
On the Computational Complexity of
Designing and Reconfiguring

Component-based Software Systems

Todd Wareham
∗

Department of Computer Science
Memorial University of Newfoundland

St. John’s, NL Canada
harold@mun.ca

Marieke Sweers
Radboud University Nijmegen

Donders Institute for Brain, Cognition, and
Behaviour

Nijmegen, The Netherlands

marieke.sweers@gmail.com

ABSTRACT
Though Component-Based Development (CBD) is a pop-
ular approach to mitigating the costs of creating software
systems, it is not clear to what extent CBD is preferable to
other approaches to software engineering or to what extent
the core component selection and adaptation activities of
CBD can be implemented to operate without human inter-
vention in an efficient and reliable manner. In this paper,
we use computational complexity analysis to compare the
computational characteristics of software system design and
reconfiguration by de novo design, component selection, and
component selection with adaptation. Our results show that
none of these approaches can be implemented to operate
both efficiently and reliably either in general or relative to a
surprisingly large number of restrictions on software system,
component, and component library structure. We also give
the first restrictions under which all of these approaches can
be implemented to operate both efficiently and reliably.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Resuable Software—Reuse
models; D.2.2 [Software Engineering]: Design Tools and
Techniques; F.2.2 [Analysis of Algorithms and Prob-
lem Complexity]: Nonnumerical algorithms and problems—
computations on discrete structures

General Terms
Algorithms, Design, Measurement, Performance, Theory

Keywords
component-based development, parameterized computational
complexity

∗Corresponding Author

1. INTRODUCTION
Component-based development (CBD) is a popular approach
to mitigating the monetary and time costs of creating and
maintaining software systems [1, 3, 12]. In CBD, previously-
developed software modules called components are stored in
libraries and connected together (possibly with some adap-
tation of the component code and architecture) as needed
to generate new software systems from given requirements.
Over the last 20 years, a number of technologies have been
implemented to assist human programmers in creating com-
ponent-based systems, e.g., CORBA, CCM, EJB, COM+,
and much effort has been put into automating the key CBD
activities of component selection and adaptation.

There are two ongoing issues of great importance in the CBD
community: (1) the circumstances (if any) under which the
cost of selecting and adapting components is less than the
cost of developing software systems from scratch, i.e., de
novo [10] and (2) the need for CBD to operate fully auto-
matically and efficiently to accommodate ubiquitous and au-
tonomic computing systems which need to create and recon-
figure software without or with minimal human intervention
at runtime [7, 13]. To address these issues, it would be most
useful to know if efficient and reliable methods are available
for selecting and adapting components in CBD and, if so,
under what circumstances these methods outperform other
approaches to software engineering.

In this paper, we present results addressing both of these
questions. First, using computational complexity analysis
[8], we show that both creating and reconfiguring software
systems either by de novo design, component selection, or
component selection with adaptation are all NP -hard and
thus intractable in general. Second, using parameterized
complexity analysis [5], we give restrictions under which
all of these activities are tractable and prove that surpris-
ingly few restrictions on either software system structure or
the allowable degree of adaptation render these activities
tractable. Though these results are derived relative to basic
models of software systems and components, we show that
they also apply to more realistic models.

The remainder of this paper is organized as follows. In Sec-
tion 2, we present our software system, component, and com-
ponent library models and formalize the problems of de novo

BICT 2015, December 03-05, New York City, United States
Copyright © 2016 ICST
DOI 10.4108/eai.3-12-2015.2262396

and component-based software system design and reconfig-
uration relative to these models. Section 3 demonstrates
the intractability of all of these problems in general. Sec-
tion 4 describes a methodology for identifying conditions for
tractability, which is then applied in Section 5 to identify
such conditions for our problems. In order to accommodate
conference page limits and focus in the main text on the
implications of our results for CBD, proofs of selected re-
sults are given in Appendix A. Finally, our conclusions and
directions for future work are given in Section 6.

1.1 Related Work
Computational complexity analyses of the component selec-
tion problem have been done previously [2, 16, 17]. How-
ever, the formalizations used in these analyses focused on
the satisfaction of sets of desired system objectives, and did
not include specifications of software system and component
structure that are detailed enough to investigate the con-
ditions under which restrictions on these structures would
make component selection tractable. They also did not ad-
dress the issue of component adaptation.

2. FORMALIZING COMPONENT-BASED

DESIGN AND RECONFIGURATION
Our goal in this paper is to assess whether or not component-
based development has advantages over conventional soft-
ware engineering relative to different activities in the soft-
ware life cycle. This assessment can be stated most simply
along two dimensions:

1. Software design mode: creating software using only
components drawn from component libraries versus
creating software by adapting components drawn from
component libraries or creating software de novo that
is organized in a specified component-like fashion.

2. Software lifecycle activity : designing the initial version
of a software system relative to a set of requirements
versus reconfiguring an existing system to accommo-
date one or more changes to the requirements.

