the lower and
upper approximations of the inter-component saccade neigh-
borhood, from oi to oj , we obtain the generalized notions of
the β-lower and β-upper approximations, respectively.

Let 0 ≤ β < 0.5. The β-lower approximation ICSN(oi →
oj) of the inter-component saccade neighborhood, from oi
to oj , is given by:

ICSNβ(oi → oj) =

= {n ∈ Noi : ICSN(n) 6= ∅ ∧ ICSN(n)
β

⊆Noj}.

The β-lower approximation of the inter-component saccade
neighborhood ICSN(oi → oj) consists of all nodes Noi

which are connected by inter-component edges, in most cases
(i.e., in terms of the majority set inclusion), with nodes from
Noj .

The β-upper approximation ICSN(oi → oj) of the inter-
component saccade neighborhood, from oi to oj , is given
by:

ICSN
β
(oi → oj) =

=
{
n ∈ Noi :

card(ICSN(n)∩Noj
)

card(ICSN(n))
> β

}
.

A relaxed measure of the cohesion of saccade connections
from the object component oi to the object component oj
has the form:

αβICSN (oi → oj) =
card(ICSNβ(oi → oj))

card(ICSN
β
(oi → oj))

.

Let us consider an example of the fragment of a complex
network over the visual stimulus with identified three object

components o1, o2, and o3, shown in Figure 3. We can
assess the cohesion of saccade connections from the object
component o1 to the object component o2 by means of the
proposed approach.

In case of a standard definition of rough sets (i.e., the
most rigorous case), nodes belonging to the lower approx-
imation ICSN(o1 → o2) of the inter-component saccade
neighborhood, from o1 to o2, are marked with circles in Fig-
ure 4, whereas nodes belonging to the upper approximation
ICSN(o1 → o2) of the inter-component saccade neighbor-
hood, from o1 to o2, are marked with rectangles in Figure 5.
Hence, we obtain the cohesion of saccade connections, from
o1 to o2, as follows:

αICSN (o1 → o2) =
2

3
.

Let us calculate the cohesion of saccade connections in the
opposite situation, i.e., from the object component o2 to the
object component o1. Nodes belonging to the lower approx-
imation ICSN(o2 → o1) of the inter-component saccade
neighborhood, from o2 to o1, are marked with circles in Fig-
ure 6, whereas nodes belonging to the upper approximation
ICSN(o2 → o1) of the inter-component saccade neighbor-
hood, from o2 to o1, are marked with rectangles in Figure 7.
Hence, we obtain the cohesion of saccade connections, from
o2 to o1, as follows:

αICSN (o2 → o1) =
3

4
.

One can see that a measure of the cohesion of saccade con-
nections is not symmetrical, i.e., in general:

αICSN (oi → oj) 6= αICSN (oj → oi),

for i, j = 1, 2, . . . , v and i 6= j.

Figure 4: Nodes belonging to the lower approxima-
tion ICSN(o1 → o2) of the inter-component saccade
neighborhood, from o1 to o2

In case of the VPRSM approach (i.e., more relaxed case),
for β = 0.25, nodes belonging to the β-lower approximation
ICSN0.25(o1 → o2) of the inter-component saccade neigh-
borhood, from o1 to o2, are marked with circles in Figure 8.
One can see that:

ICSN
0.25

(o1 → o2) = ICSN0.25(o1 → o2).

Hence, we obtain the cohesion of saccade connections, from
o1 to o2, as follows:

α0.25
ICSN (o1 → o2) = 1.



Figure 5: Nodes belonging to the upper approxima-
tion ICSN(o1 → o2) of the inter-component saccade
neighborhood, from o1 to o2

Figure 6: Nodes belonging to the lower approxima-
tion ICSN(o2 → o1) of the inter-component saccade
neighborhood, from o2 to o1

Figure 7: Nodes belonging to the upper approxima-
tion ICSN(o2 → o1) of the inter-component saccade
neighborhood, from o2 to o1

4. CONCLUSIONS
We have shown an idea of combining eye-tracking data,

complex networks, and rough sets. The combination enabled
us to define a measure for assessing the cohesion of saccade
connections between object components identified in visual
stimuli used in eye-tracking experiments. We can distinguish
two main directions of the further research. The first one
will concern extending the spectrum of measures by applying
various rough set approaches, among others, those based on
combined rough sets and fuzzy sets (cf. [4]) or those based on
probabilistic approaches to rough set theory (cf. [16]). The
second one will concern deeper analysis of inter-component

Figure 8: Nodes belonging to the β-lower approx-
imation ICSN0.25(o1 → o2) of the inter-component
saccade neighborhood, from o1 to o2

saccade connections with respect to semantic meaning of
object components. For example, we can use the approach
based on decision systems over ontological graphs (cf. [9]).

The defined measures will allow us to perform experiments
assessing relationships between visual art perception and
various neuropsychological disorders. One of the interest-
ing and challenging topics is to select proper artistic styles
for diagnosis of a given disorder.
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