
Genetic Algorithm Parameter Control: Application to
Scheduling with Sequence-Dependent Setups

Vincent A. Cicirello
Computer Science and Information Systems

Stockton University
101 Vera King Farris Drive

Galloway, NJ, 08205
cicirelv@stockton.edu

ABSTRACT

Genetic algorithms, and other forms of evolutionary com-
putation, are controlled by numerous parameters, such as
crossover and mutation rates, population size, among oth-
ers depending upon the specific form of evolutionary com-
putation as well as which operators are employed. Setting
the values for these parameters is no simple task. In this
paper, we develop a genetic algorithm with adaptive con-
trol parameters for an NP-Hard scheduling problem known
as weighted tardiness scheduling with sequence-dependent
setups. Our genetic algorithm uses the permutation repre-
sentation along with the non-wrapping order crossover and
insertion mutation operators. We encode the control pa-
rameters within the members of the population and evolve
these during search using Gaussian mutation. We demon-
strate this approach out-performs a manually tuned genetic
algorithm for the problem, and that it converges upon effec-
tive parameter values very early in the run.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—heuristic methods, scheduling ; I.2.6
[Artificial Intelligence]: Learning—parameter learning ;
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—sequencing

and scheduling, computations on discrete structures; G.2.1
[Discrete Mathematics]: Combinatorics—combinatorial

algorithms, permutations and combinations

General Terms

Algorithms, Experimentation, Performance

Keywords

Genetic algorithm, parameter control, parameter optimiza-
tion, permutation operators, weighted tardiness scheduling,
sequence-dependent setups

1. INTRODUCTION
The Genetic Algorithm (GA) and other forms of evolu-

tionary computation are typically controlled by several pa-
rameters. For example, the simplest form of GA is controlled
by a crossover rate, mutation rate, and population size; while
more sophisticated forms have additional parameters such
as elitism rate, scaling window, generation gap, or use pa-
rameterized operators such as uniform crossover or k-point
crossover. Even operator choice can be viewed as a param-
eter (e.g., single-point vs two-point vs uniform crossover).
The most common approach to parameter tuning is manual
tuning—i.e., the GA implementer uses a tedious trial-and-
error approach. Oftentimes, published results report the pa-
rameter values, but do not explain how they were derived.

Others take a more rigorous approach to control param-
eter tuning. De Jong offers the earliest example of formal
analysis of GA control parameters, providing an empirically
determined “optimal” set of parameter values for a specific
class of function optimization problem [17]; while others look
to automate the process, such as Grefenstette’s introduc-
tion of the idea that a GA can be used to optimize GA
control parameters [21]. There have since been a variety
of meta-optimization approaches for optimizing GA param-
eters (e.g., [25, 13, 4]), as well as the parameters of other
metaheuristics (e.g., [25, 32]) and systems (e.g., [26]). Oth-
ers argue that control parameters are not to be tuned a
priori, but rather should adapt dynamically using feedback
from search progress (e.g., [22, 18, 38, 1, 5, 15]).

In this paper, we explore an approach to dynamically
adapting GA control parameters for an NP-Hard single-
machine scheduling problem known as weighted tardiness
scheduling with sequence-dependent setups. Our GA uses
a permutation representation, rather than the classic bit-
string. Many problems, such as the scheduling problem we
explore here, are more naturally represented as permuta-
tions of a set—in this case a set of jobs. The permutation
represents the order to process the jobs. To adapt the con-
trol parameters, we augment the representation to include
the permutation as well as the crossover and mutation rates,
allowing the GA to evolve not only the problem’s solution,
but also its own parameters. In our experiments, we see po-
tential to use the approach for parameter tuning, in addition
to parameter control. That is, though we focus on dynamic
parameter adaptation, the final evolved parameters can po-
tentially be used to control future GA runs.

