
Modular Asynchronous Web Programming: Advantages &
Challenges

Wiliam Rocha
Shibaura Institute of

Technology
Japan

xl15607@shibaura-
it.ac.jp

Hiroaki Fukuda
Shibaura Institute of

Technology
Japan

hiroaki@shibaura-it.ac.jp

Paul Leger
Universidad Catolica del Norte

Chile
pleger@ucn.cl

ABSTRACT
Because of the success of the Internet technologies, tradi-
tional standalone applications like Spreadsheet and Drawing
are now provided as Web Applications. These adopt asyn-
chronous programming that provides high responsive user
interactions. At the same time these applications can grow
and make their maintenance harder, turning Modular Pro-
gramming an attractive practice because of its concept of
dividing concerns in separated modules. However, it’s dif-
ficult to combine asynchronous methods and modular pro-
gramming because the first requires uncoupling a module
into two sub-modules, which are non-intuitively connected
by a callback method. It can spawn the creation of other two
issues: callback spaghetti and callback hell. Some propos-
als have been developed to reduce the issues about modular
programming. In this paper, we compare and evaluate them
applying them to a non-trivial open source application, the
FlickrSphere. Then, we will discuss our experience.

General Terms
Algorithms, Measurement, Design, Reliability, Experimen-
tation, Verification

Keywords
Asynchronous programming; aspect-oriented programming

1. INTRODUCTION
Due the growth of high speed networks, traditional stan-
dalone applications such as drawing and spreadsheet soft-
ware are now provided using web technologies, namely Web
Applications. Such modern applications adopt asynchronous
techniques such as AJAX, providing high responsive user in-
teraction. At the same time, as the scale of such applications
grows, its maintenance becomes more complex and there is
where modular programming shines because it allows sepa-
rating concerns into modules[8], meaning that changes made
in one concern does not affect the others (e.g., other mod-

ules), turning the maintenance easier and safer. The ba-
sic idea of asynchronous programming is to decompose a
blocking operation that awaits for its completion into a non-
blocking operation that immediately returns the control by
a callback method. Therefore, this practice can reveal two
issues: callback spaghetti[6] and callback hell[7]. Callback
spaghetti refers to the concern of the implementation when
we have a complex and tangled control structure to the fol-
lowing executions over many callback methods. Callback
hell refers to deeply-nested callbacks that have dependen-
cies on data returned from previous asynchronous invoca-
tions. Also, the combination of Asynchronous Programming
and Modular Programming can lead to structural problems
that conflicts the concept of each one, because modules will
need to be divided in two sub-modules that will be non-
intuitively connected by a callback method called after the
asynchronous function ends its execution and in a large
scale application, the execution flow will be really trick to
be tracked. Some proposals have been presented to crawl
these issues such as async/await from C#[1], Promise pat-
tern from JavaScript[3] and SyncAS from ActionScript[4].
Although the Promise and SyncAS versions were developed
as Web Applications, the async/await version was devel-
oped as a common Windows Application. But it’s impor-
tant to denote that the async/await constructs work in a
Web Application project too. This paper evaluates these
proposals applying them to a non-trivial open source appli-
cation called FlickrSphere[9], originally implemented in Ac-
tionScript3, using nested and iterative asynchronous func-
tions which will bring some drawbacks such as Callback
spaghetti and Callback hell. Then, our experiences will be
discussed about the implementations.

2. ASYNCHRONOUS PROBLEMS
Nowadays, asynchronous programming is widely-adopted by
programmers. This section briefly compare asynchronous
programming and synchronous programming.

2.1 Synchronous Programming
Synchronous programming is the common style taught to
programmers. Listing 1 shows one example of an applica-
tion. The ImageViewer class contains one method: showFro-
mURL. It basically downloads data from an image to dis-
play it. It’s important to assume that the method download
from Request class is a blocking operation that downloads
data and takes significant time. The control flow is clear
because each instruction needs to end and then advance.

BICT 2015, December 03-05, New York City, United States
Copyright © 2016 ICST
DOI 10.4108/eai.3-12-2015.2262472

Listing 1: Synchronous version of a remote image viewer.

class ImageViewer {
function showFromURL(u r l :URL,) : void {

var e : Event = new Request () . download (u r l) ;
var img : Image = convertToImage (e . data) ;
show (img) ;

}
}

2.2 Asynchronous Programming
Asynchronous programming style has more complicated con-
trol flows. Listing 2 shows the rewritten program of Listing
1 replacing a blocking operation (download) with a non-
blocking operation (downloadAsync). Two major changes
can be found. First, invoking convertToImage is removed
from showFromURL because send, that invokes download-
Async, returns immediately without any data. Instead, the
reference of the convertToImage is passed as a callback by
using next, which is defined in Request class. Second, the
show function call must be moved to convertToImage be-
cause showFromURL does not contain the image. Summa-
rizing, a module that uses a non-blocking operation requires
defining the following instructions as a callback. As a con-
sequence, if the next instructions are far from the call-site
area in the code, understanding control flow will be harder.

