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ABSTRACT
Software system modularization and remodularization are
key challenges in software engineering. All previous research
has assumed that these problems are computationally in-
tractable and hence focused on heuristic methods such as
hill-climbing, evolutionary algorithms, and simulated an-
nealing that are fast but do not guarantee to produce solu-
tions of optimal or even near-optimal quality. However, this
intractability has never been formally established. In this
paper, we give the first proofs of the NP -hardness of soft-
ware modularization and remodularization relative to sev-
eral models of module-internal connectivity. We also review
three popular algorithmic approaches for producing prov-
ably optimal or near-optimal solutions efficiently and both
discuss the applicability of these approaches in and list re-
sults in the literature relevant to practical software modu-
larization and remodularization.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering models; D.2.2 [Software Engineering]: De-
sign Tools and Techniques; F.2.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical algorithms and
problems—computations on discrete structures

General Terms
Algorithms, Design, Measurement, Performance, Theory

Keywords
software (re)modularization, computational complexity, pa-
rameterized computational complexity

1. INTRODUCTION
The modularization of software systems, i.e., the assignment
of software-units to modules that are minimally coupled and

maximally cohesive, is a central challenge in software system
design; of equal importance later on in software maintenance
is the remodularization of such systems to re-optimize cohe-
sion and coupling as these systems are modified in response
to changing requirements. Over the last 30 years, much ef-
fort has been put into developing automated techniques to
aid in modularizing and remodularizing software systems.

Much of this work has assumed that these problems are com-
putationally intractable and hence cannot be solved both ef-
ficiently and optimally. This assumption is based on the sim-
ilarity of modularization to intractable problems like graph
partitioning [17] and the very large number of possible mod-
ularizations of a software system [20, page 194]. Given this
assumed but unproven intractability, research has focused
on heuristic methods such as hill-climbing [20], evolutionary
algorithms (see [13, Sections 7.1 and 7.2] and references),
and simulated annealing [20, 27] that are fast but are not
guaranteed to produce solutions of optimal or even near-
optimal quality. However, this may be unnecessary— even if
modularization and remodularization are intractable, there
may yet be fast methods that give provably optimal or near-
optimal solutions in practice.

In this paper, we address the issues raised above by (1) giv-
ing the first proofs of the computational intractability of
software modularization and remodularization and (2) re-
viewing existing approaches for efficiently obtaining prov-
ably optimal or near-optimal modularizations and remodu-
larizations and the restrictions (if any) under which these ap-
proaches operate. We will focus in particular on the promise
of fixed-parameter tractable algorithms [7, 8] whose run-
times are exponential in general but may run in effectively
polynomial time on inputs that occur in practice.

This paper is organized as follows. In Section 2, we for-
malize the problems of software system modularization and
remodularization. Section 3 demonstrates the intractability
of these problems in general relative to both deterministic
and probabilistic algorithms. Section 4 reviews efficient al-
gorithmic approaches for modularization and remodulariza-
tion whose performance is provably optimal or near-optimal
as well as existing results relative to those approaches. In
order to focus in the main text on the implications of our
results and reviewed approaches for (re)modularization re-
search, all proofs of results are given in Appendix B. Finally,
our conclusions are given in Section 5.
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2. FORMALIZING SOFTWARE

(RE)MODULARIZATION
To formalize software modularization and remodularization,
we need to formalize the following four entities:

1. Software systems: Following [20], a software system
is represented as a Unit Dependency Graph (UDG)
G = (V,E) in which vertices are software units, e.g.,
procedures, classes, data types, and edges are depen-
dencies between pairs of units, e.g., inheritance, pro-
cedure invocation, data-type use. Though dependency
graphs are usually directed to allow for the direction-
ality of dependencies, this directionality affects neither
the definitions of software system coupling and cohe-
sion nor the manner in which dependent units are as-
signed to the same module during (re)modularization.
Hence, we will here ignore this directionality and con-
sider only undirected UDG.

2. software system modularization: A k-modularizat-
ion is a partition of a UDG G into k disjoint con-
nected components1; this will be formalized as a func-
tion M : V ⇒ {1, 2, . . . , k} such that M(u) is the
number of the module to which unit u is assigned.