We begin by providing background and related work (Sec-
tion 2), including on the GA permutation representation and
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relevant operators (Section 2.1) as well as on the target prob-
lem, weighted tardiness scheduling with sequence-dependent
setups (Section 2.2). We present the technical details of our
adaptive GA in Section 3 and discuss our experimental re-
sults in Section 4. We offer concluding remarks in Section 5.

2. BACKGROUND AND RELATED WORK

2.1 GA Permutation Operators
The permutation representation requires specialized GA

operators, capable of producing valid permutations from
population members. Crossover must be capable of recom-
bining parts of two parent permutations to produce two valid
child permutations; and mutation must be capable of pro-
ducing a new permutation that is a variation of another.

There are many crossover operators available that attempt
to recombine different permutation properties, and are thus
relevant for different problem types. For some problems, the
positions of the elements within the permutation are most
important, such as assignment problems where an optimal
one-to-one mapping from the elements of one set to the el-
ements of another is sought (e.g., largest common subgraph
and other isomorphism related problems [36, 13]). For such
problems, crossover must focus on retaining absolute posi-
tions of elements in the parent permutations when form-
ing children. Cycle Crossover (CX) is the best available
example that does just that [29]. Other relevant, though
more disruptive, operators for this problem class include
Partially Matched Crossover (PMX) [20] and Uniform Par-
tially Matched Crossover (UPMX) [13]. For other problems,
crossover must attempt to retain relative positions of ele-
ments (i.e., which elements are adjacent), such as the trav-
eling salesperson, and other routing and scheduling prob-
lems. Crossover operators for relative position problems
include Order Crossover (OX) [16], Non-Wrapping Order
Crossover (NWOX) [7], and Uniform Order Based Crossover
(UOBX) [33]. Most relevant to this paper is NWOX, as
it retains edges while minimizing positional deviation rela-
tive to the original parent permutations, unlike OX which
keeps edges but tends to displace elements large distances
from locations in parents. For scheduling with sequence-
dependent setups, edges directly impact fitness; but for the
weighted tardiness scheduling objective, the general position
of the permutation elements also impacts duedate achieve-
ment, and thus fitness. NWOX is therefore ideal for this
problem. For yet other problems, crossover must retain gen-
eral pairwise element precedences, and not simply edges, in
order to produce children phenotypically similar to the par-
ents. Precedence Preservative Crossover (PPX) [3] is de-
signed to do this, while others that may work well for such
problems include NWOX, UOBX, and CX. There are yet
other crossover operators that introduce problem-dependent
knowledge into crossover (e.g., [28, 37, 9]).

There are relatively few commonly used permutation mu-
tation operators [19, 31, 35, 12]. Among these are swap,
which exchanges a random pair of elements; insertion, which
removes a random element and reinserts it at a random lo-
cation; reversal, which reverses the order of a random sub-
permutation; and scramble, which randomizes a random
sub-permutation. There also exist window-limited variants
of these, which constrain distance between random element
selection [10]. See [11] for a comprehensive fitness landscape
analysis of mutation operator behavior on permutation land-

scapes. One of the results of that study showed insertion to
be the dominant choice when directed edges most directly
impact fitness, and when small positional movement is im-
portant. Thus, for the same reasons that we have chosen
NWOX, we use insertion mutation in our GA.

2.2 Sequence-Dependent Setup Scheduling
The weighted tardiness scheduling problem with sequence-

dependent setups consists of N jobs J = {j1, j2, . . . , jN}.
Each job jk has weight wk, duedate dk, and process time
pk. For each pair of jobs, si,k is the setup time required
prior to processing job jk if it immediately follows job ji.
Setup times are asymmetric—i.e., it is not necessarily the
case that si,k = sk,i. s0,k is the initial setup time required
if job jk is processed first. The weighted tardiness objective
is to sequence the set of jobs J to minimize:

T =

N∑

k=1

wkTk =

N∑

k=1

wk max(ck − dk, 0), (1)

where Tk and ck are the tardiness and completion time of job
jk. The completion time ck is the sum of the process times
and setup times of all jobs that come before jk plus the setup
time and process time of jk. Let π(k) be the position in the
sequence of job jk, then ck is defined as follows:

ck =
∑

π(x)≤π(k),π(x)=π(y)+1

(px + sy,x). (2)

