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ABSTRACT

Most of the mathematical models of collective behavior de-
scribe uncertainty in individual decision making through
additive uniform noise. However, recent data driven stud-
ies on animal locomotion indicate that a number of animal
species may be better represented by more complex forms of
noise. For example, the popular zebrafish model organism
has been found to exhibit a burst-and-coast swimming style
with occasional fast and large changes of direction. Based
on these observations, the turn rate of this small fish has
been modeled as a mean reverting stochastic process with
jumps. Here, we consider a new model for collective behav-
ior inspired by the zebrafish animal model. In the vicinity
of the synchronized state and for small noise intensity, we
establish a closed-form expression for the group polarization
and through extensive numerical simulations we validate our
findings. These results are expected to aid in the analysis
of zebrafish locomotion and contribute a new set of mathe-
matical tools to study collective behavior of networked noisy
dynamical systems.
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1. INTRODUCTION

Collective behavior is characterized by self-organized states
[13, 24, 40] that have been observed across almost every phy-
lum of life, including fish schools, bird flocks, insect swarms,
and bacteria [13, 22, 37]. Dissecting the determinants of
collective behavior is central to elucidate the underpinnings
of social behavior and inform new endeavors in engineer-
ing research on neural networks [23], communications [42],
and multi-vehicle robotics [36]. Collective behavior is often
thought to be a manifestation of local interaction of closely
connected individuals [7], yet the general underlying mech-
anisms are not fully understood. Animal experimentation
is certainly the key approach to test hypotheses on collec-
tive behavior and aid our comprehension of this fascinating
phenomenon [15, 26].

In recent years, zebrafish has emerged as a popular animal
model for the investigation of several behavioral and neu-
rological disorders [20, 10]. In particular, this freshwater
fish species has been intensively used to study the effects
of psychoactive compounds on individual and social behav-
ior [12, 25, 28]. Studies on zebrafish behavioral response
often require the use of a relatively large number of fish
to cope with stringent requirements of rigorous statistical
analysis [17, 19]. In the context of the three Rs, that is,

Figure 1: Zebrafish burst-and-coast swimming in
successive video frames samples at 30 frames per
second. (a) A single tail flick can propel the fish for-
ward and (b) fish can change its orientation in just
a few milliseconds.
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reduce, refine, and replace animal use [38], computational
models of zebrafish behavior may complement established
empirical methods [29, 32] through a new class of in silico
experiments.

Several mathematical models have been proposed to study
collective behavior, such as the classical and elegant Vicsek
model [41]. Within this model, each individual is described
as a self-propelled particle averaging its heading with neigh-
boring individuals under the influence of a uniform noise.
However, recent empirical studies have found that biolog-
ical groups might exhibit more complex patterns. In [8,
21], the successive steps taken by ants and caribou have
been found to be correlated. Similarly, the turn rate dy-
namics of a flagtail fish has been modeled as a mean revert-
ing stochastic process in [16], under the premises of the so-
called persistent turning walker (PTW) model, see also [16,
43]. Different from these larger fish, zebrafish locomotion is
characterized by episodes of fast and large changes of direc-
tion [20] (Figure 1) that compose a unique burst-and-coast
swimming style [14]. To model such swimming behavior,
we have proposed in [29] the jump persistent turning walker
model (JPTW), which consists of a stochastic mean revert-
ing model with jumps. The model comprises four salients
parameters that, upon calibration on empirical data, yield
accurate predictions for zebrafish turn rate dynamics [29,
32].

To describe zebrafish collective behavior, in [30] we have pro-
posed a new form of noise based on a discrete time approxi-
mation of the JPTW. The turning rate noise takes the form
of an autoregressive process that includes jumps modeled
as a discrete time compound process combining a Bernoulli
random variable that controls the jump frequency and a nor-
mal random variable that determines the jump intensity.
With a given probability, the turn rate noise is driven by
a Gaussian process, otherwise subject to an additional turn
rate increment. Variants of such process are commonly used
in finance to model sudden rises or drops in the price of
financial assets [18]; in physics to capture the extreme devi-
ation in particle kinematics [27]; and in biology to explain
the foraging behavior of organisms [11], the self-organized
vortices of microtubules [39], and the behavior of starling
flocks [5].

