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ABSTRACT
Gene regulatory networks (GRNs) possess an important struc-
tural property; they are sparse and resilient, with a robust
topology that affords protection against random “attacks”
(e.g., gene deletions). However, such networks exhibit opti-
mal or near-optimal topological features not present in other
scale-free networks. This paper utilizes an integer linear
program formulation to gauge the exact structural opti-
mality of scale-free networks measured using the average
shortest path between transcription factors and the regu-
lated genes of a gene-regulatory network sampled from the
Escherichia coli bacterium. While randomly generated ver-
sions of these networks show several cases for improvement,
few subnetworks sampled from Escherichia coli ’s transcrip-
tional network show optimized solutions that differ substan-
tially from their original topology. We therefore conclude
that sampled transcriptional subnetworks from Escherichia
coli exhibit an “optimal” topology not present in alterna-
tive networks. Because these analyses do not consider the
biology of expression dynamics and are based on topology
alone, other communication systems, such as wireless net-
works, may benefit from a more detailed examination of the
role in which the average shortest path affects system func-
tion, such as with noise or other signaling disruptions.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Biology and genetics;
G.1.6 [Mathematics of Computing ]: Numerical Analy-
sis—Optimization; G.2.2 [Discrete Mathematics]: Graph
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General Terms
Gene-regulatory networks, Graph theory, Linear Program-
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Keywords
Average shortest path; transcriptional network motif; feed-
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1. INTRODUCTION
In a gene-regulatory network (GRN), the protein-coding

genes of DNA are abstracted as the nodes of a directed
graph, with the interconnecting links associated with either
a stimulatory (up-regulating), inhibitory (down-regulating),
or mixed (both up-regulating and down-regulating) effect
on gene expression, and therefore, cellular protein abun-
dance [1]. An exciting capability of GRNs is that they re-
sist deleterious effects from external disruptions–a property
termed as ’biological robustness’ [2], such as the ability to
mitigate dynamical effects of noise in protein-coding gene ex-
pression [3]. While previous research has accredited some of
this capability to network topology, there stands an under-
explored question: which topological features contribute to
this robustness, and what is its underlying mechanism?

Gene-regulatory networks fall within a class of scale-free
networks [4], in which their topological degree distribution
follows a power-law equation [5]. This feature is associated
with loosely connected modules that support fewer genes
with larger degree; such genes are distinguishably known
as “hubs” or ”hub nodes” [5]. Conversely, the majority of
networked genes possess degrees much lower than the av-
erage. This aspect attributes resilience to the deleterious
effects of genetic mutations, because highly connected mas-
ter transcriptional regulators occur rarely in these networks;
however, targeted suppression of these proteins, possibly
by manipulating gene activity, may decouple their influence
from the network and lead to a loss in organism-level func-
tion. Additionally, connectivity of some transcriptional net-
work motifs, such as the feed-forward loop, to the embed-
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ding network may contribute substantially to its topological
properties, such as the average shortest path and cluster-
ring coefficient [6, 7]. Aside from these topological charac-
teristics, feed-forward loops admit dynamical characteristics
linked with their topology, such as an ability to generate
pulses [8], admit signal delays and irreversible speed-ups [8],
or respond differentially to dynamically acute concentration
fluctuations [9].

In this paper, we investigate how another topological metric–
the average shortest path between any two networked nodes–
is affected by different scale-free architectures with identical
degree distribution and feed-forward loop abundance. In
this context, We show that a gene-regulatory network of the
Escherichia coli (E. coli) bacterium achieves a near-optimal
level of robustness against changes to the average shortest
path. This finding was not observed for the randomized
networks considered here.

2. NETWORK DATASETS

2.1 Transcriptional Regulatory Networks
The E. coli bacterium thrives in the mammalian diges-

tive tract, and is a widely-used model prokaryotic organ-
ism [10], and its GRN is considered a prototypical scale-
free network. We have used the GeneNetWeaver software
package [11] to obtain the largest-connected component of
E. coli ’s GRN. We then derived a transcriptional-regulatory
network (TRN) from this GRN by pruning the gene-gene in-
teractions, leaving transcription factor (TF)-gene and TF-
TF interactions. We term a “regulated gene” as one that
does not regulate another, although TFs may regulate both
other TFs and regulated genes. In this sense, the transcrip-
tional regulatory network admits a regulation hierarchy with
TFs near the root(s) and regulated genes as its leaves. Col-
lectively, the E coli TRN so obtained has 23 connected com-
ponents, 1565 transcription factors and regulated genes, and
3758 directed edges.

A number of subnetworks were sampled randomly from
this transcriptional network, each with a number of nodes
n = 5, 10, 15, 20, 25, 30, using the GeneNetWeaver software
package. Networks were sampled in a way that ignored any
auto-regulatory edges, as these did not contribute to the
optimization metric (see below). Additionally, 10 replicates
for each network size, n, were sampled for a total of 300
unique transcriptional-regulatory networks.