3. modularization quality measure: There are many
measures of modularization quality in the literature,
e.g., MQ [20, Section 2.3], Q [27, Section 2.4]. How-
ever, all such measures are ultimately based on the
concepts of coupling (the degree of dependency be-
tween modules) and cohesion (the extent to which the
units in a module depend on each other and hence
belong together in that module). Coupling will be
formalized as the number of dependencies in UDG
C = (V,E) between distinct modules under M , i.e.,
Fcpl(C,M) = |{(u, v) | (u, v) ∈ E and M(u) 6= M(v)}|
and cohesion will be formalized in a complementary
fashion as the number of dependencies between units
in C in the same module under M , i.e., Fcoh(C,M) =
|{(u, v) | (u, v) ∈ E and M(u) = M(v)}|. As each edge
in a modularized UDG is either between modules or
inside a module, Fcpl(C,M) + Fcoh(C,M) = |E|, and
by explicitly minimizing coupling (maximizing coher-
ence), one also implicitly maximizes coherence (mini-
mizes coupling).

We will further refine the standard definition of cohe-
sion given above by considering three degrees of con-
nectivity via dependencies among the units in each
module of a modularization M :

(a) Basic Connectivity (BC): There is a depend-
ency–path in the module between every pair of
units.

(b) High Connectivity (HC): There is a depend-
ency–path of length at most 2 in the module be-
tween every pair of units. This is equivalent to
each unit in a module with n units having at least
n/2 dependencies to other units in that module.

1In this paper, the term “component” will be used in its
graph-theoretic sense to denote a set of vertices in a graph
G that is not connected by edges to any other vertex in G.

(c) Complete Connectivity (CC): There is a de-
pendency in the module between every pair of
units.

4. remodularization modifications: A remodulariza-
tion changes the module-assignments of one or more
units, where each such change is a move refactoring
[19, 27]. To allow control over the number of changes
in a remodularization (in order to, for example, ensure
that the remodularization respects the original modu-
larization as much as possible [1]), we will define the
number of module-assignment changes between two
modularizations M and M ′ of a UDG C = (V,E) as
D(C,M,M ′) = |{v | v ∈ V and M(v) 6= M′(v)}.

The above yields the following problems:

Software Modularization with Connectivity X
(SMod-X where X ∈ {BC,HC,CC})
Input: UDG C = (V,E), integers k, s > 0.
Output: A k-modularization M of C with connectivity X
and Fcpl(C,M) ≤ s, if such an M exists, and special symbol
⊥ otherwise.

Software Remodularization with Connectivity X
(SReMod-X where X ∈ {BC,HC,CC})
Input: UDG C = (V,E), a kI -modularization M of C such
that Fcpl(C,M) = s, integers kF , cs, cm > 0.
Output: A kF -modularization M ′ of C with connectivity X
such that Fcpl(C,M

′) ≤ Fcpl(C,M)−cs and D(C,M,M ′) ≤
cm, if such an M ′ exists, and special symbol ⊥ otherwise.

Note that in assessing the quality of a remodularization, we
require only that this remodularization improve by at least
a specified amount cs relative to the quality of the given
modularization. In combination with the control over the
number of remodularization changes granted by parameter
cm, this allows assessment of the computational difficulty of
incremental schemes for remodularization [2, 27]

The above is already useful, in that it establishes that soft-
ware modularization is not, as it is sometimes construed in
the literature [17], the problem Graph Partitioning [12,
Problem ND14]. This is so because Graph Partitioning

incorporates the additional constraint that all components
in a modularization have a specified maximum size. Rather,
modularization with basic and complete connectivity corre-
sponds to the following problems:

k-way Cut (kWC)
Input: An undirected graph G = (V,E), integers k, s > 0.
Question: Is there a subset E′ ⊆ E, |E′| ≤ s, such that
the graph G′ created by removing E′ from G consists of k
connected components?

k-Cluster Deletion (kCD)
Input: An undirected graph G = (V,E), integers k, s > 0.
Question: Is there a subset E′ ⊆ E, |E′| ≤ s, such that
the graph G′ created by removing E′ from G consists of k
cliques2?
2A clique is a graph G in which there is an edge between
each pair of vertices in G.



The connected components and cliques in kWC and kCD
are equivalent to the modules in SMod-BC and SMod-CC
in both number and connectivity-type, and sets E′ of edges
in both kWC and kCD are equivalent to the sets of coupling-
dependencies counted by Fcpl() in SMod-BC and SMod-CC.
This gives us the following:

Observation 1. Problems k-way Cut and SMod-BC are
equivalent.

