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ABSTRACT
In this paper a honeybee inspired collective-decision-making
algorithm called BEECLUST is studied in a swarm of au-
tonomous robots and the performance of the swarm is in-
vestigated in different conditions. The algorithm has low re-
quirements thus it is promising for implementation in robots
with low resources. Here the algorithm is applied in swarms
of improved e-puck robots in three different conditions in or-
der to study the strengths and limitations of the algorithm.
The collective system demonstrated a high performance in
adapting to a dynamic environment as well as a very low
sensitivity to additional robots with malfunctioning sensors.
On the other hand the system shows an strong response
to robots that act as social seeds influencing the decision-
making of the swarm.

Categories and Subject Descriptors
F.2.m [Analysis of Algorithms and Problem Com-
plexity]: Miscellaneous; I.2.9 [Artificial Intelligence]: Robotics—
Autonomous vehicles; I.2.11 [Artificial Intelligence]: Dis-
tributed Artificial Intelligence—Multiagent systems

General Terms
Algorithms, Experimentation, Performance

.

Keywords
swarm robotics, autonomous agents, self-organisation, bio-
inspired algorithm, swarm intelligence, collective decision
making, search

1. INTRODUCTION
Social insects are promising sources of inspiration for col-

lective intelligence and swarm robotics where simple rules
implemented by the agents lead to complex behaviour of
the collective system. In this paper an algorithm inspired
by young honeybees is implemented in real embodied robots.
The algorithm is investigated for its behaviour in differ-
ent conditions in order to make a deeper understanding of
the capabilities and limitations of the algorithm for swarm
robotics and getting insights into mechanisms used in natu-
ral honeybees.

Young honeybees are not capable of flying. They can move
around in the hive and they are capable of collectively find-
ing locations with the best temperature [5, 18]. It has been
shown [7, 9], that there is a preferred temperature (36◦C)
that is an important factor for the development of the young
honeybees. This is the main temperature in the brood nest
of a bee-hive and acts as a mechanism to confine the brood
in the brood nest [16].

Previous experiments demonstrate that individual young
honeybees are mostly not capable of locating the area with
the preferred temperature but swarms of them can find the
preferred spot collectively [15, 17, 19]. This collective be-
haviour is modelled by the BEECLUST algorithm [15] which
consists of simple rules for the individual agents and leads
to the collective behaviour of the swarm finding the global
optimum out of several local optima in the environment.
The algorithm does not require any explicit communication
between agents or directional sensing of the environmen-
tal modalities such as temperature. It works based on local
measurements and the capability of agents to distinguish be-
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tween obstacles and other agents in the near vicinity. The
minimal requirements of the algorithm make it promising for
applications in swarm robotics where several robots with
limited capabilities are supposed to perform a task collec-
tively. The BEECLUST algorithm has been analysed [11,
10, 8], investigated for improvements [2, 4, 3, 12], and ap-
plied [17, 15, 13] in previous works in simulation and also
with robots in a light gradient. In this paper we implement
the algorithm in swarms of autonomous e-puck robots [6].
Since the BEECLUST algorithm is derived from the be-
haviour of young honeybees, experimenting with a tempera-
ture gradient gets us closer to the situation that young hon-
eybees are faced with, thus might be interesting also from a
biological point of view. Therefore, we extended the e-puck
robots with temperature sensors. A set of experiments were
performed in an arena containing two heat sources as global
and local optima. The behaviour of the collective system
is investigated in a set of collective choice experiments with
different conditions. In the first scenario, the behaviour of
the system is investigated in a dynamic environment where
the global optima changes its location to the local optimum
to show that the agents are able to react on environmen-
tal changes under sophisticated conditions. The second and
third scenario deal with the situations where some of the
robots do not act as normal robots. In the second scenario
the effect of social seeds is investigated. Social seeds are
robots that try to influence the swarm decision by locat-
ing themselves in a certain area (i.e. local optimum) of the
arena. Here we want to investigate how strong the effect of
a social seed is. The third scenario investigates whether or
not robots with broken sensors can reduce the performance
of the swarm of intact robots and thus, harm the robots de-
cision making process. This is done by adding robots with
broken sensors to a swarm of fully functional robots.