2.2 Randomized networks
Each sampled transcriptional-regulatory network was“ran-

domized” using the following algorithm. We began with a
number of disconnected nodes n, and |E|-many edges from
each sampled E. coli network. Next, we selected a node pair
at random with uniform probability from the set of all possi-
ble pair-wise combinations between distinct nodes, and drew
a directed edge between them. This node-pair was then re-
moved from the set of available pairs. This procedure was
iterated until |E|-many edges were drawn.

3. METHODS

3.1 Metrics and criteria for optimal topology
We adopt a version of the average shortest path, 〈d〉, as a

measure for network robustness, which has been widely used

Figure 1: (a) An exemplary random network and (b)
it’s post-optimization output from the integer linear
programming algorithm. The in- and out-degrees of
each node in both are identical, and the existence
of routes from the TFs (nodes 1-5) to their target
regulated gene (node 6) have been preserved. In
this example, the optimized network (b) exhibits a
smaller average shortest path, 〈d〉, than the exem-
plary network (a).

as a robustness metric for many complex systems [12]. In
this paper, 〈d〉 is defined as the distance, in number of“hops”
(i.e., single movements between adjacent nodes) required to
connect a transcription-factor node to a regulated gene, and
averaged over all such pairs in a network. We restrict our
analyses to the connected paths from transcription factors
to genes. With these conditions, 〈d〉 can be expressed by the
equation:

〈d〉 =
1

p

nt∑
i

ng∑
j

dij , with dij <∞, (1)

wherein dij denotes the shortest path between nodes i and j,
p the number of connected TF-gene pairs, nt the number of
TFs, and ng the number of genes in the network. The type
of the regulatory interaction, either up- or down-regulating,
was not considered in Eq. (1).

We note that 〈d〉 is slightly different from other defini-
tions of the average shortest path, wherein p has been taken
as the number of connected pairs without regard for their
type. However, the p of 1 is distinct from these by its con-
sideration of biology, that it reflects consideration of only a
subset of the total number of possible paths by eliminating
any contributions to 〈d〉 between regulated genes.

An optimal topology is one wherein a metric of the topol-
ogy is at an extremum. As explained in the next section, this
criteria is the average shortest path, 〈d〉, for a given network
G(V,E), wherein V is the set of all networked nodes (TFs
and regulated genes) and E denotes the set of edges con-
necting them. An output of the integer linear programming
algorithm (explained below) is an “optimized” version of G,
G0(V,E0), which hosts an identical set of vertices, number
of edges, |E| = |E0|, identical degree distribution as G, and
the same number (and type) of feed-forward loop transcrip-
tional network motifs, but with potentially different average
shortest path, 〈d0〉. To determine whether the topology of
G is optimal, we compare 〈d〉 to that of its optimized coun-
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Figure 2: δ (Eq. (2)) evaluated using the integer linear programming method, for transcriptional-regulatory
subnetworks sampled from E. coli (light grey boxes) of size n = 5, 10, 15, 20, 25, and 30, compared against
optimal solutions found from randomized versions of these networks (dark grey). If the input network is
optimal, then δ = 0.

terpart, 〈d0〉, using the following metric, δ:

δ =
|〈d〉 − 〈d0〉|
〈d〉 , (2)

Therefore, δ = 0 corresponds to the result that G exhibits a
perfectly optimal topology.

3.2 Optimizing Topology with Integer Linear
Programming

Finding a network with optimal topology is a challenging
problem. On the one hand, a brute-force search approach is
intractable due to an exponentially large search space on the

order of O(2|V |2)-many different graphs. On the other hand,
meta-heuristic methods, such as Simulated Annealing [13]
and Genetic Programming [14, 15, 16], cannot guarantee
an optimal solution. To address this problem, we propose
a new approach to finding an optimal graph topologies for
small and moderate size networks based on integer linear
programming (ILP).

Many graph-theoretical problems are solvable using inte-
ger linear programming [17], such as the shortest path, ver-
tex coverage, maximum flow, and minimum cost-flow prob-
lems. This is possible, because these problems can be ex-
pressed in terms of linear relationships which together form
a polytope enclosed by their intersections. From this poly-
tope, it is possible to identify an extremum of a cost function.
Moreover, ILP can be useful to identify cases wherein solu-
tions are not feasible with other methods, and their imple-
mentation can be facilitated using freely available academic
software, such as IBM ILOG CPLEX optimizer [18].