The possibilities implicit in these dimensions result in the
following six informal computational problems:

Software Design

Input: Software requirements R, software-structure specifi-
cation X

Output: A software system S whose structure is consistent
with X and whose operation satisfies R.

Software Design from Adapted Components

Input: Software requirementsR, a set of software-component
libraries C = {C1, C2, . . . , C|C|}.
Output: A software system S whose structure consists of
connected components derived from components drawn from
the libraries in C and whose operation satisfies R.

Software Design from Components

Input: Software requirementsR, a set of software-component
libraries C = {C1, C2, . . . , C|C|}.
Output: A software system S whose structure consists of

connected components drawn from the libraries in C and
whose operation satisfies R.

Software Reconfiguration

Input: A software system S whose structure is consistent
with specification X and whose operation satisfies require-
ments R, new software requirements Rnew.
Output: A software system S′ derived from S whose struc-
ture is consistent with X and whose operation satisfies R ∪
Rnew.

Software Reconfiguration from

Adapted Components

Input: A software system S whose structure consists of
connected components from a set of software-component li-
braries C = {C1, C2, . . . , C|C|} and whose operation satisfies
requirements R, new software requirements Rnew.
Output: A software system S′ derived from S whose struc-
ture consists of connected components derived from com-
ponents drawn from the libraries in C and whose operation
satisfies R ∪Rnew.

Software Reconfiguration from Components

Input: A software system S whose structure consists of
connected components from a set of software-component li-
braries C = {C1, C2, . . . , C|C|} and whose operation satisfies
requirements R, new software requirements Rnew.
Output: A software system S′ derived from S whose struc-
ture consists of connected components drawn from the li-
braries in C and whose operation satisfies R ∪Rnew.

To assess the computational difficulty of and (if necessary)
explore algorithmic options for efficiently solving these prob-
lems, we need formalizations of all of the entities comprising
these problems. There is a vast existing literature on various
types of software requirements, system-structures, structure
specifications, and components and component libraries. We
want to avoid introducing spurious computational difficulty
due to powerful formalisms, as this would complicate the in-
terpretation our results. Hence, we shall choose the simplest
such formalizations1 (additional advantages gained by such
a parsimonious approach are given in Section 5.2):

• Software Requirements: The requirements will be a set
R = {r1, r2, . . . r|R|} of situation-action pairs where
each pair rj(sj , aj) consists of a situation sj defined
by a particular set of truth-values sj = 〈v(i1), v(i2), . . .
v(i|I|)〉, v(ik) ∈ {True, False}, relative to each of the
Boolean variables ik in set I = {i1, i2, . . . , i|I|} and an
action aj from set A = {a1, a2, . . . a|A|}.

• Software system-structure: We will here consider the
simplest possible complex structure consisting of a mul-
tiple IF-THEN-ELSE statement block (a selector) whose
branches are in turn other IF-THEN-ELSE statement
blocks (procedures) whose branches execute actions
from A. Each selector and procedure IF-THEN condi-
tion is a Boolean formula that is either a variable from
I e.g., ij , or its negation, e.g., ¬ij . Each selector and

1These formalizations are based on those developed in [15,
19] to analyze the computational complexity of the adaptive
toolbox theory of human decision-making [9].

req. i1 i2 i3 i4 i5 action

r1 T T T T T a2

r2 T F F F T a1

r3 F F F F F a2

r4 F F F F F a2

r5 T T T F T a3

(a)

procedure p1: procedure p2

if i4 then a2 if ¬i2 then a1

else if ¬i3 then a1 else if ¬i4 then a2

else if i5 then a3 else a3

else a1

procedure p3: procedure p4:

if i4 then a2 a2

else a2

(b)

selector s1: selector s2:

if i1 then ??? if * then ???

else if i5 then ???

else ???

(c)

system S1: system S2:

if i1 then call p1 if * then call p2

else if i5 then call p3

else call p4

(d)

Figure 1: Example Requirements, Procedures, Se-
lectors, and Software Systems. (a) Software re-
quirements R = {r1, r2, r3, r4, r5} defined on situation-
variables I = {i1, i2, i3, i4, i5} and action-set A =
{a1, a2, a3}. (b) Four procedures. (c) Two selectors as
they would appear in a selector-component library
with blank procedure calls. (d) Two software sys-
tems created by instantiating the procedure-calls in
the selectors from (c) with procedures from (b).

procedure with one or more situation-variable condi-
tions terminates in a final ELSE statement. In addition,
the selector may consist of single special statement IF
* THEN which evaluates to True in all cases (the de-
fault selector) and a procedure may consist of a single
executed action; such selectors and procedures have no
associated conditions.

• Software components and component libraries: Two-
level software systems of the form above consist of two
types of components, selectors and procedures, which
shall be stored in libraries Lsel and Lprc, respectively.

• Software structure specification: The basic character-
istics of two-level software systems of the form above
are the situation-variable and action sets on which they
are based (I and A), the maximum number of condi-
tions allowed in the selector (|sel|) and the maximum
number of conditions allowed in any procedure (|prc|).

Examples of these entities are given in Figure 1.