In this work, we propose the integration of this new form of
noise into the classical vectorial network model (VNM) (3,
34], which has been proposed as a valid and mathematically-
tractable approximation of the more complex Vicsek model
in the case of uniform noise. Within this approximation,
each individual can interact with any other individual, ir-
respective of their location. As such, the VNM should be
considered as a feasible approximation of the Vicsek model
under the assumption that individuals are so fast that they
completely mix at each time step. This model differs from
the case study considered in [30] in the mode of selection of
the neighbors, which is completely random in the vein of the
traditional VNM [31, 35]. Specifically, the approach consid-
ered in [30] is based on the notion of numerosity-constrained
networks [2], where each individual consistently uses its prior
heading for deciding its next heading. In this case, we in-
stead posit that prior information is not necessarily used in
the decision process, which draws a given number of indi-

viduals for estimating an average heading. In the particular
context of swarm robotics, individual robots may not have
full, precise access to their prior state due to a variety of
factors, such as external perturbations, intrinsic noise, or
component failure. From a mathematical point of view, this
difference results in a distinctive formulation of the problem,
which warrants a separate treatment.

In the following, we first introduce the JPTW along with the
proposed model of collective behavior incorporating the turn
rate noise. Then, we linearize the VNM in the neighborhood
of a synchronized state, in which all the individuals share a
common heading and study the steady state deviation of the
linearized system. We propose a closed-form expression for
an order parameter of the collective behavior [34]. Using
numerical simulations, we verify the closed-form expression
and we parametrically investigate the effects of the turn rate
noise parameters on group coordination.

2. MODELING COLLECTIVE BEHAVIOR
WITH TURN RATE NOISE

In this section, we recall the JPTW model introduced in [29]
followed by its discrete time approximation that is used to
model the turn rate noise. The new form of noise is then
utilized to explain the VNM with turn rate noise.

2.1 Thejump persistent turning walker

The JPTW proposed in [29, 30] is a mean reverting stochas-
tic differential equation (SDE) that incorporates jumps to
capture the fast and large change of directions observed
in zebrafish swimming. The SDE of the turn rate process
wi(rads™1), where the subscript ¢ (s) identifies the continu-
ous time, takes the form

dwy = —Pwdt + odWy + dJy, (1)

where dt is an infinitesimal time increment; 3 (s™') is the
relaxation rate controlling the gradual return of turn rate
to zero after a change of direction; o (rads™!) quantifies the
variability of the turn rate process, and W; is a standard
Wiener process, defined such that dWW; are independent and
identically distributed (i.i.d.) Gaussian processes with zero
mean and variance dt; J; is the jump term defined as a com-
pound Poisson process J; = Z]”*:l Zj, where Z;’s are i.i.d.
Gaussian random variables with zero mean and standard de-
viation y and v; is a counting process. For time r < t, vy — vy
is a Poisson random variable with parameter A(t — r). The
inten?ty of the jumps is v (rads™*) and their frequency is
A(s™H).

For small time increments At, a discrete time Euler scheme
of the JPTW in Eq. (1) can be obtained using It6’s Isome-
try [33], that is,

w(k) = w(k — 1)e P2 4+ 5e(k) +~7(k), (2)
wherek =1,2,...;0 = 04/ QA—; (1 — e=264t); and the discrete

time process 7(k) = (v(kAt) — v((k — 1)At)) (k) is defined
such that e(k) and ¢(k) are i.i.d. standard Gaussian random
variables and v(kAt) — v((k — 1)At) is a Poisson random
variable with intensity AAt.