Listing 2: Asynchronous version of a remote image viewer.

class ImageViewer {
function showFromURL(u r l : URL) : void {

var r eques t = new
Request () . next (convertToImage) ;
r eques t . send (u r l) ;

}
function convertToImage (e : Event) : Image {

var img : Image = convertToImage (e . data) ;
show (img) ;

}
}
class Request {

var nextF : Function ;
function next (f : Function) : void {

nextF = f ;
}
function send (u r l : URL) : void {

var l oade r = new Loader () ;
l oade r . addEventListener (Loader . Complete ,

c a l l ba ck) ;
l oade r . downloadAsync (u r l) ;

}
function ca l l ba ck (e : Event) : void {

nextF (e) ;
}

}

3. FLICKRSPHERE IN A NUTSHELL
FlickrSphere is an open source Web application implemented
in ActionScript3. Since ActionScript3 runtime does not pro-
vide threads for concurrent executions, programmers need
to use asynchronous programming if necessary. This section
briefly describes the behaviour of FlickrSphere and its orig-
inal implementation. It accepts keywords from users, then
accesses the Flickr web service[2] to get all URLs of images
matched by the keywords. After, it downloads all images ac-
cording to these URLs. Every time an image is completely
downloaded, FlickrSphere displays it in an animated circle
on the screen. Figure 1 shows a screen-shot of the original
FlickrSphere, where its main behaviour carries out nested
and iterative asynchronous executions.

Figure 1: A screenshot of FlickrSphere.

4. APPLYING EXISTING PROPOSALS
This section presents different FlickrSphere implementations
using existing proposals like async/await, Promise pattern
and SyncAS. We will briefly explain each implementation
and discuss them in a Qualitative and Quantitative tests.

4.1 Qualitative Evaluation
In the Qualitative Approach we discuss the level of Modular-
ity, Expressiveness and Overload that each proposal offers to
the programmer. Modularity refers to how we can concen-
trate one concern on one place. Expressiveness refers to how
we can write programs naturally and intuitively. Overload
refers to the difficulty that introduces each proposal.

4.1.1 The async/await constructs
The async/await constructs is a proposal that supplies writ-
ing programs with non-blocking operations in a synchronous
fashion for C# 5.0. A method invocation is attached to
await in order to keep the following executions as synchronous
instructions processed when the asynchronous method exe-
cution is completed. The method usually contains an op-
eration that takes a certain period of time. Meanwhile,
a method definition with async modifier lets the compiler
know if the method contains a method invocation that uses
non-blocking operations. Listing 3 shows an example of the
usage of async/await practice trying to get the number of im-
ages from the Flickr Web Service that match a keyword de-
fined by the user. The method Search call the method with
a non-blocking operation that returns a Task with the data-
type required, like the AccessFlickrSphereWS. This task will
be processed in other thread. You can see that inside this
method there is a call for a third method called DoInde-
pendentWork that will process in the main thread while the
getNumberOfImages is running on the second thread. After
the reserved word await is called with the task getNum-
berOfImages, the processor joins the threads.

Listing 3: Behaviour of FlickrSphere with async/await.

private async void Search(object sender,
RoutedEventArgs e)

{
int imagesFound = await AccessFlickrSphereWS();

}
async Task<int> AccessFlickrSphereWS()
{

Task<string> getNumberOfImages = new
HttpClient().GetStringAsync("url", "key");

DoIndependentWork();
string imagesFound = await getNumberOfImages;
return Convert.ToInt32(imagesFound);

}

4.1.2 Promise pattern
One approach to deal with asynchronous issues adopted by
JavaScript communities is the Promise pattern: a proxy ob-
ject that represents an unknown (or future) result, not yet
computed. The common term used for promise is then-
able, as a programmer uses a then method to attach call-
back methods to a promise when it is fulfilled. Listing 4
shows the example of async/await written in Promise pat-
tern. Promise requires decomposing a set of operations into
methods, which will be called depending on the result of
the blocking execution. Thereby, the method search from
the object searcher will invoke the method accessFlickr-
SphereWS from the same object. This method call passes a
callback (downloadInfo) for the accessFlickrSphereWS that
will be invoked when the blocking operation finishes.

