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ABSTRACT
In this paper, an extension of sensitivity based pruning (SBP)
method for Nonlinear AutoRegressive models with eXoge-
nous inputs (NARX) model is presented. Besides the in-
puts, input and output delays are simultaneously pruned in
terms of the backward elimination. The concept is based on
replacement of some regressors by their mean value, which
corresponds to the removal of influence of the particular re-
gressors from the network. The method is demonstrated
on two datasets. Firstly, one artificial generator is used to
test if the method is able to find an optimal set of inputs
and delays. Further, the method is used for prediction of gas
consumption of a simulated heating for an office building. It
is shown that the SBP significantly reduces the complexity
of the NARX network without any significant performance
degradation. Moreover, it is hypothesized than SBP can be
more important for NARX than for simple feedforward neu-
ral network, because NARX is more prone to overfitting and
has problems with stability.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Connectionism
and neural nets

General Terms
Algorithms, Experimentation.

Keywords
Time series prediction, neural networks, feature selection,
pruning, NARX.

1. INTRODUCTION
In recent years, technological progress enables to measure
and extract rapidly growing numbers of variables. Often
multiple measurements are performed at successive time in-
stants, which corresponds to multivariate time series. The

time series are often further processed to solve a certain
task like prediction or classification. In some data sets, a
temporal context plays an important role. The temporal
context means that the value of a variable depends on the
past values of other variables. A model that can deal with
such temporal dependencies is called here temporal context
aware (TCA) model. An important property of such models
is that their response on the same input can be different in
two different times. Such models are able to predict or clas-
sify temporal patterns. Typical TCA models are recurrent
neural networks. Thanks to their computational capabili-
ties [21], Nonlinear AutoRegressive models with eXogenous
inputs (NARX) are a popular family of models, which, if
used in closed-loop manner, can be understood as a recur-
rent neural networks. NARX have been used in many system
identification and time-series prediction applications. One of
most important points of an application of NARX network
is a proper selection of inputs, input delays and output de-
lays. Unfortunately, not enough attention is paid to those
points, although they definitely help to avoid overfitting,
reduce time and training data requirements, and can even
increase the prediction performance. Since NARX network
is one of temporal context aware methods, we believe that
also selection of inputs must be temporal context aware and
should be performed simultaneously with selection of input
and output delays.

In most studies, common non-TCA filter feature selection
criteria have been used (e.g. entropy based [10], Fisher’s cri-
terion [3], minimal-redundancy-maximal-relevance [1]). In
[1], bi-directional long short-term memory was used to rec-
ognize words in Arabic text and the minimal-redundancy-
maximal-relevance (mRMR) technique was chosen among
many other tested methods, because it offered the best com-
promise between accuracy and speed. Although the stud-
ies usually report an improvement of the performance or
computational time brought by the feature selection, we hy-
pothesize that this approach may not be suitable in some
cases. The main reason is that these common filter criteria
do not take temporal context into account and thus they
cannot guide a search mechanism into a feature subset that
corresponds to a sufficiently good performance of the TCA
classification or prediction model. The non-TCA filter cri-
teria can be useful and even better than wrapper criteria
for common non-TCA classification models (e.g. Fisher dis-
criminant or Support Vector Machines) or prediction models
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(e.g. feed-forward neural networks). However, their use as
a performance approximation for the TCA models can se-
riously fail. For example, in [20], the number of inputs to
a RNN was reduced by employing a binary gravitational
search and binary particle swarm optimization algorithms
for feature selection. However, the accuracy of optimum
path forest classifier was used as the feature selection cri-
terion. Since the optimum path forrest classifier is static
model that does not take into account the temporal context
of the time series, features that are optimal for this classifier
can differ from features that are optimal for RNN.

One easy option is to use feature selection for non-TCA feed-
forward neural networks that use so-called saliency mea-
sures. Input selection can be understood as a pruning of
inputs from the network. Popular algorithms developed for
feed-forward neural networks are optimal brain surgeon [5]
and optimal brain damage [9] based on saliency based weight
ranking. For recurrent neural network, optimal brain sur-
geon was adapted in [7] for pruning a general dynamic neural
network.