Observation 2. Problems k-Cluster Deletion and SMod-
CC are equivalent.

As we shall see below, these observations will be most use-
ful both in applying known results to our problems and in
proving new results.

3. SOFTWARE (RE)MODULARIZATION

IS INTRACTABLE
Following general practice in Computer Science [12], we de-
fine tractability as being solvable in the worst case in time
polynomially bounded in the input size. We show that a
problem is not polynomial-time solvable, i.e., not in the class
P of polynomial-time solvable problems, by proving it to be
at least as difficult as the hardest problems in problem-class
NP (see [12] and Appendix A for details).

Result A: SMod-BC, SMod-HC, SMod-CC, SReMod-BC,
SReMod-HC, and SReMod-CC are NP -hard.

Modulo the conjecture P 6= NP which is widely believed to
be true [11], the above shows that software modularization
and remodularization cannot be done optimally in polyno-
mial time in general.

The NP -hardness of SMod-CC and SReMod-CC is perhaps
unsurprising given the computational intractability of find-
ing cliques of a specified size in a given graph [12, Clique,
Problem GT19] (indeed, this is reflected in the fact that
the NP -hardness of SMod-CC and SReMod-CC holds when
the numbers of requested modules k and kF , respectively,
have any fixed value greater than or equal to three). As
clique-modules have the highest possible number of module-
internal dependencies, this implies that finding modulariza-
tions and remodularizations with the highest possible values
of MQ [20] and Q [27] is intractable; as our problems remain
NP -hard relative to basic connectivity, this intractability
continues to hold for much lower values of MQ and Q.

Result A has very interesting additional consequences. It is
widely believed that P = BPP [25, Section 5.2] where BPP
is considered the most inclusive class of problems that can be
efficiently solved using probabilistic methods (in particular,
methods whose probability of correctness can be efficiently
boosted to be arbitrarily close to probability one). Hence,
our results also imply that unless P = NP , there are no
probabilistic polynomial-time methods which correctly mod-
ularize or remodularize software systems with high probabil-
ity for all inputs. Taken together, the above constitutes the
first proof that no currently-used method (including those
based on hill-climbing [20], evolutionary algorithms (see [13,
Sections 7.2 and 7.2] and references), or simulated annealing
[20, 27]) can guarantee both efficient and correct operation
for all inputs for these problems.

4. PROVABLY (NEAR-)OPTIMAL

ALGORITHMIC OPTIONS FOR

SOFTWARE (RE)MODULARIZATION
Though the intractability results in Section 3 are elegant and
powerful, the inconvenient fact remains that we would still
like to perform software system modularization and remod-
ularization in an efficient and reliable manner. In this sec-
tion, we will consider three options for accomplishing this —
namely, polynomial-time approximation algorithms, (Sec-
tion 4.1) restricted-case polynomial-time algorithms (Sec-
tion 4.2), and fixed-parameter tractable algorithms (Section
4.3) — and discuss their applicability in practical software
modularization and remodularization (Section 4.4).

4.1 Poly-time Approximation Algorithms
A polynomial-time approximation algorithm is an algorithm
that gives a solution whose value relative to a particular pa-
rameter (such as solution quality, e.g., parameter s in prob-
lem SMod-BC) is provably within an additive or multiplica-
tive factor of the value of that parameter in an optimal solu-
tion [6]. Very few problems have polynomial-time additive-
factor approximation algorithms. Given this, the desirable
situation is a polynomial-time (1 + ǫ)-multiplicative factor
algorithm, where ǫ is very small, e.g., 1
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.

At present, there is only one such result for our problems.

Result B: SMod-BC can be approximated in polynomial time

to a multiplicative factor of 2− c2

k2 for some constant c (fol-
lows from Observation 1 and [26, Theorem 2.1]).

One cannot set c = k to get a polynomial-time optimal
solution algorithm as the algorithm runtime increases dra-
matically as the value of c increases, yielding an exponential
runtime as c approaches the value of k. Moreover, though
this algorithm may produce solutions close in value to opti-
mal on some inputs, it will produce solutions whose value is
effectively twice that of optimal on others, and there is no
way to tell which situation holds for any given input; hence,
it is not useful in practical modularization.