Listing 4: Main behaviour of FlickrSphere with Promise.

var searcher = function () {
var accessFlickrSphereWS = function (k) {

return new Promise(function (resolve, reject) {
try {

var obj = downloadInfo("Flickr_Url",
keyword, null, errorHandler);

resolve(obj);
} catch (e) {

reject(e);
}

});
};
var callback = function(o) {

doSomething(o.countImages);
};
return {

search: function (keyword) {
accessFlickrSphereWS(keyword).then(callback,

err);
},

}
};

4.1.3 SyncAS
SyncAS is a proof-of-concept library to provide virtual block,
which enables a programmer to virtually block a method ex-
ecution without blocking the execution of the program. A
programmer specifies the points where an execution should
be stopped and restarted using an aspect-oriented approach[5].
As a consequence, programmers can write programs as syn-
chronous fashion even if they use non-blocking operations.

Listing 5: Main behaviour of FlickrSphere with SyncAS.

class Searcher {
function search(key: String) : void {

var obj : WSHelper = new WSHelper();
var countImages : int =

obj.accessFlickrWS("Flickr_Url", key);
doSomething(countImages);

}
}
class WSHelper {

function accessFlickrWS(url: String, key: String) {
// Code to access the WebService

}
}

Listing 5 shows the rewritten code with SyncAS. Similar to
async/await, SyncAS enables virtually blocking a method
invocation that uses non-blocking operations. With Syn-
cAS, we can write Search in a synchronous manner without
the need to add constructs like found in async/await. In-
stead, the WSHelper.accessFlickrWS method is a method
that contains a non-blocking operation, thereby, we need to
flag a method as virtually block-able and restart them when
accessFlickrWSComplete is finished as follows:

SyncAS.addAsyncOperation(
"WSHelper.accessFlickrSphereWS",
"WSHelper.accessFlickrSphereWSComplete");

4.1.4 Discussion
As shown in Table 1, these proposals are evaluated on Mod-
ularity, Expressiveness, and Overload.

The async/await has high expressiveness because we explic-
itly add the reserved word async to the method signature
and the reserved word await to the non-blocking operation.
Meanwhile, because these programmers explicitly need to
write async/await in order to control executions, they will
end up mixing asynchronous and synchronous methods. As
a consequence, the modularity of this proposal is not con-
sidered high (i.e., Middle).

The Promise is native supported for most of the grade A
browsers and has a simple implementation, which make its
overload really low. However, callback methods are neces-
sary to follow the promise style, bringing modularity issues
like callback spaghetti (Low expressiveness and Middle mod-
ularity).

The SyncAS has similar features to async/await. However, a
programmer who provides asynchronous methods also needs
to provide aspects that control asynchronous executions.
This fact means that besides the Overload is almost the
same for the three solutions, SyncAS can be highlighted
due its higher modularity when compared to async/await
and enables dividing programmers into two categories: non-
asynchronous programmers who just work with non-blocking
operations, and asynchronous programmers who manage asyn-
chronous executions. Meanwhile, SyncAS does not pro-
vide loops, forcing the use of self-recursion solutions, leading
to non-intuitive programs. Therefore the expressiveness is
lower than async/await, but higher than Promise (Middle).

Table 1: Comparison by Modularity, Expressiveness,
Overload

async/await Promise SyncAS
Modularity Middle Middle High
Expressive-

ness
High Low Middle

Overload
Thread

level
Very low

Additional
closure

execution

Table 2: Comparison by Performance in milliseconds
async/await Promise SyncAS

Async 411.3 668 400
Sync 302.4 510 300

4.2 Quantitative Evaluation
In this section we will discuss their acting when downloading
a single image of 5kB up to 11kB in a scenario of 100Mbps.
The benchmark test was made by adding a listener that
registers the beginning of the download method and its end,
repeated one hundred times to get the average.

4.2.1 The async/await constructs
The async/await presented good performance for download-
ing images, usually taking 411.3(ms). At the same time,
when we executed our application without it, the time fell
to 302.4(ms). When using the async/await, the circle kept
moving randomly. And when without that, the circle stopped
and waited until all images were downloaded.

4.2.2 Promise pattern
The promise pattern makes use of C# Page Methods to
download the images to the disk and because the Server Side
code just has this function, the process is quite fast, 668(ms).
At the same time, without Promise it fell to 510(ms). Also,
it was responsive and the browser didn’t freeze.

4.2.3 SyncAS
The SyncAS had a slightly better performance than async/await,
having 400(ms) when present and 300(ms) when not. The
numbers can be considered promising for a real application.

4.2.4 Discussion
In a scenario of 100Mbps and personal computers, we may
consider that the overhead won’t be that high due a real
application would have other settings and processing capa-
bilities. Async/await and SyncAS did equal numbers in dif-
ferent machines and operating systems, but still can be good
options for programmers depending on what they are devel-
oping and the ideas discussed in the qualitative test must
be considered for that decision. On the other hand, Promise
pattern had good numbers too. Of course we cannot com-
pare it with async/await and SyncAS due JavaScript relies
on its browser and may run slower or not. Considering each
proposal presented and their performance, the three tech-
nologies have attractive characteristics for the purpose of
each language and can be applied with gains.