Single-machine scheduling to optimize weighted tardiness
is NP-Hard even if setups are independent of job order-
ing [27]. Sen and Bagchi show that sequence-dependent
setups induce a non-order-preserving property of the evalu-
ation function that greatly magnifies problem difficulty [30].
The current best available exact solver for the problem,
Tanaka and Araki’s Successive Sublimation Dynamic Pro-
gramming, is capable of solving all of the available bench-
mark instances, but requires over two weeks of memory-
intensive CPU time to solve the harder instances [34]. There-
fore, it is desirable to turn to alternative approaches, such as
genetic algorithms as well as other metaheuristics, that are
able to more efficiently find sufficiently-optimal solutions.

In our experiments, we use the standard benchmark set for
the problem, which we previously introduced [5, 6].1 This
benchmark set has been used by many researchers for a vari-
ety of search algorithms, such as dynamic programming [34],
neighborhood search [24], iterated local search [39], value-
biased stochastic sampling [14], genetic algorithms [7], sim-
ulated annealing [8], ant colony optimization [23], etc.

3. ADAPTIVE GENETIC ALGORITHM

Instance Preprocessing. To minimize the impact of setup
times on problem solving performance, we transform each
job, jk, increasing process time by the job’s minimum setup
time, and reducing all setup times accordingly:

s
min
k = min

0≤i≤N,i6=k
si,k, (3)

pk = pk + s
min
k , (4)

si,k = si,k − s
min
k ,∀i, i 6= k, 0 ≤ i ≤ N. (5)

1Currently maintained at http://loki.stockton.edu/
~cicirelv/benchmarks/.



Additionally, following Tanaka and Araki [34] as well as oth-
ers, we eliminate any job jk, with weight wk = 0, provided
∀x∀y, x 6= y, sx,k + pk + sk,y ≥ sx,y.

Representation. Let Pop refer to the GA population, and
let PopSize be the size of the population. Each individual
member i of the population is defined as a 4-tuple as follows:
Popi =< Pi, Ci,Mi, σi >. Pi is a permutation—in the case
of the scheduling problem we consider here, it is a permu-
tation of the set of jobs. Ci and Mi are the crossover and
mutation rates, respectively, for member i of the population;
and σi is a parameter related to mutating the crossover and
mutation rates, which we will discuss in detail below.

Fitness Calculation. The fitness of population member
Popi depends explicitly only on permutation Pi, and not
on any of the GA control parameters embedded in Popi.
Let T (Pi) be the weighted tardiness (Equation 1) for per-
mutation Pi; and define fitness as follows:

fitness(Popi) = 1− T (Pi) + max
1≤k≤PopSize

T (Pk). (6)

Our objective is to minimize T (Pi). By defining fitness in
this way, higher fitness values correspond to better sched-
ules, and the least fit individual has fitness equal to 1.

Selection. We use elitism to select the E most fit popula-
tion members containing unique permutations. The elite
members do not undergo crossover or mutation, and are
copied into the next generation as is, ensuring that the pop-
ulation always contains the best solution found thus far, and
also preventing convergence upon a single solution since the
population always contains at least E unique permutations.

We use Stochastic Universal Sampling (SUS) [2] to select
the remaining PopSize−E members of the population for the
next generation. All PopSize members of the current popu-
lation are available for selection by SUS, including the elite
members. SUS selects Popi with probability proportional to
fitness(Popi) just like the more common fitness proportion-
ate selection (i.e., “weighted roulette wheel”). However, SUS
is analogous to spinning a wheel with k equidistant pointers
a single time to select k members simultaneously, whereas
fitness proportionate selection spins a 1-pointer k times to
select k members. Baker showed that SUS reduces selection
bias [2]; and it is also more efficient (e.g., only 1 random
number need be generated to select an entire population).