4.2 Restricted-case Poly-time Algorithms
Many problems have algorithms whose runtimes are non-
polynomial in general, e.g., O(nk) for problem-parameters
n and k, but polynomial if one or more parameter have their
values fixed to constants, e.g., if k = c for some constant c,
O(nk) ⇒ O(nc). Such restricted-case polynomial-time algo-
rithms are practical if the parameters k and n are of very
small and moderate value, respectively, in inputs encoun-
tered in practice.

At present, there are several such results for our problems.

Result C: SMod-BC can be solved in O(|V |2k) time (follows
from Observation 1 and [23]).

Running times can often be improved for small constant
values of a parameter (for an overview of such algorithms
for SMod-BC when k ≤ 6, see [26, Section 1]). Such al-
gorithms may indeed be useful in the case of modularizing
systems that are small (and hence have both few units and
few modules) or as part of an iterative strategy that mod-



ularizes small portions of a larger system. However, they
are unlikely to be practical for one-shot modularizations of
systems consisting of a large number of units, even if the
number of requested modules is small.

4.3 Fixed-parameter Tractable Algorithms
As the problem with restricted-case polynomial-time algo-
rithms noted above is that n may be very large even if k is
very small, it would seem reasonable to relax the require-
ment that an algorithm’s runtime be polynomial in all of
its parameters. This insight underlies the theory of param-
eterized computational complexity [8]. It turns out that a
number of NP -hard problems have been successfully solved
by algorithms whose runtimes are polynomial in the overall
input size and non-polynomial in parameters whose values
are small in the inputs encountered in practice (see [8, 22]
and references). The following states this insight formally.

Definition 1. Let Π be a problem with parameters k1, k2,
. . .. Then Π is said to be fixed-parameter (fp-) tractable
for parameter-set K = {k1, k2, ...} if there exists at least
one algorithm that solves Π for any input of size n in time
f(k1, k2, ...)n

c, where f(·) is an arbitrary function and c is
a constant. If no such algorithm exists then Π is said to be
fixed-parameter (fp-) intractable for parameter-set K.

In other words, a problem Π is fp-tractable for a parameter-
set K if all superpolynomial-time complexity inherent in
solving Π can be confined to the parameters in K.

There are many techniques for designing fp-tractable algo-
rithms [7, 8], and fp-intractability is established in a man-
ner analogous to polynomial-time intractability by proving a
parameterized problem is at least as difficult as the hardest
problems in one of the problem-classes in the W -hierarchy
{W [1],W [2], ...} (see [8] and Appendix A for details). At
present, there are several such results for our problems.

Result D: SMod-BC is fp-intractable for {k} (follows from
Observation 1 and [9, Theorem 1]).

Result E: SMod-CC is fp-intractable for {k} (follows from
Observation 2, [21, Theorem 14], and [24, Lemma 2.1.35]).

Result F: SReMod-CC is fp-intractable for {kF } (follows
from Lemma 4 in Appendix B, [21, Theorem 14], and [24,
Lemma 2.1.35]).

Result G: SMod-BC is fp-tractable for {s} (follows from Ob-
servation 1 and [15, Theorem 1]).

The situation is better than it may first appear as a prob-
lem that is fixed-parameter for a parameter-set K is also fp-
tractable for any parameter-set K′ that is a superset of K
[24, Lemma 2.1.30] and the runtimes of algorithms derived
relative to K′ are often much better than those derived rela-
tive to K. Such additional restrictions will often even banish
fp-intractability.

Result H: SMod-BC is fp-tractable for {k} when the average
of the vertex-degrees in the given UDG is a constant (follows
from Observation 1 and [15, Corollary 2]).

Result I: SMod-BC is fp-tractable for {k} when the given
UDG is planar (follows from Observation 1 and [15, Propo-
sition 3]).

Given that the running times of these algorithms are (to
be blunt, ludicrously) impractical and k and s may only be
small in instances that are easily modularizable by humans,
the results above are not immediately useful for real-world
software modularization. However, such impracticalities are
typical of the initial fp-algorithms derived relative to a pa-
rameter or parameter-set. Experience has shown that once
fp-tractability is proven, surprisingly effective fp-algorithms
are often subsequently developed, sometimes by incorporat-
ing parameters that were not considered in the original anal-
ysis (see [7, 8] and references). Hence, the results given here
should be seen as promissory notes on algorithms that will
be developed in future, possibly within a research program
like that sketched in the next section.