For convenience, the JPTW hypothesizes that at most a
single jump is observed in a small time step At [29]. This



simplification is used to approximate the Poisson random
variable v(kAt) — v((k — 1)At) with a Bernoulli random
variable with parameter AA¢ [6]. Such a quantity measures
the probability of a jump in a single time increment. The
discrete time process in Eq. (2) is used to formulate the
likelihood probability density function (pdf) of the turn rate
with parameters (3, 0,7, A), that is,

£ wk)w(k = 1)) = (1 - XA (w(k); m, 6?)
+AALS (w(k);m, 6% + %), (3)

where m = w(k — 1)e P2t and ¢(w;m,v) is the pdf of a
Gaussian random variable with mean m and variance v. In
the absence of jumps, that is A = 0, the right hand side
of Eq. (3) corresponds to the pdf of the PTW. For A # 0,
jumps are present with probability AA¢, and the pdf of the
turn rate is augmented through the second summand in the
right hand side in Eq. (3).

Model parameters are identified by maximizing the log -
likelihood function Y7, log f§*) | _ (@(k)|@(k — 1)) over a
given time series {@(k)}7_; of zebrafish turn rate of T' points.
The JPTW calibrated on experimental data of zebrafish
swimming has been shown to fit the empirical distribution
of zebrafish turn rate using quantile quantile plots [29, 32].
Moreover, using a likelihood ratio test, the model has also
been found to provide a better prediction of zebrafish turn
rate dynamics compared to the PTW.

2.2 Thevectorial network model with turnrate

noise
In the VNM, an individual ¢« = 1,..., N with heading angle
0;(k) at time step k = 0,1,..., interacts with a subset of
K randomly selected neighbors [3, 34]. In a discrete time
setting, the orientation updating rule of individual i is given
by

0:i(k + 1) = Arg [Ui(k)] + nwi, (4)
where the operator Arg(-) returns the angle of a vector;

K
Ui(k) = & > ve'® ™ is the average orientation that is used
Jj=1
by individual ¢ to update its heading angle, with I being the
imaginary unit and v being a constant; wy, . ..,wnx € [—7,T)
are i.i.d. uniform random variables; 1 is a nonnegative scal-
ing factor of the noise intensity. The updating rule in Eq. (2)
implies an absence of temporal correlation [30] and long-

range interactions [4].

To account for the distinctive behavior of zebrafish, we re-
place the uniform noise in Eq. (4) with the turn rate noise
in Eq. (2) by setting § = 1, that is,

wi(k+1) =1 - a)wi(k) + i + 7, (5)

where for simplicity, we have omitted the dependence of ¢;
and 7; on the time step k and we have introduced a =
1 — e P2 with e P2 being the one-step correlation coef-
ficient of w;. The turn rate noise is constructed such that
a Gaussian noise determines the individual orientation with
probability 1— A, and an additional turn rate increment with
intensity v is observed with probability A. The turn rate
noise defined above can be shaped to a desired distribution
by adjusting the parameters «, o, A and 7 as illustrated in
Figure 2.

0.4 _—
0.3 _EE))

-7 0 o
Wi

Figure 2: Probability distribution of the turn rate
noise w(k) modulus 27 obtained from 1,000,000 time
increments and by varying the noise parameters in
Eq. (5): (a) a=0.01, A=0.1, and v =5; (b) a = 1.71,
A=01, and v =5; (¢) a« = 1.71, A = 0.5, and v = 5;
n = 1. The black dashed line represents uniform
noise.

The VNM with turn rate noise can be written as:

ii 10, (k)
72 e

J
wilk+1) = (1 —-a)wi(k)+ei +v7 (6b)

where for simplicity, we have set v = 1. To analyze group
coordination, we use the well-known polarization [34] defined
by:

0;(k+1) Arg +nwi(k), (6a)

N
R LI S N

where E[-] indicates expectation. The polarization is equal
to 1 when all individuals have the same heading. This is the
case when noise is absent from the system. On the other
hand, the polarization approaches 0 as coordination is lost.
In the case of uniform additive noise, group coordination
has been investigated for various group size N, number of
connected neighbors K, and noise intensity 7 [3, 34]. A
linear approximation of the problem has also been proposed
in [35] and in [31] by considering a fraction of individuals as
group leaders.