2. MATERIAL & METHOD

2.1 Hardware platform
As a hardware platform, the “e-puck” robot is used [6].

The e-puck features a broad array of different sensors, how-
ever, only the infrared (IR) proximity sensors are used here
for obstacle detection and detection of another robot. As
the e-puck has no temperature sensors, we designed an ex-
tension board which provides additional sensors like color
sensors, light sensors and temperature sensors, whereas only
the temperature sensors are used here. Temperature mea-
surement is performed by a MAXIM MAX6636 integrated
circuit which supports up to 6 external temperature sensors.
For our experiments we only use a single temperature sensor
which measures the temperature slightly above the ground.
Figure 2.1 shows an e-puck robot with its extension board
and temperature sensor.

2.2 BEECLUST algorithm
The BEECLUST algorithm is a swarm algorithm inspired

by the behaviour of young honeybees. The algorithm en-
ables the swarm to find the global optimum out of several
local optima. The algorithm is based on collisions between
the agents and the measurement of local modality by indi-
vidual agents. The algorithm is summarised as follows:

• Each agent moves randomly until a collision is de-
tected.

• If the collision has happened with an obstacle, the
agent turns around and continues with the random
movement.

• If the collision has happened with another agent, the
agent measures the local environmental modality (e.g.,
temperature) and waits in its position for a certain pe-
riod of time. The waiting time is a monotonic function
of the measured value of the local modality.

2.3 Setup
In the following experiments, a typical setup for a choice

experiment is used. A circular arena (figure 2(a)) of r = 2m
is set up with two heat lamps located in two sides of the
arena (semi-circles) making a global optimum and a local
optimum temperature. A picture of the arena taken with
an infrared camera is shown in figure 2(b). On the right
side, there is the global optimum area (green with yellow
area in the middle). The global optimum has a maximum
temperature of 36◦C at the middle and 30◦C at the bound-
aries. The local optimum area is located on the left side of
the arena (green area at the left side ). The local optimum
has a maximum temperature of 32◦C at the middle and 30◦C
at the boundaries. The two areas cover 11% of the arena,
each. The ambient temperature of the room, thus the tem-
perature between the global optimum and the local optimum,
is approx. 28◦C. At the beginning of each experiment, the
robots are released with a random heading of [0π, 2π] in the
middle of the arena (area with about 28◦C).

2.4 Experiments
In the following sections we describe the three sets of ex-

periments with the swarms of e-puck robots running the
BEECLUST algorithm as the controller of the robots. The
three different scenarios are as follows: dynamic environ-
ment, social seed scenario, and impaired sensor robots. As a
control experiment we conducted the classical binary choice
setup with 10 robots for the dynamic environment and so-
cial seed scenarios. The control experiment for the impaired
sensor scenario is the classical binary choice setup with only
three robots. Every scenario is repeated n = 10 times. In
each experiment, where the number of robots in certain ar-
eas are investigated, the robots are counted every 20 seconds
and the median of the counted values are taken as the num-
ber of robots in that area for that experiment.

2.4.1 Dynamic environment
In [17] it was shown in a light gradient, that agents con-

trolled by the BEECLUST algorithm are not only able to
find the global optimum out of several local optima, but they
are also able to react on environmental changes like chang-
ing the global and local optima. Here we want to show that
it is also possible under more sophisticated environmental
conditions like in a temperature gradient.