4.4 Discussion
Though none of the three approaches reviewed above have
results that are immediately useful in practical modulariza-
tion and remodularization, all three are potentially of use.
The most promising of these is fixed-parameter tractable
algorithms. Such fp-algorithms are ideal for exploiting re-
strictions characterizing instances of modularization and re-
modularization that occur in practice, e.g., incremental re-
modularization in which the requested degree of modular-
ization quality (cs) and structural (cm) change are both
small [2, 27]. Moreover, the relaxed tractability encoded
in the fixed-parameter approach may yield improvements
when combined with other types of algorithms, e.g., fixed-
parameter approximation [18], hill-climbing [10], and evolu-
tionary [16] algorithms.

The best way to start a fixed-parameter (re)modularization
research program would be to characterize the UDG that
underlie actual software systems with an eye to finding both
parameters whose values are small in practice as well as the
most restricted types of graphs that encode UDG encoun-
tered in practice. The specific situations in which modu-
larization and remodularization are done in practice, e.g.,
incremental (re)modularization, should also be scrutinized
to look for additional parameters of small value. Such pa-
rameters and graph-types would then guide the derivation
of useful fp-(in)tractability results relative to (if necessary,
reformulations of) the modularization and remodularization
problems defined in Section 2. This derivation process may
benefit from both the results listed above and results for
closely related problems, e.g., fp-tractability results forClus-

ter Deletion [4, 5] and Highly Connected Deletion

[14] and algorithms for Graph Partition [3].

5. CONCLUSIONS
We have presented a formal characterization of the prob-
lems of software system modularization remodularization
relative to several types of module-internal connectivity and
given the first proofs that all of these problems are compu-
tationally intractable in general. This intractability makes
unlikely the existence of polynomial-time deterministic or
probabilistic methods that produce optimal solutions for
these problems. We have also reviewed several algorithmic
options for producing optimal or near-optimal solutions —



namely, polynomial-time approximation algorithms, restrict-
ed-case polynomial-time algorithms, and fixed-parameter
tractable algorithms. Though none of these approaches has
yet produced results that are of immediate use in practical
software modularization and remodularization, the fixed-
parameter approach shows some promise and we have ac-
cordingly sketched the outlines of a fixed-parameter-based
research program. It is our hope that even if our recommen-
dations are not adopted, the results and approaches dis-
cussed here will be of use in guiding future research on soft-
ware modularization and remodularization.
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APPENDIX

A. PROVING INTRACTABILITY
Given some criterion of tractability like polynomial-time or
fixed-parameter solvability, we can define the class T of all



computational problems that are tractable relative to that
criterion. For example, T could be the class P of decision
problems (see below) solvable in polynomial-time, or FPT ,
the class of parameterized problems that are fp-tractable.
We can show that a particular problem is not in T (and
thus that this problem is intractable) by showing that this
problem is at least as hard as the hardest problem in some
class C that properly includes (or is strongly conjectured to
properly include) T . For example, C could be NP , the class
of decision problems whose candidate solutions can be veri-
fied in polynomial time, or a class of parameterized problems
in the W -hierarchy = {W [1],W [2], . . . XP} (see [12] and [8],
respectively, for details).

To establish such relative problem hardness, we will use re-
ductions between pairs of decision problems, i.e., prob-
lems whose outputs are either “Yes” or “No”. The types of
reductions used here are as follows.

Definition 2. Given a pair Π, Π′ of decision problems, Π
polynomial-time reduces to Π if there is a polynomial-
time computable function f mapping instances I of Π to
instances f(I) of Π′ such that the answer to I is “Yes” if and
only if the answer to f(I) is “Yes”.

Definition 3. Given a pair Π, Π′ of parameterized prob-
lems with parameters p and p, respectively, , Π fp-reduces
to Π if there is a function f mapping instances I = (x, p)
of Π to instances I ′ = (x′, p′) of Π′ such that (i) f is com-
putable in g(p)|x|α time for some function g() and constant
α, (ii) p′ = h(p) for some function h(), and (iii) the answer
to I is “Yes” if and only if the answer to f(I) is “Yes”.