5. CONCLUSIONS
Asynchronous programming makes it possible to create high-
responsive solutions for Web purposes. However, because it
uses callbacks to manage the program flow, this solution
has its drawbacks due its higher level of complexity and can
be considered a modern goto statement. In addition, intro-
ducing asynchronous programming into module based pro-
gramming requires dividing a method into call-site and its
callback continuation, creating complex control flows. In or-
der to solve these drawbacks, some proposals are available,
however, issues related to modular programming, expres-
siveness and complexity are still present. We evaluated and
compared three proposals: async/await, Promise pattern,

and SyncAS, applying them to a application called Flickr-
Sphere. From a modular programming viewpoint, SyncAS
is better than other two proposals because can encapsulate
non-blocking operations in a module completely. From an
expressiveness viewpoint, async/await is better due to sup-
porting of loops (e.g., for) and making it clear on differentiat-
ing what is asynchronous and what isn’t. Also, the Promise
pattern is only useful when developers need a lightweight
solution. And considering the performance gains, SyncAS
and async/await had the same numbers, but Promise had
an worse result maybe due the browser-dependency. Besides
that, all of them couldn’t perform better than synchronous
programs, but this small difference between the synchronous
and asynchronous can be ignored due its improvement for
responsiveness.

6. ACKNOWLEDGMENTS
This work was partially supported by JSPS KAKENHI Grant
Number 26330089 and CAPES Foundation, Ministry of Ed-
ucation of Brazil, Brasilia - DF, Zip Code 70.040-020.

7. REFERENCES
[1] Bierman, G., Russo, C., Mainland, G., Meijer, E.,

Torgersen, M.: Pause ’n’ play: Formalizing
asynchronous C#. In: Proceedings of the 26th
European Conference on Object-Oriented
Programming. pp. 233-257. ECOOP’12,
Springer-Verlag, Berlin, Heidelberg (2012),
http://dx.doi.org/10.1007/978-3-642-31057-7_12;

[2] Flickr: http://www.flickr.com/;

[3] Friedman, D., Wise, D.: The Impact of Applicative
Programming on Multiprocessing. Technical report
(Indiana University, Bloomington. Computer Science
Dept.), Indiana University, Computer Science
Department (1976);
http://books.google.co.jp/books?id=ZIhtHQAACAAJ;

[4] Fukuda, H., Leger, P.: A library to modularly control
asynchronous executions. In: Proceeding of the 30th
ACM/SIGAPP Symposium On Applied Computing,
pp. 1648-1650, ACM Digital Library Salamanca, Spain
Apr. 13-17, 2015;

[5] Kiczales, G., Irwin, J., Lamping, J., Loingtier, J.,
Lopes, C., Maeda, C., Mend- hekar, A.: Aspect
Oriented Programming. In: Special Issues in
Object-Oriented Programming. Max Muehlhaeuser
(general editor) et al. (1996);

[6] Mikkonen, T., Taivalsaari, A.: Web applications -
spaghetti code for the 21st century. In: Proceedings of
the 2008 Sixth International Conference on Software
Engineering Research, Management and Applications.
pp. 319-328. SERA ’08, IEEE Computer Society,
Washington, DC, USA (2008),
http://dx.doi.org/10.1109/SERA.2008.16;

[7] Ogden, M.: Callback hell., http://callbackhell.com/;

[8] Parnas, D.L.: On the criteria to be used in decomposing
systems into modules. Commun. ACM 15(12),
1053-1058 (Dec 1972),
http://doi.acm.org/10.1145/361598.361623;

[9] Yossy: be interactive: Flickrsphere,
http://www.libspark.org/svn/as3/Thread/tags/v1.

0/samples/flickrsphere/fla/FlickrSphere.html;

http://dx.doi.org/10.1007/978-3-642-31057-7_12
http://www.flickr.com/
http://books.google.co.jp/books?id=ZIhtHQAACAAJ
http://dx.doi.org/10.1109/SERA.2008.16
http://callbackhell.com/
http://doi.acm.org/10.1145/361598.361623
http://www.libspark.org/svn/as3/Thread/tags/v1.0/samples/flickrsphere/fla/FlickrSphere.html
http://www.libspark.org/svn/as3/Thread/tags/v1.0/samples/flickrsphere/fla/FlickrSphere.html

	INTRODUCTION
	ASYNCHRONOUS PROBLEMS
	Synchronous Programming
	Asynchronous Programming

	FLICKRSPHERE IN A NUTSHELL
	APPLYING EXISTING PROPOSALS
	Qualitative Evaluation
	The async/await constructs
	Promise pattern
	SyncAS
	Discussion

	Quantitative Evaluation
	The async/await constructs
	Promise pattern
	SyncAS
	Discussion

	CONCLUSIONS
	ACKNOWLEDGMENTS
	References

