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ABSTRA CT 

In the past twenty years, our ability to manipulate and engineer 
devices at the nano-scale has grown exponentially. As the 
fabrication of autonomous systems at these scales becomes a 
reality, the observation of biological structures can help us 
understand general design principles at the nano-scale.  The 
gliding motility assay is an excellent model system for the 
observation of collective behavior of coupled motors. Indeed, 
hundreds of surface-adhered kinesin motors propel one 
microtubule filament (Figure 1). Filament motion has been 
observed using fluorescence microscopy, revealing fluctuations in 
gliding velocity [3; 4]. We here theoretically characterize the 
motional diffusion coefficients through the heterogeneity factor 
proposed by Sekimoto and Tawada [5], and use a Brownian 
dynamics simulation of kinesin head diffusion under an 
anharmonic potential to determine a theoretical value of 0.3 for 
this heterogeneity factor. 
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1. INTRODUCTION 
 

In a viscous medium, any velocity fluctuations observed during 
directed motion lead to energy dissipation and therefore to a loss 
of efficiency. These observed velocity fluctuations have 
previously been observed and quantified by a motional diffusion 
coefficient [3; 4]. A theoretical framework explaining these 
fluctuations as a consequence of the addition and removal of 
heterogeneous motors from the linear array of motors propelling 
the filament has been proposed by Sekimoto and Tawada [5]. 
Their model gave rise to a linear relationship between the 
motional diffusion coefficient and a factor given by the 
heterogeneity of motor effectiveness. We extended their model to 
motors with fixed steps and variable stiffnesses and obtained the 
following expression for the motional diffusion coefficient: 
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Dm =

ki − ki( )2
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where ki is the stiffness of motor i, v is the microtubule’s velocity 
and ρ  the linear density of attached motors. We then used a 

 
 

 
 
Figure 1. Motility assay schematic. Under our 
anharmonic tail stiffness hypothesis, the more kinesin 
motors attached further from the projection of the 
microtubule’s axis on the surface (in red) are stiffer than 
the motors closer to the filament's axis (in green on the 
figure) 

 
Figure 2. Brownian dynamics simulation results. 
Distribution of tail extension as a function of distance from 
the projection of the microtubule’s axis on the surface 
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Brownian dynamics simulation of the kinesin’s head diffusion 
under an anharmonic potential to determine the stiffness 
distribution. This approach yields a theoretical value of 0.3 for the 
heterogeneity factor. 

 

2. RESULTS AND DISCUSSION 
2.1 Results 
We use a Brownian Dynamics simulation of the kinesin head 
diffusion [1]  to determine the distribution of kinesin tail 
extension. This consists in discretizing the following set of 
equations: 

 

 

where fk is the elastic force exerted on the diffusing head by the 
kinesin tail, fr is the random Langevin force, ζ is given by the 
Einstein relation for the diffusing tethered kinesin head Dkinesin = 
kT/ζ, and Dkinesin = 20 µm2/s (from [2]). 

We then use the freely jointed chain force-extension relationship 
to determine the stiffnesses from the extensions r: 
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where fk is the force, li is the Kuhn length of segment i. Under this 
approximation, the motors further from the microtubule tend to be 
stiffer (see Figure 1). We run 104 trajectories for various kinesin 
attachment points on the surface to determine if the kinesin head 
binds to the microtubule, and when it binds, to determine the 
distribution of its extension li (see Figure 2). We obtain a 
theoretical value of 0.3 for the heterogeneity constant αk. 
2.2 Discussion 
We can explicitly quantify the difference between the work done 
including fluctuations, !< ΔW >  and the work done in the absence 
of fluctuations !ΔW , against a viscous force F: 

!!

< ΔW > −ΔW = FΔx − F Δx

< ΔW > −ΔW =ζ
Δx2
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whereς is the viscosity of the medium. In our model, the filament 
displacement can be written as follows, since the filament is in 
equilibrium after each step: 

!
Δx =

kid
N < ki >  

We then obtain: 

 
!< ΔW > −ΔW =αkΔW   

Therefore, the heterogeneity factor represents the proportion of 
extra work required to advance against a viscous force in the 
presence of fluctuations. 

3. CONCLUSION 
In this paper, we extended Sekimoto and Tawada’s theoretical 
framework for the expression of motional diffusion coefficient to 
the kinesin motility assay with anharmonic kinesin tail stiffness, 
and showed that the heterogeneity coefficient is linked to 
variations in motor attachment geometry. We then used Brownian 
dynamics simulations to determine, for the first time, a theoretical 
value for this heterogeneity coefficient of 0.3. Finally, we showed 
that this heterogeneity factor is the relative supplementary work 
needed for motion in the presence of fluctuations. These results 
can be applied to the engineering of more efficient motility assays 
by aligning motors. This increase in efficiency when motors are 
aligned can be generalized to all nano-devices driven by many 
heterogeneous motors.  
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