For small networks, independent of the number of connected
neighbors K, the polarization has been shown to reach a
plateau for large noise intensity [35]. For large networks, a
phase transition from order to complete disorder has been
found for large noise intensity [3, 34]. Also, as the number of
connected neighbors increases, the noise intensity required
to drive the system to complete disorder has been shown to
increase [35].

3. STEADY STATE DEVIATION
We introduce (;(k) = 0;(k) — 0o, for i = 1,..., N where 6
defines a synchronized state, to linearize Eq. (6) as follows:

G+ = D60 +malk), (8

wilk+1) = wi(k)(1—a)+ei+y7. (8b)



We introduce the compact notation ¢(k) = [(1(k), ..
and w(k) = [wi(k),...,wn(k)]", where T indicates matrix
transposition. Using this formalism, the linear stochastic
system in Eq. (8) can be compactly rewritten as

(k+1) = W)+ nw(k), (9a)
wk+1) = wk(1-—a)+e+nT, (9b)
where ¢ = [e1,...,en]|" and 7 = [r1,...,7n]" are N x 1

vectors. Matrix W in Eq. (9) defines a random variable with
rows that are i.i.d. vectors with K randomly selected entries
taking value 1/K, while any other entry equals 0. A variant
of the problem defined in Eq. (9) with uniform additive noise
has been addressed in [35], where a closed-form expression
for the polarization was first derived. Following a similar
line of arguments, we compute the steady state deviation
of the VNM with turn rate noise toward establishing a new
closed-form expression for the polarization.

We multiply both sides of Eq. (9a) by the projection ma-
trix R = Iy — %lNlﬁ to obtain a stochastic system for
disagreement dynamics, that is,

€k+1) = RWE(k) +nRw(k), (10a)
w(k+1) (1 -o)w(k) +e+T, (10b)

where {(k) = R((k) is the disagreement vector. For any
time step k, we define the expected value of the disagreement
norm as (k) = E [||¢(k)||*]. Similar to [35, 31], we inves-
tigate the mean square behavior of the system in Eq. (10)
through the second moment matrix Z(k) = E [¢(k)é(k)"]
whose trace corresponds to the disagreement norm §(k).
When it exists, we define the steady state mean square de-
viation as dec = klgrolo 0(k). In the absence of noise, that is,

n =0, Eq. (9a) is mean square stable and do = 0 indepen-
dently of the initial condition. In such case, the disagree-

ment dynamics is said to be asymptotically mean square
stable.

Similar to [30], we evaluate the second moment matrix =(k)
using a well-known property of the Kronecker algebra [9],
that is, vec (ABC) = (CT ® A)vec (B), where A, B,C are
matrices with appropriate dimensions, ® is the Kronecker
product, and vec(-) indicates vectorization of a matrix by
stacking its columns. Thus, we obtain the following recursive
relation for the second moment matrix:

vec (2(k + 1)) = Gvec (E(k))
+n (R ® RE[W]) vec (E [g(k)w(k)T])
+ 1 (RE[W]® R) vec (E [w(lc)f(k)TD (11)

+7°R® Rvec (E [w(/c)w(k)T]) ,

where G = (R® R) E[W ® W] defines an N? x N? matrix,
which is identical to the one computed in [35].

Mirroring the line of arguments of [35], the expected values
of W and W ® W are given by E[W] = +1x1% and E[W ®
W] = &y 1n1xvec (In) vec (R)" + 17 1n1% ® In1}, where
1n is the N-dimensional column vector of all ones. Using

v (R)T

these expressions, it can be verified that
RE[W] = E[W]|R = 0n,
R® RE[W]=E[W]|R® R = 0Oyz2,

— 1 T
G= TN vee (R)vec(R) ",

where Oy is the N-dimensional column vector of all zeros.

We iterate the expression in Eq. (11) from time 0 to time k,
and we use the independence between W and w(s) for s < k
to obtain

vec (2(k + 1)) G*vec (2(0)) (12)
k
+ 7 Z G" *R® R vec (E [w(s)w(s)T]) ,

s=0

where, without loss of generality, the initial value of the turn
rate vector is set to zero, that is, w(0) = On.