This allows us to formalize various actions and properties in
the problems given above as follows:

• A software system S is consistent with a structure-
specification X = 〈I, A, |sel|, |prc|〉 if it has the two-
level structure described above where IF-THEN con-
ditions are (un)negated members of I, all procedure-
executed actions are drawn from A, the number of con-
ditions in the selector is at most |sel| , and the number
of conditions in each procedure is at most |prc|. For
example, both software-systems in Figure 1(d) are con-
sistent with X = {{i1, i2, i3, i4, i5}, {a1, a2, a3}, 2, 3}.

• A software system S is constructed from components
drawn from C = {Csel, Cprc} if the selector-component
is from Csel and each procedure-component is from
Cprc. Note that a member of Cprc may appear zero,
one, or more times in S. For example, both soft-
ware systems in Figure 1(d) are constructed from C
= {{s1, s2}, {p1, p2, p3, p4}}.

• The operation of a software system S satisfies require-
ments R if for each situation-action pair (s, a) in R, the
execution of S relative to the truth-settings in s results
in the execution of a. For example, software system S1

in Figure 1(d) satisfies the requirements in Figure 1(a)
but software system S2 does not (because it produces
different outputs (a3, a1, a1, and a2 respectively) for
requirements r1, r3, r4, and r5).

We can now state the following formal problems:

Software Design (SDes-Spec)
Input: Software-structure specificationX = 〈I, A, |sel|, |prc|〉,
software requirements R based on sets I and A.
Output: A software system S whose structure is consistent
with X and whose operation satisfies R, if such an S exists,
and special symbol ⊥ otherwise.

Software Design from

Adapted Components (SDes-CompA)
Input: Software requirements R based on sets I and A, a set
of software-component libraries C = {Csel, Cprc}, positive
integers d, cc ≥ 0.
Output: A software system S whose structure consist of con-
nected components derived by at most cc changes to at most
d components drawn from the libraries in C and whose op-
eration satisfies R, if such an S exists, and special symbol
⊥ otherwise.

Software Design from Components (SDes-Comp)
Input: Software requirements R based on sets I and A, a set
of software-component libraries C = {Csel, Cprc}, a positive
integer d ≥ 0.
Output: A software system S whose structure consist of con-
nected components based on at most d components drawn
from the libraries in C and whose operation satisfies R, if
such an S exists, and special symbol ⊥ otherwise.

Software Reconfiguration (SRec-Spec)
Input: A software system S whose structure is consistent
with specification X = 〈I, A, |sel|, |prc|〉 and whose opera-
tion satisfies requirements R, a set Rnew of new situation-
action pairs based on I and A, a positive integer cc ≥ 0.

Output: A software system S′ derived by at most cc changes
to S whose structure is consistent with X and whose op-
eration satisfies R ∪ Rnew, if such an S′ exists, and special
symbol ⊥ otherwise.

Software Reconfiguration from

Adapted Components (SRec-CompA)
Input: A software system S whose structure consists of
connected components from a set of software-component li-
braries C = {Csel, Cprc} and whose operation satisfies re-
quirements R, a set Rnew of new situation-action pairs based
on I and A, positive integers cl, cc, d ≥ 0.
Output: A software system S′ derived from S by at most cl
component-changes relative to the libraries in C and cc code-
changes whose structure consist of at most d types of con-
nected components and whose operation satisfies R∪Rnew,
if such an S′ exists, and special symbol ⊥ otherwise.

Software Reconfiguration from

Components (SRec-Comp)
Input: A software system S whose structure consists of
connected components from a set of software-component li-
braries C = {Csel, Cprc} and whose operation satisfies re-
quirements R, a set Rnew of new situation-action pairs based
on I and A, positive integers cl, d ≥ 0.
Output: A software system S′ derived from S by at most
cl component-changes relative to the libraries in C whose
structure consists of at most d types of connected compo-
nents and whose operation satisfies R ∪Rnew, if such an S′

exists, and special symbol ⊥ otherwise.

We have included parameter d in all component-based prob-
lems to allow control over the number of retrievals from li-
braries. The two types of adaptation and reconfiguration
changes are: (1) changes to the system code: changing the
condition in or action executed by any IF-THEN-ELSE state-
ment (cc) and (2) changes to the system component-set:
using a different selector-component from Csel or changing
any used procedure-component to another from Cprc (cl).
Note in the case of a selector-change, both the original and
new selector must have the same number of IF-THEN state-
ments and the procedures called by the original selector are
mapped to the corresponding positions in the new selector.

3. COMPONENT-BASED DESIGN AND RE-

CONFIGURATION ARE INTRACTABLE
Following general practice in Computer Science [8], we define
tractability as being solvable in the worst case in time poly-
nomially bounded in the input size. We show that a problem
is not polynomial-time solvable, i.e., not in the class P of
polynomial-time solvable problems, by proving it to be at
least as difficult as the hardest problems in problem-class
NP (see [8] for details).

Result A: SDes-Spec, SDes-CompA, SDes-Comp, SRec-Spec,
SRec-CompA, and SRec-Comp are NP -hard.