The experiment is carried out in two steps. The setup
in the first step is identical to what is described in Sec. 2.3
with a global and local optima located respectively at the
right and left side of the arena. The first step consists of
a single observation phase and lasts for 15 minutes. At the
beginning of the first step, agents are released in the middle
of the arena. After 15 minutes, the second step starts with
switching off the heat source of the global optimum. The
second step consists of two phases which last for 5 and 10



Figure 1: e-puck with the extension board (on top) and a temperature sensor (at the left side slightly above
ground).

minutes respectively. In the first 5 minutes the global opti-
mum cools down to the ambient temperature (28◦C). Then
in the next 10 minutes the formerly called global optimum
keeps a median temperature of 28◦C and the formerly called
local optimum becomes the new global optimum. Without
changing the heat source of the former local optimum, its
temperature decreases to 30◦C due to the absence of the
heat source of the former global optimum. The duration of
a complete experiment is 30 minutes. See figure 4 for the
changes in the median temperature during the three phases.

2.4.2 Social seed
It has been previously shown in [1] that adding a social

component to individual learning can improve the perfor-
mance of a population of autonomous robots developing a
simple group behaviour, i.e. foraging. Here we used a social
seed as the social component in the arena. The social seed
is a robot that is immobile but its social effect is the same
as other robots meaning that other robots can perceive its
presence and react to it as a robot. In a previous work [14]
we investigated the effect of social seeds in simulation. Here
we are interested in investigating if this effect also exists
in robots controlled by the BEECLUST algorithm and how
strong the effect is compared to the results from the simu-
lation experiment. Therefore, we created a setup similar to
the simulation setup: The main swarm consists of 10 robots.
In the local optimum we placed an immobile robot as a social
seed which can be recognised by other robots (see figure 3).
To keep the conditions fair for the two optima (e.g. in terms
of available space), we placed a dummy robot in the global
optimum. The dummy robot is perceived as an obstacle by
other robots.

2.4.3 Impaired sensors
During experiments with swarm robots, we raised the

question if robots that are not fully functional do harm
the performance of the swarm consisting of fully functional
robots or if they can still help other swarm members. This is
especially relevant if the presence of robots in the arena has

other purposes in addition to finding the global optimum.
In the experiment here, the performance of a swarm of

intact robots aiming to find the global optimum is investi-
gated in presence of additional robots with malfunctioning
temperature sensors. Here, the malfunctioning temperature
sensors measure a temperatur of 0 ◦C and thus, have always
a waiting time of t = 0s. All the robots are controlled by the
BEECLUST algorithm. The impaired robots cannot mea-
sure the temperature and therefore never stop, but they can
still create collisions and trigger other robots to measure the
local temperature.

The intact swarm in this experiment consists of 3 fully
functional robots. To measure the effect of impaired robots,
we added 7 robots that are not able to measure the tem-
perature. In the control experiment, the 3 fully functional
robots were used. We used only 3 robots here, because the
aggregation with 3 robots is stable enough to measure a
decrease of performance if the impaired robots harm the de-
cision making process. On the other hand, to measure if
the performance can be increased with the help of impaired
robots, the aggregation of 3 robots is instable enough so that
there is potential to improve the aggregation.

3. RESULTS

3.1 Results: Dynamic environment
The dynamic environment experiment was created to de-

monstrate that agents controlled by the BEECLUST algo-
rithm are flexible in their decision-making in a dynamic en-
vironment even where the environment is very inert and un-
stable (like the temperature-gradient). Figure 4 shows the
changes in temperature over time. In phase 1, both optima,
global optimum area and local optimum area are present. Af-
ter 15 minutes, the heat source of the global optimum area is
switched off and a cooling phase of 5 minutes starts (phase
2). Then only one optimum is present (phase 3). In figure 5
the corresponding distribution of agents over time is shown.
In phase 1 all robots start in the middle of the arena. Af-



(a) Setup of the arena. Blue lines define the local/global optimum areas.

(b) Heatmap of the arena with two sources of heat. On the left side the local optimum
area with 32◦C and on the right side the global optimum area with a maximum of 36◦C.

Figure 2: Experimental Setup of the arena and the corresponding heatmap.



