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ABSTRACT 

In this paper, we propose two new methods to create an adaptive 

Wind Driven Optimization (WDO) algorithm, both of which are 

shown to outperform the classical WDO method while eliminating 

the need for fine-tuning the coefficients of the update equations. 

While the classical WDO offers a simple and efficient meta-

heuristic optimization algorithm, the coefficients that are inherent 

to the workings of the algorithm create an undesired level of 

complexity especially for the novice users. To alleviate this 

complexity and automate the coefficient selection, two adaptive 

Wind Driven Optimization (AWDO) methods are proposed in this 

paper. First method is to replace the fixed values of the 

coefficients with randomly generated numbers from a uniform 

distribution at each iteration and the second method is to optimize 

the selection of the coefficients with the Covariance Matrix 

Adaptation Evaluation Strategy (CMAES). To evaluate the 

performance of the proposed methods for AWDO, four well-

known numerical benchmark functions from the literature are 

utilized and results are compared against the classical WDO. Both 

of the new methods outperform the classical WDO while the 

AWDO using CMAES performs the best among of all.  

Categories and Subject Descriptors 

• Computing methodologies   

General Terms 

Algorithms. 

Keywords 

Wind driven optimization, adaptive wind driven optimization, 

covariance matrix adaptation evolutionary strategy, metaheuristic. 

1. INTRODUCTION 
Metaheuristic algorithms constitute one of the many branches of 

the stochastic optimization algorithms, which do not depend on 

derivatives and perform as well as global optimization methods. 

Compared to deterministic methods, metaheuristics tend to be 

slower but they do not require prior information on the search 

space. The workings of these algorithms are either inspired from 

nature or based on statistics and probability.  

Some of the nature inspired algorithms are Genetic Algorithms 

(GA) [1], Particle Swarm Optimization (PSO) [2], Ant Colony 

optimization [3], Artificial Immune System algorithms [4], 

Differential Evolution (DE) [5] and more recently the Wind 

Driven Optimization (WDO) method [6]. The WDO, is inspired 

from the motion of wind in the atmosphere and provides a simple 

and efficient global optimization method. The algorithm 

inherently employs multiple variables, which allows the user to 

tune it if the problem at hand requires fine-tuning. On the other 

hand, such flexibility also leads to a challenge for the novice user 

on picking the suitable values for these variables since most users 

utilize these optimization algorithms as black box solvers for their 

applications.  To alleviate this issue, we are proposing two new 

methods to adaptively select the values of the variables inside the 

WDO so that the users should not worry about the algorithm 

performance and can easily use the AWDO as a black box solver.  

Section 2 briefly introduces the workings of the WDO and the 

update equations along with the tuning parameters. Section 3 

provides a short overview of the Covariance Matrix Adaptation 

Evolutionary Strategy and Section 4 presents the adaptive WDO 

methods. Section 5 illustrates numerical benchmark results of the 

proposed methods and Section 6 presents the conclusions. 

2. WIND DRIVEN OPTIMIZATION (WDO)  
The Wind Driven Optimization algorithm, which was introduced 

in [7], is a nature inspired population based iterative heuristic 

global optimization method and can be implemented in any field 

and application where GA, PSO or any type of evolutionary 

strategy are utilized [8,9]. It was inspired by the physical 

equations describing the trajectory of an individual air parcel 

under the influence of various natural forces in our atmosphere in 

hydrostatic balance. In this high level of abstraction of wind 

description, the horizontal movement of air is stronger than the 

vertical movement hence equations are derived accordingly where 

certain level of simplifications are made to achieve computational 

efficiency in an N-dimensional optimization problem.   

Atmospheric motion can be represented by the Eulerian 

description of an assumed infinitesimally small air parcel where 

its motion follows the Newton's second law of motion. Then, we 

can compute the velocity and position of the air parcel within the 

N-dimensional search space. The position and the velocity of the 

air parcel are iteratively updated in the search space until it 

converges to an optimum point or maximum number of iterations 

is reached. A detailed description of the algorithm and the 
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parameter study can be found in [6] and [7], hence we will only 

present the velocity and position update rules below. The velocity 

update equation is expressed as,  

   
otherdim
cur

new max cur

c u1
u =(1 α) u g x + 1 RT x x +curcur

i i
       (1) 