Although the pruning mechanisms are used to remove net-
work connections or nodes, not sufficient effort was devoted
to selection of inputs. A delay damage algorithm was intro-
duced in [8], which performs selection of model order (num-
ber of input and output lags) through a pruning. The second
order derivative of the error with respect to the delayed in-
puts and outputs was used as the criterion. For four experi-
mental data sets, the method significantly improved the gen-
eralization and predictive performance of NARX. Another
approach is Signal-to-Noise Ratio introduced by Bauer et
al. [2] for evaluation of features for feed-forward neural net-
works, which is weight-based method, because it uses only
weights of the neural network.

On the other hand Sensitivity based Pruning [16] developed
by Moody evaluates the effect of removing an input variable
from the fully connected network on its training error. Such
method can be understood as output-based, because it uses
information from network’s output. Laine and Bauer [11]
compared and assessed the Signal-to-Noise Ratio approach
and the Sensitivity based Pruning for Elman network on
a very limited number of data sets and observed that the
selection methods performed equivalently. The sensitivity
based pruning was used for selection of inputs for NARX
network for prediction of heating gas consumption or ther-
mal discomfort [14]. It was observed in both cases that the
feature selection brings significant benefits for recurrent neu-
ral networks in terms of 50% input dimensionality reduction
without a significant increase of prediction performance.

This paper enhances the sensitivity based pruning for simul-
taneous selection of inputs, input delays and output delay.
Section 2 describes the original Moody’s sensitivity based
pruning method, its extended application is described in sec-
tion 3 and some practical issues are discussed in section 4.
Section 5 experimentally demonstrates the method on arti-
ficial and real-world time-series. Finally, section 6 concludes
the paper and provides some potential future work exam-
ples.

2. SENSITIVITY BASED PRUNING

To select proper features tailored for particular feed-forward
network, one can use well known sensitivity based method
developed by Moody [17]. It is called Sensitivity based
Pruning (SBP) algorithm. It evaluates a change in train-
ing mean squared error (MSE) that would be obtained if ith
input’s influence was removed from the network. The re-
moval of influence of the input is simply modeled by replac-
ing it by its average value. Let [x(1),x(2),x(3), . . .x(N))] be
the multidimensional time series of length N , where x(k) =
[x1(k), . . . , xi(k), . . . , xD(k)]>, be the kth of N instances of
the input vector. Let [t(1), t(2), t(3), . . . t(N))] be the one
dimensional time series of corresponding target outputs.

A feed-forward network can be understood as a non-linear
function y(k) = f(x(k)). Input selection seeks for a good
subset of inputs {1, 2, . . . , i, . . . , D}. The goodness of a sub-
set can be measured using mean squared error (MSE) on
some data set. For a trained network, one can eliminate an
influence of ith input xi(k) by replacing it by its average

value
∑N
k=1 xi(k)/N . Let xi(k) be the kth data instance

whose ith position is replaced by such corresponding aver-
age. The sensitivity of the network to an input is defined
as absolute increase of MSE caused by the input’s influence
removal:

Siin =
1

N

N∑
k=1

[f(xi(k))− t(k)]2 − 1

N

N∑
k=1

[f(x(k))− t(k)]2

= MSEiin −MSE. (1)

Like in Moody’s original work, also in our implementation
of SBP, backward elimination was used as the search mech-
anism. The algorithm starts with the full set of D inputs.
At each step, a target neural network is trained. Further,
its sensitivity is computed for all particular inputs according
to the Equation 1. The input, for which the sensitivity is
the smallest one is removed from the data. Note that a new
neural network is trained at each backward step.

3. ENHANCEMENT FOR NARX
Compared to the feed-forward networks, NARX network
computes y(k) from the following regressors:

• delayed inputs {x(k−δ)}δ∈∆, where the delay δ is from
a predefined set of input delays ∆ ⊂ {0, 1, 2, . . . δMAX},

• delayed outputs {t(k − λ)}λ∈Λ), where the delay λ is
from a predefined set of output delays Λ ⊂ {1, 2, . . . λMAX}.

Besides the inputs, also input and output delays can be elim-
inated. For a trained network, such elimination can be per-
formed similarly to previous one described by Moody [17]:

• An influence of input i is removed by replacing xi(k−δ)
by

∑N
k=δ+1 xi(k−δ)/N for all k and δ, i.e. by replacing

ith component of all inputs and their delayed versions
by corresponding average value.



• An influence of input delay δ is removed by replacing
xi(k − δ) by

∑N
k=δ+1 xj(k − δ)/N for all k and i, i.e.

by replacing all components of inputs delayed by δ by
corresponding average value.