A reducibility is appropriate for a tractability class T if
whenever Π reduces to Π′ and Π′ ∈ T then Π ∈ T . We
say that a problem Π is C-hard for a class C if every prob-
lem in C reduces to Π. A C-hard problem is essentially as
hard as the hardest problem in C.

Reducibilities become useful given the following properties:

1. If Π reduces to Π′ and Π is C-hard then Π′ is C-hard.

2. If Π is C-hard and T ⊂ C then Π 6∈ T , i.e., Π is not
tractable.

3. If Π is C-hard and T ⊆ C then Π 6∈ T unless T = C,
i.e., Π is not tractable unless T = C.

The first and third properties are used in Section 4.3 and
Appendix B to show intractability relative to T -classes P
and FPT and C-classes NP , W [1], and XP . These in-
tractability results hold relative to the conjectures P 6= NP
and FPT 6= W [1] which, though not proved, are commonly
accepted as true within the Computer Science community
(see [8, 11, 12] for details).

Note that though the modularization and remodularization
problems given in Section 2 are not decision problems, they
can be made into decision problems by asking if the re-
quested outputs exist. Moreover, as any of the problems
in Section 2 can be used to solve their corresponding de-
cision versions, the (fp-)intractability of these decision ver-
sions also implies that the problems given in Section 2 are
not (fp-)tractable unless P = NP (FPT = W [1]).

B. PROOFS OF RESULTS
All of our intractability results will be derived using reduc-
tions from problems k-way Cut and k-Cluster Deletion

given in Section 2 and the following problem:

Restricted Partition into Triangles (RPIT)
Input: An undirected 4-regular neighbourhood-restricted
graph G = (V,E).
Question: Can G be partitioned into |V |/3 sets such that
each set of the partition induces a triangle-graph in G?

As knowing the definition of a 4-regular neighbourhood-
restricted graph is not necessary to understand our proofs,
the interested reader is referred to [14] for this definition.

Lemma 1. RPIT polynomial-time reduces to SMod-HC.

Proof. This reduction is a modification of that given in
Lemma 2 of [14]. In that reduction, a given instance 〈G =
(V,E)〉 of RPIT is transformed by a polynomial-time prepro-
cessing algorithm into an instance 〈G′ = (V ′, E′), s = |V ′|〉
of problem Highly Connected Deletion where G′ may
have fewer vertices and/or edges than G. Problem Highly

Connected Deletion is our problem SMod-HC without
the requirement that a modularization have k highly con-
nected components, i.e., Highly Connected Deletion

produces a partition of its given graph into an arbitrary
number of arbitrary-size highly connected components. How-
ever, by the nature of the preprocessing, all highly-connected
clusters of vertices in G′ have size exactly three, which helps
ensure that the given instance of RPIT has a solution if and
only if at most s = |V ′| edges can be removed from G′ to
leave |V ′|/3 triangles. One can thus rephrase this reduction
as a transformation from a given instance 〈G = (V,E)〉 of
RPIT into an instance 〈G′ = (V ′, E′), k = |V ′|/3, s = |V ′|〉
of SMod-HC.

Lemma 2. kWC polynomial-time reduces to SReMod-BC
such that in the constructed instance of SReMod-BC, kF is
a function of k in the given instance of kWC

Proof. Given an instance 〈G = (V,E), k, s〉 of kWC,
the constructed instance 〈C, kI ,M, kF , cs, cm〉 of SReMod-
BC has C = G, kI = |V |, M(vi) = i for 1 ≤ i ≤ |V |, kF = k,
cs = |E| − s and cm = |V | − k. Note that this instance of
SReMod-BC can be constructed in time polynomial in the
size of the given instance of kWC.

If there is a set of s edges in the given instance of kWC
whose deletion leaves G consisting of k connected compo-
nents C1, C2, . . .Ck, create M ′ as follows: for each Ci,
select an arbitrary vertex v in Ci and set M ′(v) = M(v)
and M ′(v′) = M(v) for all other vertices v′ in Ci. Note
that M ′ is a k = kF -modularization of C obtained by ex-
actly cm = |V | − k module-assignment changes relative to
M such that Fcpl(C,M

′) = s; moreover, as Fcpl(C,M) =
|E|, Fcpl(C,M

′) ≤ Fcpl(C,M) − cs = |E| − (|E| − s) =
s = Fcpl(C,M

′). Conversely, suppose that there is a kF -
modularizationM ′ of C such that Fcpl(C,M

′) ≤ Fcpl(C,M)−
cs. As kF = k and each of the modules in C relative to M
has connectivity BC, M ′ is a k-partition of G into connected
components; moreover, as Fcpl(C,M) = |E|, Fcpl(C,M

′) ≤



Fcpl(C,M) − cs = |E| − (|E| − s) = s, which implies that
at most s edges needed to be removed to induce that k-
partition of G.