Modulo the conjecture P 6= NP which is widely believed
to be true [6], the above shows that even the basic versions
of component-based design and reconfiguration considered
here are not solvable in polynomial time. This NP -hardness
hold for problems SRec-Spec and SRec-CompA when the
new requirements consist of a single situation-action pair.

Two frequently-adopted responses to intractability are to
consider poly-time algorithms which generate solutions that
(1) approximate within provable bounds the wanted solu-
tions, e.g., software systems whose structure are close to the
values specified in X or which satisfy a large proportion of
the requirements in R [14], or (2) are of acceptable quality
most of the time, e.g., genetic or simulated annealing algo-
rithms [11]. In the remainder of this paper, we will consider
a third option described in more detail in the next section.

4. A METHOD FOR IDENTIFYING

TRACTABILITY CONDITIONS
A computational problem that is intractable for unrestricted
inputs may yet be tractable for non-trivial restrictions on
the input. This insight is based on the observation that
some NP -hard problems can be solved by algorithms whose
running time is polynomial in the overall input size and non-
polynomial only in some aspects of the input called param-
eters. The following states this idea more formally.

Definition 1. Let Π be a problem with parameters k1, k2,
. . .. Then Π is said to be fixed-parameter (fp-) tractable
for parameter-set K = {k1, k2, ...} if there exists at least
one algorithm that solves Π for any input of size n in time
f(k1, k2, ...)n

c, where f(·) is an arbitrary function and c is
a constant. If no such algorithm exists then Π is said to be
fixed-parameter (fp-) intractable for parameter-set K.

In other words, a problem Π is fp-tractable for a parameter-
set K if all superpolynomial-time complexity inherent in
solving Π can be confined to the parameters in K.

There are many techniques for designing fp-tractable algo-
rithms [4, 5], and fp-intractability is established in a man-
ner analogous to classical polynomial-time intractability by
proving a parameterized problem is at least as difficult as the
hardest problems in one of the problem-classes in the W -
hierarchy {W [1],W [2], ...} (see [5] for details). Additional
results are typically implied by any given result courtesy of
the following lemmas:

Lemma 1. [20, Lemma 2.1.30] If problem Π is fp-tractable
relative to parameter-set K then Π is fp-tractable for any
parameter-set K′ such that K ⊂ K′.

Lemma 2. [20, Lemma 2.1.31] If problem Π is fp-intract-
able relative to parameter-set K then Π is fp-intractable for
any parameter-set K′ such that K′ ⊂ K.

It follows from the definition of fp-tractability that if an
intractable problem Π is fp-tractable for parameter-set K,
then Π can be efficiently solved even for large inputs, pro-
vided only that the values of all parameters in K are rela-
tively small. This strategy has been successfully applied to
many intractable problems (see [5, 18] and references). In
the next section we show how this strategy may be used to
render component-based design and reconfiguration tractable.

Table 1: Parameters for Component-based Design
and Reconfiguration Problems

Parameter Description Applicability
|I| # situation-variables All
|A| # possible actions All
|sel| Max # selector-conditions All
|prc| Max # procedure-conditions All
d Max # component-types *-CompA,

in software system *-Comp

|Lsel| # selector-components *-CompA,
in selector-library *-Comp

|Lprc| # procedure-components *-CompA,
in procedure-library *-Comp

|Rnew| # new requirements SRec-*
cc Max # code-changes *-CompA,

allowed SRec-Spec
cl Max # component-changes SRec-CompA,

allowed SRec-Comp

5. WHAT MAKES COMPONENT-BASED

DESIGN AND RECONFIGURATION

TRACTABLE?
Our component-based software design and reconfiguration
problems have a number of parameters whose restriction
could render these problems tractable in the sense defined
in Section 4. An overview of the parameters that we consid-
ered in our fp-tractability analysis is given in Table 1. These
parameters can be divided into three groups:

1. Restrictions on system and component structure
(|I|, |A|, |sel|, |prc|, d);

2. Restrictions on component libraries structure
(|Lsel|, |Lprc|); and

3. restrictions on reconfigurability (|Rnew|, cc, cl).

We will assess the fixed-parameter tractability of our prob-
lems relative to the parameters in Table 1 (Section 5.1),
show how these results apply in more general settings (Sec-
tion 5.2), and discuss the implications of these results for
component-based development (Section 5.3).

5.1 Results
Our parameterized intractability results are as follows:

Result B : SDes-Spec is W [2]-hard for {|A|, |sel|, |prc|} when
|A| = 2 and |sel| = 0.

Result C : SDes-CompA is W [2]-hard for {|A|, |sel|, |prc|, d,
|Lsel|, |Lprc|, cc} when |A| = d = 2, |sel| = 0, |Lsel| =
|Lprc| = 1.

Result D : SDes-Comp is W [2]-hard for {|A|, d, |Lsel|} when
|A| = 2 and |Lsel| = 1.