Accounting also for the independence between ¢ and 7, the
variance of the random variable ¢; + 7 is computed as
1+ M\y?. Similar to [30], from the relation in Eq. (10b) and
again the independence between ¢ and 7, the evolution of
the second moment matrix is computed as

T| _ 1— (1 — OC)QS 2
By replacing Eq. (13) into Eq. (12) and iterating over k, we
find
= k1 = s 14+ X°
vec (E(k+1)) = G" vec (E(0)) +n -2 _a)QSvec (R),
(14)
where S =% G~ (1—a)*F_ (1 —a)"2G".

In [35], we have computed the spectral radius of G as follows

N -1
S et 1
T N (15)
The two series in Eq. (14) converge if and only if rq < (1 —
@)? < 1 and the limit is equal to
lim vec (E(k)) = n°p (In ® In — G) ™" vec(R), (16)

k—oco

1+2+2

where n = m

The steady state deviation is evaluated by right multiply-
ing (16) by vec (In)" to obtain

6o =n°pvec(In)" [In @ Iy — G) ™" vec(R). (17)

This expression can be evaluated in closed-form in two dif-
ferent ways, using the fact that [Iy ® In —G]™' = Iy ®
In + mvec (R)vec (R)" demonstrated in [35], or
considering Proposition 2 of [1]. In either cases, we can de-
rive

P 1+XM° KN(N-1)
T T I T (A—a2NE -1 +1

(18)
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Figure 3: Polarization as a function of the jump
frequency X\ and the jump amplitude v for (a) N = 10
and (b) N = 5,000, where K =2, n7=0.1, and o = 1.71.

4. EFFECT OF THE TURN RATE NOISE
ON GROUP COORDINATION

In this section, we study the effects of the turn rate noise
on group coordination based on a new closed-form expres-
sion for the polarization for small noise intensity, which is
complemented and validated by extensive numerical simula-
tions.

4.1 Linear approximation of the polarization
To examine the effect of turn rate noise on polarization in
the VNM, we linearize Eq. (7) in the neighborhood of the
synchronized state by substituting 0; (k) = 6o+(;(k), using a
Taylor series expansion of cos(-) and sin(-) in the expression
for €', and considering a first order expansion of /1 + (),
to find
1

Pol = 1 — 7o (19)
When 0 < 7, < (1—a)? < 1, we replace 6o by its expression
in Eq. (18) to obtain

14+ My K(N —1)

POI:I_WQQ(I—(1—a)2)N(K—1)—|—1'

(20)

Using the closed-form expression in Eq. (20), it is evident
that for small noise perturbations, the polarization is a de-
creasing quadratic function of the noise scaling factor 7.

o 1 2 3 4 5
v

(b) N = 5,000

Figure 4: Polarization as a function of the relaxation
rate o and the jump amplitude 7 for (a) N = 10, (b)
N = 5,000, where K =2, n=0.1, and A = 1.

Similar to [30], for small noise, the polarization is also a de-
creasing function of the jump frequency and the jump inten-
% < 1, the net role of the
turn rate noise parameters is independent of the group size
N and the number of connected neighbors K. Specifically,
the presence of jumps induces an additional variance of \v?
that contributes to further reducing polarization. The noise
autoregressive coefficient has a quadratic effect on group po-
larization with an extremum observed at o = 1.

sity. Given the inequality

Beyond its utility in studying the effect of the turn rate noise
on the polarization, the closed-form expression in Eq. (20)
also enables the study of the behavior of the system in the
thermodynamic limit. When N — oo, the order param-

eter can be approximated as Pol ~ 1 — 7]2%%.
In addition, for K > 1, the polarization reduces to Pol ~
1_ 772 14+A~2
1—(1—-a)2?
parameters. In such case, as the frequency of jumps and
their intensity become substantial, a very small noise inten-

sity is required to maintain the system in an ordered state,

—(1—a)2?
that is, n < %

and is only a function of the turn rate noise

4.2 Analytical and numerical results
We further investigate the effect of the turn rate noise on
group coordination through numerical simulations for small



(N = 10) and large (N = 5,000) networks. The simulations
for the small group are executed for 10,000 time steps, and
the polarization is computed by averaging the last 5,000
time steps. The simulations for the large group (N = 5, 000)
are performed for 2,000 time steps while averaging the last
1,000 time steps to compute the polarization. The initial
headings of the individuals are randomly set prior to running
the simulations.