To complete the proof, note that in the constructed instance
of SReMod-BC, kF = k.

Lemma 3. RPIT polynomial-time reduces to SReMod-HC.

Proof. This can be proved using the following reduc-
tion that is a composition of the reductions in Lemmas 1
and 2. Given an instance 〈G = (V,E)〉 of RPIT, the con-
structed instance 〈C, kI ,M, kF , cs, cm〉 of SReMod-BC has
C = G′ = (V ′, E′), where G′ is created from G by the
preprocessing algorithm from [14] mentioned in Lemma 1,
kI = |V ′|, M(vi) = i for 1 ≤ i ≤ |V ′|, kF = |V ′|/3, cs = |V ′|
and cm = 2|V ′|/3. Note that this instance of SReMod-HC
can be constructed in time polynomial in the size of the
given instance of RPIT.

Suppose G can be partitioned into a set of |V |/3 triangle-
graphs. As noted in the proof of Lemma 1, this is possi-
ble if and only if at most |V ′| edges can be removed from
the graph G′ created by preprocessing G to leave |V ′|/3
triangle-graphs C1, C2, . . .C|V ′|/3. From these triangle-
graphs in G′, create M ′ as follows: for each Ci, select an ar-
bitrary vertex v in Ci and set M ′(v) = M(v) and M ′(v′) =
M(v) for the other two vertices v′ in Ci. Note that M ′

is a |V ′|/3 = kF -modularization of C obtained by exactly
cm = |V ′| − (|V ′|/3) = 2|V ′|/3 module-assignment changes
relative to M such that Fcpl(C,M

′) = |E′| − |V ′| (as the
|V ′|/3 modules under M ′ each contain 3 edges); moreover,
as Fcpl(C,M) = |E′|, Fcpl(C,M

′) ≤ Fcpl(C,M) − cs =
|E′| − |V ′| = Fcpl(C,M

′). Conversely, suppose that there
is a kF -modularization M ′ of C such that Fcpl(C,M

′) ≤
Fcpl(C,M) − cs. As kF = |V ′|/3 and each of the mod-
ules in C relative to M has connectivity-type HC, M ′ is
a |V |/3-partition of G′ into connected components, each
of which (by the nature of the preprocessing algorithm, as
described in Lemma 1) must be triangle-graphs Moreover,
as Fcpl(C,M) = |E′|, Fcpl(C,M

′) ≤ Fcpl(C,M) − cs =
|E′| − |V ′|, which implies that at most |V ′| edges needed
to be removed to induce that partition of G′. Together this
implies that G can be partitioned into |V |/3 triangle-graphs,
which completes the proof.

Lemma 4. kCD polynomial-time reduces to SReMod-CC
such that in the constructed instance of SReMod-CC, k is a
function of k in the given instance of kCD.

Proof. Observe that neither the construction in nor the
proof of correctness of the reduction given in Lemma 2 from
kWC to SReMod-BC depends on the type of connectivity of
the components and modules in these problems; moreover,
the only difference between problems kWC and kCD is the
type of connectivity in the components remaining after the
removal of the edges in E′. Hence, the reduction in 2 is also
a valid reduction from kCD to SReMod-CC such that in the
constructed instance of SReMod-CC, kF = k.

Result A: SMod-BC, SMod-HC, SMod-CC, SReMod-BC,
SReMod-HC, and SReMod-CC, are NP -hard.

Proof. The NP -hardness of SMod-BC (SMod-CC) fol-
lows from Observation 1 (2) and [9, Theorem 1] ([21, The-
orem 14]). The NP -hardness of SMod-HC, S-ReMod-BC,
SReMod-HC, and SReMod-CC follows from theNP -hardness
of kWC, kCD, and RPIT (see [14, Section 2] and references)
and Lemmas 1, 2, 3, and 4, respectively.