• An influence of output delay λ is removed by replacing
t(k−λ) by

∑N
k=λ+1 t(k−λ)/N for all k, i.e. by replac-

ing output delayed by λ by its corresponding average
value.

Note that delayed inputs are replaced for all i, which means
that the influence of the delay is removed from all inputs.
This can degrade the results for systems with significantly
different delays for different outputs. On the other hand,
this saves computational requirements by selecting M from
D + |∆|+ |Λ| original entities instead of D × |∆|+ |Λ|. Al-
though this naive approach is used in all underlying experi-
ments, the exhaustive approach can be easily implemented.

Further, let MSEiin, MSEδdin or MSEλdout be the MSE ob-
tained for network from which the influence of input i, input
delay δ or output delay λ was removed, respectively.Then,
the sensitivity of the network to input, input delay or output
delay is defined as absolute increase of MSE caused by re-
moving the input, input delay or output delay, respectively:

Siin = MSEiin −MSE (2)

Sδdin = MSEδdin −MSE (3)

Sλdout = MSEλdout −MSE. (4)

SBP algorithm starts with the full set of inputs {1, . . . , D},
input delays ∆ and output delays Λ. At each step, a tar-
get neural network is trained, sensitivities defined above are
computed for all remaining inputs, input delays and output
delays. The input, input delay or output delay for which
the sensitivity is smallest, is pruned. Those backward steps
repeat until a stopping condition is met.

4. PRACTICAL ISSUES
This section describes two important implementation issues
for described SBP. First, it must be pointed out that un-
derlying implementation differs from the original Moody’s
approach in error estimate used for sensitivity computation.
Compared to the original Moody’s approach [17], which uses
only training set for the sensitivity computation (resubsti-
tution estimate), we split the training set into two parts - on
the first we train the network and on the second we compute
the sensitivity (hold-out estimate).

Second, an obvious question is, how many inputs and de-
lays to select. The backward elimination described above
effectively orders the inputs, input delays and output delay,
but does not answer this question. One possible solution is
based on validation dataset and minimum validation error
principle. The validation dataset is used to test the partic-
ular models of different numbers of inputs and delays. The
number of inputs and delays is then decided according to
the minimal validation error.

5. EXPERIMENTS

The proposed approach is validated on two time series data.
To ensure availability of sufficient testing data and validity
of results, both datasets are generated by computer. First, a
simple system with known analytically expressible dynamics
is identified to demonstrate that the method efficiently elim-
inates unimportant regressors. Second, a real application on
modeling of heating consumption is presented.

The predictor is the NARX network with one hidden layer
whose delayed output is connected back to the input [12].
The network was simulated in Neural Network Toolbox for
Matlab [15]. Three hidden units were used. The hidden
and output units use the sigmoid and linear transfer func-
tion, respectively. The mean squared error was minimized
by Levenberg-Marquardt algorithm, because of its relatively
high speed, and because it is highly recommended as a first-
choice supervised algorithm by Matlab Neural Network tool-
box, although it does require more memory than other al-
gorithms [15]. The training was stopped after 100 epochs
without any improvement or after the number of training
epochs exceeded 300 or if the error gradient reached 10−7.

5.1 Artificial data
5.1.1 Data generation

First, 30 inputs are generated by pseudorandom methods to
efficiently excite frequencies and amplitude levels. Pseudo-
random binary signals are well suited for linear system iden-
tification, because they imitate white noise in discrete time
with a deterministic signal and excite all frequencies equally
well. However, amplitude modulated pseudo-random binary
signals (APRBS) are more appropriate for non-linear iden-
tification methods [18, Chapter 17.7], because they have
changing amplitude and cover more operating conditions of
interest. Therefore, the dynamics of the input variables is
defined here using APRBS. All the input signals are defined
as maximally shifted APRBS having a clock period of 1 [13,
Chapter 13.3].

The output dynamics is:

t(k) =
x1(k − 2)x2(k − 4) + x1(k − 4)x2(k − 2)

1 + x2(k − 2)t(k − 3) + t2(k − 3)
. (5)

Thus, the relevant regressors are x1(k−2), x1(k−4), x2(k−
2), x2(k − 4), t(k − 3) and a proper selector should select
inputs {1, 2}, input delays {2, 4}, and the only relevant au-
toregressive delay: {3}.