Figure 3 presents the polarization as a function of the jump
frequency and jump intensity. In agreement with theoreti-
cal expectations, the polarization is a decreasing function of
both these parameters. Compared to the jump amplitude,
the jump frequency tends to have a greater impact on group
coordination. Displaying the polarization as a function of
the relaxation rate and the jump amplitude, see Figure 4
helps illustrating that polarization decreases with the jump
amplitude. Moreover, the polarization shows an inverted
U-shape as « varies. This confirms the findings obtained
through our new closed-form expression, where for small
noise values, polarization is related to an inverted quadratic
function in a. Also, different from the case studied in [30],
where an individual always includes itself in its K connected
neighbors, the turn rate noise parameters more severely af-
fect the VNM with turn rate noise.

The effect of the noise scaling factor n on the polarization for
fixed noise parameters a = 1.71, A = 0.1, and v = 1 is pre-
sented in Figure 5. For n < 0.45, our prediction in Eq. (20)
is in very good agreement with numerical simulations for
small (Figure 5(a)) and large networks (Figure 5(b)). It is
also observed that the polarization is a decreasing function
of the noise scaling factor and reaches a plateau estimated
at around 0.28 for the small networks in Figure 5(a). Such
a plateau is independent of the number of connected neigh-
bors and cannot be captured by the closed-form expression
in Eq. (20), which holds only for small values of n. When
the noise scaling factor increases, for large networks shown
in Figure 5(b), the system exhibits a phase transition from
a state where individuals share the same direction to a state
where their heading is completely random. Similar to the
traditional VNM [35], polarization is a decreasing function of
the number of connected neighbors as opposed the case con-
sidered in [30] where such a conclusion holds only 7 > 0.66.

5. CONCLUSIONS

In this work, we have analyzed the VNM with a new form
of noise inspired by the zebrafish model organism [29]. This
new form of noise is modeled as a discrete time autoregres-
sive process with jumps, which is derived from a discrete
time approximation of the mean reverting stochastic jump
diffusion process proposed in [29]. In the model of collective
behavior considered herein, the mode of selection of con-
nected neighbors is random and identical to the traditional
VNM with uniform noise. This process of network construc-
tion fundamentally differs from the instance studied in [30],
where an individual always includes itself in its set of con-
nected neighbors.

Group coordination within the VNM with turn rate noise
has been thoroughly investigated through a novel closed-
form solution that is valid for small perturbations from a
synchronized state and independent numerical simulations.
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Figure 5: Polarization as a function of the noise
scaling factor 7 for small (a) N = 10 and large (b)
N = 5,000 networks with o = 1.71, A =0.1 and v = 1.
The number of connected neighbors is set as follows:
K = 2 in green, K = 4 in blue, and K = 8 in red.
Dots are numerical simulations, and solid lines are
analytical predictions from Eq. (20). For the small
network, the plateau is reached at Pol ~ 0.28.

The analytical solution provides good predictions of the po-
larization for small noise intensities, where the polarization
monotonically decreases with the square of the noise scaling
factor. Similar to variants of the VNM studied in [30, 31,
34, 35], when the noise intensity increases, a phase transi-
tion is observed for large group size while a plateau in the
polarization is found for small groups. Compared to our
previous results in [30] for the VNM—w, group coordina-
tion in the VNM with turn rate noise is more affected by
the noise, whereby we observe a complex interplay between
the parameters shaping the turn rate noise and the group
coordination.

Our modeling framework proposed here is expected to aid in
the analysis of zebrafish sociality and provide a mathemat-
ical foundation for the study of collective behavior of other
species, characterized by complex individual dynamics. The
analysis could also be helpful in the study of engineering sys-
tems, such as swarm robotics, in which information may be
intermittently shared across units under the effects of noise.
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