Crossover. In each generation, the PopSize − E non-elite
members are paired randomly. For each pair, Popi, Popj ,
an arbitrary member is chosen (e.g., Popi from this hypo-
thetical pair). With probability Ci (the crossover rate from
the chosen member of the pair), NWOX [7] is applied to the
permutations contained in the pair. Figure 1 illustrates the
behavior of both OX and NWOX for comparison. Two ran-
dom cross points are chosen, similar to a 2-point bit-string
crossover. Child Ci gets the cross region elements from par-
ent Pj in the same positions, and likewise for Cj . For the
original OX [16], the remaining elements for Ci are taken
in the same relative order as they appear in Pi, filled into
Ci beginning just after the cross region, wrapping around
to the start. By contrast, NWOX fills in these remaining
elements beginning at the left end of Ci, skipping over the
cross region, and continuing to its end. NWOX has the ef-
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Figure 1: The NWOX and OX operators.

fect of better keeping elements near their original locations
in the parents, whereas OX tends to displace elements from
one end to the other of the permutation. For a scheduling
problem like the one we consider here, the smaller positional
displacements of NWOX is beneficial. We do not apply any
crossover operation to the adaptive GA parameters.

Mutation. In each generation, for each of the PopSize− E

non-elite members Popi, we apply insertion mutation with
probability Mi, the mutation rate. Insertion mutation re-
moves a random element, and then reinserts it at a different
randomly chosen location, shifting the elements between the
removal and reinsertion points one place each. In our prior
work, we compared its performance on this very scheduling
problem to alternatives both in a GA [7] as well as within
simulated annealing [8]. As shown in our prior work on
permutation search landscape analysis [11], insertion muta-
tion is ideally suited to permutation problems with directed
edges (e.g., the asymmetric and sequence-dependent setups)
and where positional information also influences fitness (e.g.,
general position within permutation affects job tardiness).

Parameter Initialization and Adaptation. The initial val-
ues for the Ci and Mi are generated uniformly at random
from [0.1, 1.0). These evolve during the search with Gaus-
sian mutation [22], controlled by σi. Hinterding recommends
initializing these around 0.1 [22]; and thus, we randomly
generate the initial σi uniformly from [0.05, 0.15).

In each generation, Ci, Mi, and σi of each of the PopSize−
E non-elite members undergo Gaussian mutation as follows:

Ci = Ci +N(0, σi), (7)

Mi = Mi +N(0, σi), (8)

σi = σi +N(0, 0.01), (9)

where N(0, σ) is a normally distributed random variable
with mean 0 and standard deviation σ. If Ci is greater
than 1, it is reset to 1 (likewise for Mi) to ensure it re-
mains a valid probability. If Ci is less than 0.1, it is reset to
0.1 (likewise for Mi). Similarly, σi is allowed to vary only
within [0.01, 0.2]. The range for σi and its adaptation rule
(Equation 9) differ from Hinterding [22] but are consistent
with his recommendation that the standard deviation of the
Gaussian mutation be approximately 0.1 times the maxi-
mum value of the real-valued parameter. The maximum



values of Ci and Mi are both 1; and the mid-point of the
allowable range of σi is approximately 0.1, which is further
mutated with a Gaussian with standard deviation 0.01.

4. EXPERIMENTS

4.1 Experimental Design
The set of benchmark instances for the weighted tardiness

problem with sequence-dependent setups consists of 120 in-
stances, 40 each of loose duedates, medium duedates, and
tight duedates. Of these, 22 instances have an optimal so-
lution with weighted tardiness equal to 0 (all of these are
loose duedate instances). We use the following commonly
employed metrics in the analysis of our experiments for this
problem. Most commonly reported is the average percentage
deviation from the optimal solutions, averaged only across
the instances with non-zero optimal values:

%∆Opt =
100

N

N∑

i=1

(Si −Oi)

Oi

, (10)

where Si and Oi are the value of the solution found for prob-
lem instance i and its optimal solution, respectively. One
problem with this metric is that it ignores the 22 problem
instances whose optimal solutions have weighted tardiness
equal to 0. Thus, we also report the percentage deviation of
the sum across the problem instances relative to the sum of
the optimal solutions:

%∆OptSum = 100

∑N

i=1 Si −
∑N

i=1 Oi∑N

i=1 Oi

. (11)

We consider the following run lengths (in maximum num-
ber of generations): {102, 103, 104, 105, 106}. For each alter-
native algorithm in our experiments, we solve each instance
10 times for each run length. The reported vales of %∆Opt
are thus averages of 10N runs (for N instances), while the
reported %∆OptSum are 10 run averages. We use t-tests
to test the significance of the %∆OptSum results. How-
ever, since %∆Opt is an average across multiple problem
instances with values of varying scale, the normality require-
ment for the t-test is not met. So we test the significance of
the %∆Opt results using the Wilcoxon signed rank test.

We conduct our experiments on an Ubuntu 14.04 Server,
with 32GB memory and two Intel Xeon L5520 Quad-Core
CPUs (2.27GHz). The L5520 supports hyper-threading with
two threads per core, so our server has a total of 16 logical
cores. We implement our experiments using Java 8 and the
Java HotSpot 64-bit Server VM. Our GA is not implemented
with multi-threading, so it does not explicitly utilize the
multi-core architecture of our server, though the VM would
certainly do so for garbage collection.

We compare three GA schemes (PopSize = 100 in each):
Manually Tuned: As a baseline for comparison, we use our

prior GA for the problem in which we manually tuned the
GA parameters using a small set of instances not contained
in the benchmark [7]. This GA also uses NWOX and In-
sertion for crossover and mutation, as well as SUS selection.
The manually tuned parameters are E = 3, C = 0.95, and
M = 0.65. A mutation rate of 0.65 would be unusually high
for a bit-string GA where it is a per-bit mutation rate. How-
ever, the mutation rate for a permutation-based GA is a per
population member rate (i.e., the probability that a single
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Figure 2: GA control parameter evolution: popula-
tion averages across instances of designated classes.

mutation is applied to a population member), so mutation
rates tend to be higher than encountered for bit-strings.

Adaptive: This is our adaptive GA as described in this
paper, where each population member has its own Ci and
Mi, which evolve during search. The elitism parameter was
tuned manually using a small set of instances outside the
benchmark, and our experiments use E = 5 retaining the 5
most fit population members unaltered in each generation.

Evolved: As a third option, we consider a GA with fixed
parameters derived from the final parameters of a 1000000
generation run of the GA. Figure 2 shows the evolution of the
average population C and M averaged across all benchmark
instances, as well as the three instance classes. For the first
10000 generations at 100 generation intervals, we computed
C as the average of the Ci for the population, and M as the
average of theMi for the population. We then continued this
at 100000 generation intervals for the remainder of the run.
Note that we did not perform any cross validation and we
used the very benchmark instances, so no generalizations can
be made with regard to anticipated performance on future
instances. This parameter set is deliberately over-fitted to
serve as a performance bound with which to compare our
adaptive GA—e.g., if we had access to a clairvoyant oracle
that could tell us what parameters we should use, how well
would we do? The evolved parameters are: C = 0.60 and
M = 0.23 (we still use E = 5 as above).

4.2 Results
The dynamic tracking of the crossover and mutation rates

(Figure 2) show interesting behavior. First, the average mu-
tation rate decreases steadily for around the first 1000 gener-
ations, and then remains constant; and the average crossover
rate does not stabilize until after 10000 generations. Sec-
ond, observe that for loose duedates, the adaptive GA settles



Table 1: Comparison of manually tuned parameters
and adaptive parameters: %∆OptSum and %∆Opt.