Result E : SRec-Spec isW [2]-hard for {|A|, |sel|, |prc|, |Rnew|, cc}
when |A| = 3, |sel| = 0, and |Rnew| = 1.

Result F : SRec-CompA is W [2]-hard for {|A|, |sel|, |prc|, d,
|Lsel, |Lprc|, |Rnew|, cl, cc} when |A| = 3, |Rnew| = |Lsel| =
|Lprc| = 1, d = 2, and |sel| = cl = 0.

Result G: SRec-Comp is W [2]-hard for {|A|, d, |Lsel|} when
|A| = 3 and |Lsel| = 1.

At present, we have the following fp-tractability results:

Result H : SDes-Spec, SDes-CompA, SDes-Comp, SRec-Spec,
SRec-CompA, and SRec-Comp are fixed-parameter tractable
for {|I|}.

Result I : SDes-Comp and SRec-Comp are fixed-parameter
tractable for {|sel|, |Lprc|}.

Note that Results B, C, E, F, and H in combination with
Lemmas 1 and 2 completely characterize the parameterized
complexity of problems SDes-Spec, SDes-CompA, SRec-Spec,
and SRec-CompA relative to the parameters in Table 1.

5.2 Generality of Results
Our intractability results, though defined relative to basic
models of software requirements, software systems, compo-
nents, and component libraries, have a broad applicability.
Observe that the models for which these results hold are in
fact restricted versions of more realistic alternatives, e.g.,

• software requirements that explicitly list all situations
to which software should respond are a special case of
more complex requirements which are based on com-
pact specifications of software behaviour such as finite-
state automata or statecharts and/or incorporate other
required properties of software systems such as degree
of reliability and response time;

• two-level selector / procedure software systems that
act as simple functions are a special case of more com-
plex persistent software systems whose components in-
voke each other in more complex manners;

• components consisting of a single condition-statement
block procedure without input parameters or return
values and which have no dependencies on other com-
ponents are a special case of more complex components
consisting of multiple data types and complex proce-
dures which have dependencies on other components
such as data-type sharing or inheritance; and

• component libraries that are simply lists of compo-
nents are a special case of component libraries that
incorporate component behaviour-specifications and /
or metadata to aid in selection and adaptation.

Intractability results for these alternatives then follow from
the observation that intractability results for a problem Π
also hold for any problem Π′ that has Π as a special case
(suppose Π is intractable; if Π′ is tractable by algorithm A,
then A can be used to solve Π efficiently, which contradicts
the intractability of Π — hence, Π′ must also be intractable).

Our fp-tractability results are much more fragile, as innocu-
ous changes to software requirements, software system, com-
ponent, or component library structure may in fact violate
assumptions critical to the operation of the algorithms un-
derlying these results. Hence, they may only apply to cer-
tain more complex models, and this needs to be assessed on
a case-by-case basis.

5.3 Discussion
We have found that designing and reconfiguring software
systems by de novo design, component selection, and compo-
nent selection with adaptation are all NP -hard (Result A).
This implies that it is unlikely that deterministic polynomial-
time methods exist for any of these problems. It also answers
the question of which of de novo design, component selec-
tion, or component selection with adaptation is best for cre-
ating software systems – computationally speaking, all three
methods are equally good (or bad) in general.

This NP -hardness has interesting additional implications.
It is widely believed that P = BPP [21, Section 5.2] where
BPP is considered the most inclusive class of problems that
can be efficiently solved using probabilistic methods (in par-
ticular, methods whose probability of correctness can be ef-
ficiently boosted to be arbitrarily close to probability one).
Hence, our results also imply that unless P = NP , there are
no probabilistic polynomial-time methods which correctly
design or reconfigure software systems using the three ap-
proaches considered here with high probability for all inputs.
Taken together, the above constitutes the first proof that
no currently-used method (including search-based methods
based on evolutionary algorithms (see [11, Section 5] and ref-
erences) can guarantee both efficient and correct operation
for all inputs for these problems.

As described in Section 4, efficient correctness-guaranteed
methods may yet exist relative to plausible restrictions on
the input and output. It seems reasonable to conjecture that
some restrictions relative to the parameters listed in Table
1 should render these problems tractable. However, almost
none of these restrictions or indeed many possible combina-
tions of these restrictions can yield tractability, even when
the parameters involved are restricted to very small con-
stants (Results B–G). We do have some initial fp-tractability
results (Results H and I). Taken together, our fp-results
paint a disconcerting picture for problems SDes-Spec, SDes-
CompA, SRec-Spec, and SRec-CompA, as they suggest that
making both the software systems and the degree of al-
lowable adaptation small under the approaches encoded in
these problems does not yield tractability. However, the sit-
uation for problems SDes-Comp and SRec-Comp may not
be so dire. To date, we have not been able to prove fp-
intractability relative to a number of the individual param-
eters and parameter-combinations considered here for these
problems. Hence, if fp-tractability holds in at least some
of those cases, this would constitute proof that component
selection without adaptation is tractable in a wider set of
circumstances than either de novo design or component se-
lection with adaptation.