5.1.2 Results
To evaluate the results, training, validation and testing data
were generated. The training data consisted of 400 samples.
To choose the output dimensionality, neural networks with
different numbers of regressors were tested on an indepen-
dent validation data set with 400 samples. The testing er-
rors of the method were estimated on 3000 samples, which
are not used in any part of the predictor design process.
In original setting, there are 30 inputs, 7 candidate input
delays {0 . . . 6} and three candidate output delays {1 . . . 3}.
The total number of original entities inputs, input delays
and output delays is thus 30, 7 and 3, respectively. This
corresponds to selection of M of 30 + 7 + 3 = 40 entities
corresponding to 30× 7 + 3 = 213 original regressors.
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Figure 1: Dependence of average validation and test-
ing MSE on number of selected inputs and delays M.

The dependence of validation and testing MSE averaged over
100 runs on the number of selected inputs and input and
output delays can be found in Figure 1. One can observe
that there is an evident peak of both averaged validation
and testing MSE for M = 5, which corresponds to size of
the optimal set of relevant regressors. The peak appears in
all 100 runs and in all those runs, it corresponds to selected
inputs {1, 2}, input delays {2, 4}, and autoregressive delay
{3}. For the artificial data set, the method always found
optimal regressors that correspond exactly to the generator
dynamics described in the previous section. This proves the
ability of the method to find optimal set of inputs and delays.

5.2 Simulated building consumption data
5.2.1 Data generation

To demonstrate a practical importance of the proposed ap-
proach, the prediction of total gas consumption of modeled
office building heating is presented. An hourly prediction for
the same building is described in details in [14]. The office
building is located at Casaccia Research Centre of Italian
National Agency for New Technologies, Energy and Sus-
tainable Economic Development (ENEA). The structure is
composed of three floors and a thermal plant in the base-
ment. There are 41 offices of different size with a floor area
ranging from 14 to 36 m2, two electronic data processing
rooms each of about 20 m2, four laboratories, one control
room and two meeting rooms. Each office room has from
one up to two occupants. For each room and laboratory, as
thermal exchangers, there are fan-coils with on-off fan speed
controlled by a proper thermostat with hysteresis equal to
1 ◦ C. During winter, the thermal plant produces heat by a
traditional natural gas boiler. This study is related only to
heating during winter season. The thermal fluid circulation
into fan-coil circuits is ensured by a triplet of centrifugal
pumps. The building is equipped with an advanced moni-
toring system collecting data from sensors of environmental
conditions and electrical and thermal energy consumption.

In order to simulate testing data of sufficient sample sizes, a
Matlab Simulink simulator based on Heat, Air and Moisture

Figure 2: Partitioning of F40 building zones. Num-
bers denote the number of zones and numbers in
brackets denote corresponding number of fan-coils.

model for Building and Systems Evaluation [6] was used. In
particular, the building was divided into ten controllable
thermal zones according to different thermal behavior de-
pending on solar radiation exposure. Therefore a zone con-
sists of a group of rooms with similar climatic conditions and
the same climate control policy. Figure 2 shows the division
into thermal zones. Although there are 15 zones at all, those
that do not have sensors and remotely controllable fan coils
are not considered.

The gas consumption is derived by integration of the natural
gas mass flow which depends directly from the discharge and
return water temperature at the thermal plant and from
the thermal plant efficiency. The fan-coils are modeled by
the ε-Number of Transfer Units (ε-NTU) method [4] which
allows to derive the heat injected in the zones and the outlet
water temperatures from known zone air temperatures, fan-
coil inlet water flows and fan speeds. The inputs of the
simulation are indoor temperature set points, current air
temperatures inside the zones and external meteorological
data. The summary of the inputs can be found in Table 1.
The main task is to predict total gas consumption in the
following 12 hours denoted as y(t).