Parameters %∆OptSum %∆Opt
(# gens.) Ave. Best Ave. Best
Manual 59.34% 48.23% 533.79% 405.57%
Adaptive 49.25% 38.78% 392.79% 285.28%
(102) p: 4.5 ∗ 10−15 p: 0.00
Manual 21.71% 16.01% 154.39% 115.39%
Adaptive 14.78% 9.81% 78.71% 52.33%
(103) p: 1.1 ∗ 10−15 p: 0.00
Manual 11.13% 7.32% 62.71% 42.24%
Adaptive 9.95% 6.04% 48.17% 30.08%
(104) p: 1.1 ∗ 10−07 p: 8.9 ∗ 10−15

Manual 7.30% 4.30% 39.64% 24.84%
Adaptive 6.85% 3.99% 33.37% 20.87%
(105) p: 0.001 p: 6.0 ∗ 10−11

Manual 4.83% 2.46% 26.98% 16.60%
Adaptive 4.98% 2.43% 22.61% 13.44%
(106) p: 0.133 p: 0.010

Table 2: Comparison of manually tuned parameters
and adaptive parameters: #Opt and CPU time.

Parameters CPU
(# gens.) #Opt Time

Manual (102) 3 0.06
Adaptive (102) 7 0.05

Manual (103) 14 0.30
Adaptive (103) 121 0.19

Manual (104) 145 1.52
Adaptive (104) 160 0.87

Manual (105) 164 10.20
Adaptive (105) 168 7.15

Manual (106) 169 94.92
Adaptive (106) 176 68.51

upon a higher mutation rate and a lower crossover rate than
it does for medium and tight duedates. In general, crossover
rate is higher the tighter the duedates are for the instance,
so crossover appears more productive than mutation for the
harder, tight duedate instances.

Tables 1 and 2 summarize the experimental data compar-
ing the manually tuned and the adaptive parameters. The
CPU times are in seconds, averaged across 1200 runs (10
runs on each of 120 problem instances). In addition to the
averages for %∆OptSum and %∆Opt, we also show the re-
sults of the best runs. The #Opt is the number of runs (out
of 1200) where the optimal solution was found.

Figures 3 and 4 show %∆OptSum and %∆Opt, respec-
tively, averaged over all problem instances as well as by due-
date tightness, as the number of generations increases. The
graphs are at log-log scale.

For short runs (100 generations), the evolved fixed pa-
rameters do lead to slightly better results compared to our
adaptive GA across all instances of the benchmark set (dif-
ficult to see on the graphs, though p-value less than 10−10

for %∆Opt and less than 10−7 for %∆OptSum, shows dif-
ferences to be extremely statistically significant for 100 gen-
eration runs). However, for longer run lengths, there is no
statistical significance between the performance of these two

algorithms (with the exception of loose duedate instances
and runs between 10000 and 100000 generations where the
fixed parameters perform slightly better). This shows that
the adaptive GA needs only a small amount of time to evolve
parameters that lead to effective problem solving; and that
the use of sub-optimal parameters early in the run have a
negligible effect on the run as a whole.

The adaptive and the evolved fixed parameters greatly
out-perform the manually tuned parameters on both met-
rics with the exception of very long runs (106 generations) on
tight duedate instances, where the manually tuned parame-
ters lead to slightly better performance. The differences for
%∆Opt between the adaptive GA and the manually tuned
GA, are statistically significant for all problem classes and
all run lengths other than 105 generation runs on tight due-
date instances (p-value is 0.13 in that case, but is otherwise
no higher than 0.01, and in some cases less than 10−14). The
%∆OptSum results are similar—i.e., statistically significant
except for 105 generations on tight duedate instances, and
at 106 generations across the entire benchmark (p = 0.133).

The results are more dramatic when computational time
is considered. Figure 5 shows CPU time in seconds, as a
function of number of generations, averaged across all in-
stances as well as separated out by duedate tightness (x-axis
is at log scale). Although the adaptive GA has the added
computation required to adapt the control parameters, it
requires an overall lower CPU time compared to the man-
ually tuned parameters. The manually tuned parameters
are higher crossover and mutation rates, so more GA oper-
ations are performed in the same number of generations as
compared to the adaptive GA. The evolved fixed parame-
ters obviously require the least amount of CPU time for an
equivalent number of generations. Recall that this option
uses the final population average parameter values evolved
by the adaptive GA, but right from the start without the
added overhead of parameter adaptation.