Two valid objections to our fp-tractability results are that
(1) the algorithms underlying these results are crude and
rely on brute-force search and (2) the running times of these
algorithms are (to be blunt, ludicrously) impractical. These
objections are often true of the initial fp-algorithms derived
relative to a parameter-set. However, once fp-tractability is
proven, surprisingly effective fp-algorithms are often subse-
quently developed with greatly diminished non-polynomial
terms and polynomial terms that are quadratic or even lin-
ear in the input size (see [4, 5] and references).

A final very important proviso is in order – namely, as il-
luminating as the results given here are in demonstrating
basic forms of (in)tractability for software design and recon-
figuration problems relative to the three approaches consid-
ered, these results do not necessarily imply that methods
currently being applied to design or reconfigure software are
impractical. Differing software and component models, the
particular situations in which these currently-used methods
are being applied, and accepted standards by which method
practicality is assessed may render the results given here
irrelevant. For example, current methods may already be
implicitly exploiting restrictions on the input and output
such that both efficient and correct operation (or operation
that is correct with probability very close to one) are guar-
anteed. That being said, not knowing the precise condi-
tions under which such practicality holds could have serious
consequences, e.g., drastically slowed software creation time
and/or unreliable software operation, if these conditions are
violated. These consequences would be particularly damag-
ing in the case of runtime-based applications like ubiquitous
and autonomic computing. Given that reliable software op-
eration is very important and efficient software design and
reconfiguration is at the very least desirable, the acquisition
of such knowledge via a combination of rigorous empirical
and theoretical analyses should be a priority. With respect
to theoretical analyses, it is our hope that the techniques
and results in this paper comprise a useful first step.

6. CONCLUSIONS
We have presented a formal characterization of the prob-
lems of software system design and reconfiguration by de
novo design, component selection, and component selection
with adaptation. Our complexity analyses reveal that, while
these problems are computationally intractable in general,
there are restrictions that render them tractable. Though
the immediate practical utility of our tractability results
is questionable given the basic models of software require-
ments, software systems and components relative to which
they were derived, our intractability results give the first
rigorous computational comparison between the three ap-
proaches to software design considered here. In particular,
our results as a whole establish that all three approaches are
equally computationally difficult in general but suggest that
software creation by component selection may be tractable
under more circumstances than the other two approaches.

There are several possible directions for future research. The
first is to complete the analysis begun here to see if soft-
ware creation by component selection really is fp-tractable
for software systems that are small and/or created with
small amounts of adaptation. The second is to extend this
analysis to the more realistic models of software require-
ments, software systems, components, and component li-
braries sketched in Section 5.2. Last but certainly not least,
derived tractability results should be implemented and tested
in designing and reconfiguring actual software systems. Such
testing will give invaluable guidance in phrasing future the-
oretical analyses along the lines sketched here; in turn, such
analyses will hopefully help to guide future research in comp-
onent-based software development.

7. ACKNOWLEDGMENTS
The authors extend most grateful thanks to Iris van Rooij
and Maria Otworowska (Donders Institute for Brain, Cog-
nition, and Behaviour, Radboud University Nijmegen) with
whom they collaborated on the formalization of the adaptive
toolbox theory of human decision-making that underlies the
formalizations of component-based design and reconfigura-
tion analyzed here. They would also like to thank the three
reviewers for comments that helped greatly to improve the
presentation of this paper. TW was supported by NSERC
Discovery Grants RGPIN 228104-2010 and 228104-2015.

8. REFERENCES
[1] P. Allen and S. Frost. Component-Based Development

for Enterprise Systems: Applying the Select
Perspective. Cambridge University Press, 1997.

[2] R. G. Bartholet, D. C. Brogan, and P. F. Reynolds Jr.
The computational complexity of component selection
in simulation reuse. In Proceedings of the 2005 Winter
Simulation Conference, pages 2472–2481, 2005.

[3] A. Brown. Large-Scale Component-Based Software
Development. Prentice-Hall PTR, 2000.

[4] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov,
D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh.
Parameterized Algorithms. Springer, 2015.

[5] R. Downey and M. Fellows. Fundamentals of
Parameterized Complexity. Springer, Berlin, 2013.

[6] L. Fortnow. The Status of the P Versus NP Problem.
Communications of the ACM, 52(9):78–86, 2009.

[7] W. B. Frakes and K. Kang. Software reuse research:
Status and future. IEEE transactions on Software
Engineering, 21(7):529–536, 2005.

[8] M. R. Garey and D. S. Johnson. Computers and
Intractability. W.H. Freeman, 1979.

[9] G. Gigerenzer and P. Todd. Fast and frugal heuristics:
The adaptive toolbox. In Simple Heuristics that Make
Us Smart, pages 3–34. Oxford University Press, 1999.

[10] R. González and M. Torres. Critical issues in
component-based development. In Proceedings of The
3rd International Conference on Computing,
Communications and Control Technologies, 2005.

[11] M. Harman, S. Mansouri, and Y. Zhang. Search-based
software engineering: Trends, techniques and
applications. ACM Computing Surveys, 45(1):11, 2012.