We consider a linear program which identifies a new graph
G0 with minimum 〈d0〉 based on an input G, subject to the
following constraints:

1. Connectivity between a TF and a regulated gene “tar-
get’ must be preserved from G, which ensures invari-
ance of the overall paths, but not necessarily the path-

lengths;

2. Degree distributions between G and G0 are identical;

3. The number and type of feed-forward loop transcrip-
tional network motifs remain invariant between G and
G0, despite any variance in topology.

In particular, we hold the number of feed-forward loops con-
stant during the optimization process, because we have pre-
viously identified that path-length metrics may be signif-
icantly affected if feed-forward loop transcriptional motifs
are “deleted” from the network topology [6]. The detailed
equations for the linear constraints have not been included
due to space restrictions.

An example of an “optimized” 6-node network is given in
Figure 1. The optimal solution (Fig. 1(b)) preserves con-
nections between TF-gene pairs, in- and out-degrees for each
node, and the number of feed-forward loop transcriptional
motifs, but exhibits a 〈d〉 smaller by approximately 11%.

4. RESULTS AND DISCUSSION
Figure 2 illustrates results of the integer linear program-

ming based optimization of sampled transcriptional-regulatory
network topologies. Here we observe that very few of the
subnetworks sampled from E. coli, of any size, exhibit an
average path length in their optimized topologies that is
smaller than already supported by these networks. This re-
sult should be contrasted by our attempts to optimize ran-
domized networks, which demonstrate that average shortest
path lengths computed for optimized topologies were signif-
icantly reduced over their non-optimized input network.

These results indicates that E. coli network topologies are
already well-suited to minimize the average shortest path be-
tween transcription factors and their regulated genes. There
may be plausible reasons why an evolved transcriptional-
regulatory network may experience pressure to minimize the
number of regulatory interactions between the regulating



proteins and the terminal genes. Common modes of ge-
netic evolution, such as gene duplication and divergence,
alters the degree and connectivity of networked protein-
coding genes; while these are manifestly local topological
alterations, the path-length encompasses regulatory inter-
actions that transcend a gene’s local neighborhood, suggest-
ing that network dynamics manifest with system-level prop-
erties might play a role in whether an organism’s progeny
survives. Although dynamics may play a role in correlating
topological characteristics at network scales, there is evi-
dence that node-degrees in both biological and non-biological
networks are correlated by a geodesic distance of approxi-
mately three steps [19]; however, it is as-yet unclear what
general mechanism underlies such a correlative relationship.

5. CONCLUSIONS
In this paper we used an integer linear programming based

optimization method to determine a topology for a given
(directed) transcriptional-regulatory network under the con-
straints that: (i) any paths present between transcription
factors and genes remain in the optimized network; (ii) that
degree distributions of the optimized network remain invari-
ant; and (iii) that the number of feed-forward loop transcrip-
tional motifs remain invariant. By using this method with
sampled subnetworks from the transcriptional-regulatory net-
work obtained from the E. coli bacterium, we found that E.
coli ’s subnetworks exhibited topologies that already min-
imized the average shortest path length between any two
transcription factor and regulated gene of the network. In
contrast, randomized versions of these biological networks
were not optimized, in the sense that the integer linear pro-
gram identified alternative network topologies that further
reduced the network’s average shortest path length.

Although the integer linear programming formulation re-
veals differences in topological optimality between the con-
sidered TRNs and random networks, it may experience sig-
nificant difficulties when analyzing larger networks, because
the relatively large number of constraints required by this
method makes it infeasible. For example, the largest re-
ported example we are aware of involved a 150 node network
with over 106 constraints [20], which leads to an excessive
convergence time. It may therefore be beneficial to develop a
heuristic that aims to reduce this computational complexity.
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Sumper, Antoni Sudria-Andreu, and Roberto
Villafafila-Robles. Pareto optimal reconfiguration of
power distribution systems using a genetic algorithm
based on nsga-ii. Energies, 6(3):1439, 2013.

[15] Melanie Mitchell. An Introduction to Genetic
Algorithms. MIT Press, Cambridge, MA, USA, 1998.

[16] S. Ghosh, P. Ghosh, K. Basu, and S. K. Das. Gama :
An evolutionary algorithmic approach for the design
of mesh-based radio access networks. Local Area
Networks, pages 374–381, Nov. 2005.

[17] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, and
Sloan School of Management. Network Flows. Working
paper (Sloan School of Management). Alfred P. Sloan
School of Management, Massachusetts Institute of
Technology, 1988.

[18] IBM ILOG CPLEX Optimizer.
http://www-01.ibm.com/software/integration/

optimization/cplex-optimizer/, 2010.

[19] M. Mayo, A.F. Abdelzaher, and P. Ghosh. Long-range
degree correlations in complex networks.
Computational Social Networks, 2(1):1–13, 2015.

[20] Thang N. Dinh and My T. Thai. Precise structural
vulnerability assessment via mathematical
programming. MILCOM, pages 1351–1356, Nov. 2011.