Figure 6 shows %∆OptSum and %∆Opt, computed across
the entire benchmark set, as functions of CPU time, rather
than number of generations. The performance separation is
more pronounced when CPU time is considered (e.g., con-
trast with Figures 3a and 4a, respectively).

5. CONCLUSIONS
In this paper, we presented an adaptive GA for an NP-

Hard problem: weighted tardiness scheduling with sequence-
dependent setups. GA control parameters, such as mutation
and crossover rates, are all too often tuned in a tedious, ad
hoc trial-and-error manner. Our GA evolves the control pa-
rameters simultaneously with the solution to the problem,
thus eliminating the need to tune the control parameters
ahead of time. An additional advantage is that the parame-
ters can be tuned to the problem instance at hand dynami-
cally during search. For example, we saw in Figure 2 and its
associated discussion that the adaptive GA evolved a higher
mutation rate and a lower crossover rate for loose duedate
instances as compared to tight duedate instances.

Although there is computational overhead associated with
evolving the control parameters, it seems to be negligible.
For example, we saw that the adaptive GA finds signifi-
cantly better solutions for the scheduling problem of this
paper as compared to an existing manually tuned GA that
uses the same genetic operators; and that it does so with less
computational cost since the evolved parameters are lower
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(c) Medium duedate instances
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(d) Tight duedate instances

Figure 3: %∆OptSum (10 run averages) over: (a) all 120 benchmark instances, (b) all 40 loose duedate
instances, (c) all 40 medium duedate instances, and (d) all 40 tight duedate instances.
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(a) All instances
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(b) Loose duedate instances
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(c) Medium duedate instances
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(d) Tight duedate instances

Figure 4: %∆Opt (10 runs per instance) over: (a) the 98 instances with optimal > 0, (b) the 18 loose duedate
instances with optimal > 0, (c) all 40 medium duedate instances, and (d) all 40 tight duedate instances.
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(a) All instances

0 s

20 s

40 s

60 s

80 s

100 s

120 s

10
2

10
3

10
4

10
5

10
6

C
P

U
 t

im
e 

(s
ec

o
n
d
s)

generations

Manually tuned
Adaptive
Evolved

(b) Loose duedate instances
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(c) Medium duedate instances
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(d) Tight duedate instances

Figure 5: CPU time in seconds (10 run averages) over: (a) all 120 benchmark instances, (b) all 40 loose
duedate instances, (c) all 40 medium duedate instances, and (d) all 40 tight duedate instances.

1%

10%

100%

0.1 s 1 s 10 s 100 s

%
∆

O
p
tS

u
m

 (
1
0
 r

u
n
 a

v
er

ag
es

)

CPU time (seconds)

Manually tuned
Adaptive
Evolved

10%

100%

1000%

0.1 s 1 s 10 s 100 s

%
∆

O
p
t

(9
8
0
 r

u
n
s 

=
 1

0
 r

u
n
s 

*
 9

8
 i

n
st

an
ce

s)

CPU time (seconds)

Manually tuned
Adaptive
Evolved

Figure 6: %∆OptSum and %∆Opt expressed as func-
tions of CPU time in seconds (log-log scale).

rates of crossover and mutation. We also saw that the so-
lutions found by the adaptive GA are no worse than if we
somehow had access to the final evolved control parameter
values from the beginning. Thus, the approach efficiently
converges upon effective parameter values.

We plan to further investigate the potential effectiveness
of our approach for parameter tuning. For example, we saw
that if we use the final average population parameter val-
ues evolved by the adaptive GA right from the start of the
search, that we achieve equivalent performance to the adap-
tive GA but without the overhead of parameter evolution.
We will investigate whether this generalizes to other yet un-
seen problem instances. We will also investigate whether it
is possible to bootstrap the parameter adaptation using the
evolved parameters from earlier runs.
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