[12] G. Heineman and B. Councill, editors.
Component-Based Software Engineering: Putting the
Pieces Together. Addison-Wesley, 2000.

[13] H. Müller and N. Villegas. Runtime evolution of
highly dynamic software. In Evolving Software
Systems, pages 229–264. Springer, 2014.

[14] M. Nouri and J. Habibi. Approximating component
selection with general costs. In Advances in Computer
Science and Engineering, pages 61–68. Springer, 2008.

[15] M. Otworowska, M. Sweers, R. Wellner, M. Uhlmann,
T. Wareham, and I. van Rooij. How did Homo
Heuristicus become ecologically rational? In
Proceedings of the EuroAsianPacific Joint Conference
on Cognitive Science, pages 324–329. 2015.

[16] E. H. Page and J. M. Opper. Observations on the
complexity of composable simulation. In Proceedings
of the 31st Winter Conference on Simulation,

volume 1, pages 553–560. ACM, 1999.

[17] M. Petty, E. Weisel, and R. Mielke. Computational
complexity of selecting components for composition.
In Proceedings of the Fall 2003 Simulation
Interoperability Workshop, pages 14–19, 2003.

[18] U. Stege. The Impact of Parameterized Complexity to
Interdisciplinary Problem Solving. In H. L.
Bodlaender, R. Downey, F. V. Fomin, and D. Marx,
editors, The Multivariate Algorithmic Revolution and
Beyond, number 7370 in Lecture Notes in Computer
Science, pages 56–68. Springer, Berlin, 2012.

[19] M. Sweers. Adapting the Adaptive Toolbox: The
Computational Cost of Building Rational Behaviour.
M.Sc. thesis, Radboud University Nijmegen, 2015.

[20] T. Wareham. Systematic Parameterized Complexity
Analysis in Computational Phonology. Ph.D. thesis,
University of Victoria, 1999.

[21] A. Wigderson. P, NP and mathematics — A
computational complexity perspective. In Proceedings
of ICM 2006: Volume I, pages 665–712, Zurich, 2007.
EMS Publishing House.

APPENDIX
A. PROOFS OF SELECTED RESULTS
All of our intractability results will be derived using reduc-
tions from the following NP -hard problem:

Dominating set [8, Problem GT2]
Input: An undirected graph G = (V,E) and an integer k.
Question: Does G contain a dominating set of size ≤ k, i.e.,
is there a subset V ′ ⊆ V , |V ′| ≥ k, such that for all v ∈ V ′,
either v ∈ V ′ or there is a v′ ∈ V ′ such that (v, v′) ∈ E?

For each vertex v ∈ V , let the complete neighbourhood
NC(v) of v be the set composed of v and the set of all vertices
in G that are adjacent to v by a single edge, i.e., v∪{u | u ∈
V and (u, v) ∈ E}. We assume below an arbitrary ordering
on the vertices of V such that V = {v1, v2, . . . , v|V |}.

Lemma 3. Dominating Set polynomial-time many-one
reduces to SDes-Spec such that in the constructed instance
of SDes-Spec, |A| = 2, |sel| = 0, and |prc| is a function of
k in the given instance of Dominating Set.

Proof. Given an instance 〈G = (V,E), k〉 of Dominat-

ing set, the constructed instance 〈I, A,R,X = 〈|sel|, |prc|〉〉
of SDes-Spec has I = {i1, i2, . . . i|V |}, A = {0, 1}, |sel| = 0,
and |prc| = k. There are |V |+ 1 situation-action pairs in R

such that (1) for ri = (si, ai), 1 ≤ i ≤ |V |, v(ij) = True if
vj ∈ NC(vi) and is False otherwise and ai = 1, and (2) for
r|V |+1 = (s|V |+1, a|V |+1), all v(ij) are False and a|V |+1 = 0.
Note that the instance of SDes-Spec described above can be
constructed in time polynomial in the size of the given in-
stance of Dominating set.

If there is a dominating set of size at most k in the given
instance of Dominating set, construct a software system
consisting of a default *-condition selector and a single pro-
cedure in which the k IF-THEN statements have situation-
variable conditions corresponding to the vertices in the dom-
inating set (adding arbitrary other vertex situation-variables
if the size of the dominating set is less than k) and action

1 and the final ELSE statement has action 0. Observe that
this software system satisfies all situation-action pairs in R

and has |sel| = 0 and |prc| = k.

Conversely, suppose that the constructed instance of SDes-
Spec has a software system satisfying R with |sel| = 0 and
|prc| ≤ k. The selector in this system must be the default
selector as it is the only selector with |sel| = 0. As for the
single procedure attached to that selector, it has two possible
structures:

1. No negated situation-variable conditions: As r|V |+1 has
no situation-variables set to True, it can only be pro-
cessed correctly by the final ELSE-statement, which must
thus execute action 0. In order to accept all other
situation-pairs in R, the k conditions must then have
situation-variables whose corresponding vertices form a
dominating set in G of size at most k.