The behavior of supply water temperature set point was con-
trolled by a simple weather compensation rule. To excite the
dynamics of the system in a proper degree, we also added a
random component. The value of the temperature set point
is Gaussian random number with standard deviation 4◦ C
and mean equal to 85−2Te, where Te is the mean of previous
day external temperature. The behavior of air temperature
set points differs for daytime and nighttime hours. Between
7 a.m. and 7 p.m., they are also Gaussian random num-
bers with mean 21.5◦ C and standard deviation 1◦ C, which
guarantees an acceptable level of thermal comfort. More-
over, there is a saturation under 20◦ C and above 25◦ C.
Between 7 p.m. and 7 a.m., there is a nighttime regime and
air temperature set points are Gaussian random numbers
with mean 20◦ C, standard deviation 1◦ C and upper satu-
ration level 23◦ C. A similar randomized approach was used



Table 1: Summary of the network inputs
Inputs Names
x1(k) the value of the air temperature set point constant for the following 12 hours
x2(k) the value of the supply water temperature set point constant for the following 12 hours

x3(k) . . . x12(k) ten values of instantaneous air temperature in ten zones
x13(k) . . . x19(k) arithmetic means of weather variables computed over last 12 hours
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Figure 3: Comparison of input selection for feedfor-
ward network and proposed input and delay selec-
tion for NARX.

in [19].

5.2.2 Results
The training data consisted of two simulated heating sea-
sons, 2004/2005 and 2005/2006. To choose the output di-
mensionality, neural networks with different numbers of re-
gressors were tested on an independent validation data set
2006/2007. The testing errors of the method were computed
on the 2008−2012 data sets, which are not used in any part
of the predictor design process and are large enough to pro-
vide valid estimate of the real prediction error.

The results are shown in Figure 3, where only testing error
is depicted. The SBP of inputs and delays for NARX is
compared to selection of inputs for common feed-forward
network with the same number of hidden units, the same
training algorithms and the other settings. To make the
values on horizontal axis comparable, number of network
weights is used. For three hidden units, maximum number
of weights (without selection of inputs or delays) for feed-
forward network is 57, while maximum number of weights
for NARX is 237. This is why the graphs span different
ranges on horizontal axis.

One can observe that without the selection of inputs and
delays, NARX network with the original settings is signifi-
cantly worse than the simple feedforward network (Wilcoxon
sum-rank test, α = 0.05). On the other hand, if SBP is used,
NARX network becomes better as the elimination proceeds
until it permanently outperforms all feedforward networks
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Figure 4: Boxplots of MSE for feedforward network
with full set of inputs (FF/full) and with selection of
inputs (FF/selection) and for NARX network with
full set of delays and inputs (NARX/full) and with
selection of inputs and delays (NARX/selection).

of comparable number of weights. Moreover, one can see
that the input selection for feedforward network causes a
performance degradation. This demonstrates that the in-
put and delays selection is much more important for NARX
network than the input selection is for the feed-forward net-
work. Although this result is obtained for a specific case of
one particular application, it is highly probable that this will
be also obtained for other data, because the NARX network
has a more complex dynamics and its irrelevant connections
cause higher prone to overfitting and smaller stability of the
network.

Figure 3 does not consider a decision about number of in-
puts and delays. Therefore, the final MSE obtained by min-
imum validation error principle (see section 4) averaged over
100 runs is compared by boxplots in Figure 4. The figure
supports the previous evidence that the pruning is more im-
portant for NARX network than for feedforward network.
Although NARX network is significantly worse for the origi-
nal set of inputs and delays, it significantly outperforms the
feedforward network if the pruning is used.

Here we do not interpret the results of the selection. We
do not describe, which inputs and delays were selected and
which not. This is out of the scope of the paper, which only
proposes the new method and uses the application only as
a tool for proving the concept.



6. CONCLUSIONS
The paper proposes an extension of SBP method to NARX
networks. It shows that the method efficiently selects in-
puts, simultaneously removes input and output delays and
does not degrade the prediction performance. The approach
is obviously not limited to NARX neural network, but is
easily extendable to other networks. The extension would
be straightforward. The network must be simulated on the
data and the signal of connection, which is to be removed is
collected for all data samples. Than the signal is replaced
by its mean value computed from the collected signal.

For future, some practical implementation issues described
in section 4 should be focused in more details. First, it
should be examined, if and when the sensitivity based on
hold-out error estimate (computed on validation data) brings
some benefits to the resubstitution error estimate (computed
on training data). Further, different methods for final de-
cision about number of inputs and delays or different stop-
ping condition for the backward search should be proposed.
Finally, the influence of the use of the naive approach (con-
sidering the same delays for all inputs) instead of compu-
tationally more intensive exhaustive approach (considering
and eliminating different delays from different inputs) should
be examined.
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