where i represents the rank of the air parcel among all population 

members based on the pressure value at its location in the search 

space. Other terms of the velocity update equation include α as the 

friction coefficient, g as the gravitational constant, R as the 

universal gas constant, T as the temperature and c as a constant 

that represents the rotation of the Earth. Each of these terms is set 

to a constant value and do not change over time. As seen in 

equation (1), the updated velocity of each air parcel for the next 

iteration (unew) is computed for each dimension and is affected by 

its velocity at the current iteration (ucur), its current location in the 

search space (xcur), its distance from the highest pressure point 

that has ever been found (xmax) as well as a velocity at one of the 

other dimensions (ucur
otherdim). The pressure in the WDO is 

analogous to the cost function in general, which is used to 

determine how well each air parcel satisfies the desired design 

goals. Low pressure indicates a good solution and high pressure 

indicates a bad solution. The position of each air parcel is limited 

to hard boundaries of [-1, 1] by the search algorithm before 

linearly rescaling to the design limits, and the parcel velocity per 

iteration is limited to Vmax = + |0.3|.  Once the velocity of the 

parcel is updated by equation (1), then the position is updated by,  

new cur newx = x +(u ×Δt)                            (2) 

where xnew represents the updated position for each air parcel for 

the next iteration. For all iterations, a unity time step, Δt = 1, is 

assumed. At each iteration, the velocity and the position of each 

parcel are updated based on their pressure values and parcels 

move from high pressure points to lower pressure point just like 

the wind movement in the atmosphere. One can terminate the 

iterations by either setting the maximum number of iterations or 

simply by exiting if a predefined pressure value is achieved. 

3. COVARIANCE MATRIX ADAPTIVE 

EVOLUTIONARY STRATEGY (CMAES) 
As one of the many evolutionary algorithms, the Covariance 

Matrix Adaptation Evolution Strategy (CMAES) is a population 

based iterative global optimization method for continuous space 

optimization problems [10,11]. One of the unique properties of 

the CMAES is that it does not require parameter tuning, which is 

taken care of internally without needing input from the user other 

than the population size. This makes it a suitable candidate for our 

application, since the WDO defines the population size and 

CMAES only optimizes the four terms inherently important for 

the WDO.  

The CMAES starts with a population that is sampled from a 

distribution in the search space with a standard deviation of one-

third of the parameter range. Then, new populations are formed 

from the modified distributions over each iteration which are 

reshaped Gaussian distributions. The distribution can take a 

hyperellipse shape in any direction since it is defined in part by a 

covariance matrix. User defined cost function is used to evaluate 

the population performance and they are ranked based on the cost 

function. Then, the covariance matrix is updated and the shape of 

the distribution is determined. Finally, the step size is updated and 

the iterations are repeated until the desired cost is achieved. 

Further details of the algorithm can be found in [10,11] and freely 

available sample codes on the Internet, hence will not be repeated 

here. 

4. ADAPTIVE WIND DRIVEN 

OPTIMIZATION (AWDO) 
The velocity update equation of the WDO algorithm requires 

preselected values for four different terms, namely α, g, c, and RT 

that are constant throughout the iterations. These terms allow 

users to tune the algorithm based on the problem at hand, but it 

can also lead to challenges for the novice users who treat the 

WDO algorithm as a black-box solver. In such a case, setting 

these terms properly becomes a burden on the user and can lead to 

inefficiency if they are not selected correctly. In [6], we performed 

numerical studies to identify the most suitable values for these 

terms and obtained a range of different combinations of values 

that could work for various optimization problems.  

To alleviate the burden of choosing the right values for these 

terms, we propose two new methods in this work. The first 

method is to randomize the values of these terms at each iteration 

with a value selected from a uniform distribution in the range of 

[0, 1]. Similar approach is taken in [12], where the values of these 

four terms are replaced with new terms utilizing a heavy tailed 

Levy distribution (WDOLE). However, their approach simply 

replaces the original four terms in WDO with new four terms that 

need to be manually set for the Levy distribution, which does not 

alleviate the original problem.  From [6], we can conclude that the 

values of the four WDO terms can be simply picked from the [0, 

1] range and using a simple uniform distribution, WDO can 

perform better than the heavy tailed, more complicated 

distributions as we will demonstrate in the next section with 

numerical benchmark functions.  

While we propose to choose the value of the terms randomly in 

the first approach, a better way would be to optimize these values 

as the iterations progress. To this end, we propose a second 

method, where we utilize the CMAES algorithm to optimize the 

values of these four terms at each iteration and suggest a new set 

of values for the next iteration. The population size for the 

CMAES would be the same size as the WDO population size and 

the dimensions would be limited to four since CMAES would 

only work on these four terms. Other internal parameters of the 

CMAES are internally selected by CMAES by design, which 

makes this implementation of WDO a parameter free adaptive 

optimization algorithm. The flowchart of the AWDO is shown in 

Figure 1. It starts with the initialization of the algorithms, such as 

randomly generating position and velocity. Then, pressure at the 

location of each population member is evaluated and velocity 

along with the position is updated for the next iteration. At this 

point, the pressure and values for the four terms, α, g, c, and RT, 

are passed on to the CMAES algorithm. CMAES then selects a 

new set of values for the four terms based on the pressure and 

returns the control to WDO. This iterative process of updating the 

position and velocity by WDO and optimizing four terms by 

CMAES continues until the maximum number of iterations is 

exhausted.  