2. Negated situation-variables are present : Let c be the
first negated situation-variable condition encountered
moving down the code in the procedure, C be the set
of unnegated situation-variable conditions encountered
before c, and R′ ⊆ R be the set of situation-action
pairs not recognized by the situation-variables in C. As
|prc| ≤ k, |C| ≤ k − 1. Moreover, as situation-action
pair r|V |+1 has no situation-variable with value True

and hence cannot be recognized by an IF-THEN state-
ment with an unnegated situation-variable condition,
r|V |+1 ∈ R′.

Let R′′ ⊂ R be such that R′ = R′′ ∪ {r|V |+1}. If R′′

is empty, then the variables in C must have recognized
all situation-action pairs in R except r|V |+1, and hence
the vertices corresponding to the situation-variables in
C form a dominating set in G of size at most k − 1.
If R′′ is not empty, situation-variable c cannot have
value False for any of the situation-action pairs in R′′

because having either 0 or 1 as the action executed
by the associated IF-THEN statement would result in
the procedure executing the wrong action for at least
one situation-action pair in R′ (if 0, at least one of the
situation-action pairs in R′′; if 1, r|V |+1). However,
this implies that all situation-action pairs in R′′ have
value True for c, which in turn implies that the vertices
corresponding to the situation-variables in C∪{c} form
a dominating set in G of size at most k.

Hence, the existence of a satisfying software system for the
constructed instance of SDes-Spec implies the existence of
a dominating set of size at most k for the given instance of
Dominating Set.

To complete the proof, note that in the constructed instance
of SDes-Spec, |A| = 2, |sel| = 1, and |prc| = k.

Lemma 4. Dominating Set polynomial-time many-one
reduces to SDes-Comp such that in the constructed instance
of SDes-CompA, |A| = 2, |Lsel| = 1, and d is a function of
k in the given instance of Dominating Set.

Proof. Given an instance 〈G = (V,E), k〉 of Dominat-

ing set, the constructed instance 〈I, A,R, Lsel, Lprc, d〉 of

SDes-Comp has I = {i1, i2, . . . i2|V |} and A = {0, 1}. There
are |V | + 1 situation-action pairs in R such that (1) for
ri = (si, ai), 1 ≤ i ≤ |V |, v(ii) = True, v(i|V |+j) = True if
vj ∈ NC(vi), all other v(ij) are False, and ai = 1, and
(2) for r|V |+1 = (s|V |+1, a|V |+1), all v(ij) = False and
a|V |+1 = 0. There is a single selector in Lsel whose |V | − 1
IF-THEN statement conditions are the first |V |−1 situation-
variables in I. There are |V | procedures in Lprc such that
procedure i, 1 ≤ i ≤ |V |, has an IF-THEN statement for each
of the vertices in NC(vi) whose condition is the situation-
variable associated with that vertex and which executes ac-
tion 1 and an ELSE statement that executes action 0. Finally,
let d = k+1. Note that the instance of SDes-Comp described
above can be constructed in time polynomial in the size of
the given instance of Dominating set.

If there is a dominating set of size at most k in the given
instance of Dominating Set, construct a software system
consisting of the single selector in Lsel and the at most k pro-
cedures from Lprc corresponding to the vertices in the domi-
nating set. For each of the |V |−1 IF-THEN statements in the
selector, call the procedure encoding the neighbourhood of
the vertex in the dominating set which dominates the vertex
corresponding to the situation-variable in that statement’s
condition. For the ELSE statement in the selector, execute
the procedure encoding the neighbourhood of the vertex in
the dominating set that dominates vertex v|V |. Observe that
this software system satisfies all situation-action pairs in R

and has d = k + 1.

Conversely, suppose that the constructed instance SDes-
Comp has a software system constructed from at most d =
k + 1 distinct components from Lsel and Lprc that satisfies
all of the situation-action pairs in R. As the selector is con-
structed such that each of the first |V | situation-action pairs
in R has its own associated procedure and each procedure
accepts the vertices in a specific vertex-neighbourhood in G,
in order for these situation-action pairs to be satisfied, the
distinct procedures in the software system must correspond
to a dominating set for G (note that both r|V | and r|V |+1

are satisfied by the procedure associated with the ELSE state-
ment in the selector). As d = k + 1 and the system had to
incorporate a selector from Lsel, this means that there are
at most k such procedures and hence a dominating set of
size at most k in the given instance of Dominating Set.

To complete the proof, note that in the constructed instance
of SDes-Comp, |A| = 2, |Lsel| = 1, and d = k + 1.

Result A: SDes-Spec and SDes-Comp are NP -hard.

Proof. Follows from the NP -hardness of Dominating

Set and the reductions in Lemmas 3 and 4, respectively.

Result B: SDes-Spec is W [2]-hard for {|A|, |sel|, |prc|} when
|A| = 2 and |sel| = 0.

Proof. Follows from theW [2]-hardness of {k}-Dominat-

ing Set [5] and the reductions from Dominating Set to
SDes-Spec given in Lemma 3.