 

Figure 1. Flowchart of the adaptive WDO algorithm. 

 

5. COMPUTATIONAL RESULTS 
The performance of the AWDO is tested and compared against the 

classical WDO, utilizing four well-known numerical benchmark 

functions: Sphere, Rastrigin, Griewank and Rosenbrock. The 

Sphere function is a separable unimodal function, where as 

Rastrigin and Griewank are multimodal. Rosenbrock is a non-

separable, non-convex quadratic function.  

Each algorithm ran for maximum of 3000 iterations with a 

population size of 100 members. The problem dimensions were 

limited to N=10, with different upper and lower bounds per 

function as shown in the tables, below. We ran each function 50 

times and the best, worst, mean and standard deviations are 

presented in Tables 2-5.  

Table 1 illustrates the average number of iterations that each 

algorithm took to reach convergence. Since the maximum number 

of iterations is limited to 3000, neither of the algorithms reached 

the global optimum for Rosenbrock while for Sphere, Rastrigin 

and Griewank, AWDO needed the least number of iterations to 

find the global optimum. 

Table 1. Average number of iterations for convergence 

 Sphere Rastrigin Griewank Rosenbrock 

cWDO 445 2367 3000 3000 

WDOu 105.14 23.72 63.68 3000 

AWDO 35 18.14 28.04 3000 

 

On the other hand Tables 2-5, illustrate the best, mean and worst 

pressure values for classical WDO (cWDO), and newly proposed 

WDO with uniform distribution for the terms (WDOu) and 

adaptive WDO with CMAES (AWDO) optimization achieved at 

the maximum number of iterations over the 50 runs.  

Table 2. Results of Sphere in search space of [-100, 100]N=10 

 cWDO WDO with uniform AWDO 

Best 0 0 0 

Mean 0 0 0 

Worst 0 0 0 

Stdev 0 0 0 

 

Table 3. Results of Rastrigin in search space of [-5.12, 5.12]N=10 

 cWDO WDO with uniform AWDO 

Best 0 0 0 

Mean 2.9884 0 0 

Worst 20.1973 0 0 

Stdev 3.6242 0 0 

 

Table 4. Results of Griewank in search space of [-600, 600]N=10 

 cWDO WDO with uniform AWDO 

Best 0.0128 0 0 

Mean 0.1957 0 0 

Worst 0.6214 0 0 

Stdev 0.1263 0 0 

 

Table 5. Results of Rosenbrock in search space of [-30, 30]N=10 

 cWDO WDO with uniform AWDO 

Best 5.9906 3.2219 1.5926e-9 

Mean 7.1079 4.1390 7.1087e-7 

Worst 7.8595 4.7889 6.2096e-6 

Stdev 0.3701 0.2739 1.11917e-6 

 

From Tables 1-5, it can be observed that the AWDO achieves the 

best pressure performance with the least number of iterations 

needed. Then comes the WDOu, where the WDO performance 

can be improved by randomly selecting the inherent terms and 

achieve better results than fixing these terms as in classical WDO 

[6,7]. In addition, both of the proposed algorithms perform better 

than the WDO with Levy flight algorithm proposed in [12], where 

same study conducted with these benchmark functions.  Figures 2-

5 illustrate the mean pressure value comparison of the algorithms 

over the number of iterations. The pressure values are averaged 

over the 50 runs and plotted at each iteration for the first 1000 

iterations or less. AWDO provides the best mean pressure 

performance and reaches the global optimum the fastest. 

Specifically, for the Rosenbrock function, AWDO is the only 

algorithm that is not stuck at a local minima and continues the 

search until the maximum number of iterations is exhausted.  



 
Figure 2. Comparison of mean best pressure for Sphere. 

 
Figure 3. Comparison of the mean best pressure for Rastrigin. 

 
Figure 4. Comparison of the mean best pressure for Griewank. 

 
Figure 5. Comparison of the mean best pressure for 

Rosenbrock. 

6. CONCLUSIONS 
In this paper, we proposed two new methods to create adaptive 

WDO algorithms and demonstrated their performances against the 

classical WDO and WDOLE. Numerical test results show that the 

proposed algorithms improve performance by achieving faster 

convergence and better results. These adaptive methods also 

eliminate the need for tuning the internal WDO terms, alleviating 

the burden to select the optimum values for the problem at hand 

without requiring additional function calls. 
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