Figure 3: The figure shows the setup of the social
seed. Left: local optimum area with a social seed
(immobilised robot). Right: global optimum area
with a dummy robot to ensure similar circumstances
of the two optima areas.

ter a short period, most of the agents are aggregated in the
global optimum. In phase 2, the global optimum is shut down
and therefore the cluster dissolves. After a few minutes, the
robots start to cluster in the local optimum which is now
the new global optimum in the arena. At the end of the
experiment most robots are clustered in the formerly called
local optimum.
Figure 6 shows the median number of robots in the global
optimum and local optimum for the different phases. In
phase 1 the median number of robots in the global optimum
is 7 and in the local optimum is 0. The median number of
robots in the cooling phase is 6.5 and 0 in the global opti-
mum and in the local optimum, respectively. In the last 10
minutes of the experiment (phase 3) the median number of
robots in the global optimum is 0 and in the local optimum
is 6. Statistical significances are tested with the Wilcoxon-
Test (global optimum against local optimum) and the U-Test
(number of robots in the optimum area of one phase against
the same optimum area of another phase) with p < 0.05. All
boxplots in the figure are significantly different to the other
boxplots, except global optimum of phase 1 with global op-
timum of phase 2, and also local optimum of phase 1 with
local optimum of phase 2.

3.2 Results: Social seed
In figure 7 the median time that each agent spends in the

global optimum area and in the local optimum area are de-
picted for both control experiment (no social seed) and the
experiment with social seed. In the control experiment, the
robots spend 67% of the time in the global optimum area
and 4.6% in the local optimum area (left side of figure 7). In
the experiment with social seed (right side of figure 7), the
median time each agent spends in the global optimum area
is 26% and in the local optimum area is 45.8%. Statistical
significances are tested with the Wilcoxon-Test (global opti-
mum tested against local optimum) and the U-Test (global
optimum of one experiment against global optimum of an-
other experiment) with p < 0.05. Note that here we compare
the median time the robots spent in the respective optimum
area in % to allow comparison of our results to simulation
results reported in [14].

3.3 Results: Impaired sensors
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Figure 4: Course of temperature in the different
phases over time in the dynamic environment ex-
periment.
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Figure 8: Median number of robots in the two areas.
Left: Impaired sensor experiment with 3 fully func-
tional and 7 impaired robots. Right: Control exper-
iment with 3 fully functional robots. There are no
significant differences. Significances are tested with
the Wilcoxon-Test (global optimum against local op-
timum) and the U-Test (optimum of one experiment
against the same optimum of another experiment)
with p < 0.05.

In figure 8 the results with impaired sensor experiments
are shown for both the control experiment and the impaired
sensor experiment. For the control experiment, the median
number of robots in the global optimum area is 1 and in
the local optimum area is 0 (here the swarm consists of 3
fully functional robots). The fact that statistics shows no
significant difference between the global goal area and the
local goal area shows, that the aggregation with 3 robots
is not very stable (as it was intended in order to keep the
chance of increase or decrease of the performance by adding
the impaired robots). In the experiment with impaired sen-
sor experiment where the swarm consists of 3 fully functional
and 7 impaired robots that cannot measure the temperature
(thus having a waiting time of t = 0s), the median number
of robots in the global optimum area is 1 and in the local op-
timum area is 0. Note that in both experiments (control and
impaired) only the fully functional robots are counted. The
results of the two experiments are not significantly different
(tested with U-Test and p < 0.05).

4. DISCUSSION
Results of experiment with a dynamic environment in a

temperature gradient showed that robots controlled by the
BEECLUST algorithm are able to react on changes in the
environment reliably. In [17] this experiment was performed
in a light gradient and was shown that the robots were able
to choose the brightest source of light out of several light
spots and that they also were able to react on environmental
changes. We performed this experiment in a physically more
complex environment. Compared to light, temperature dif-
fers in its physical characteristics for example in: warming
up period, cooling down, thermal diffusion, turbulences in
the airflow. As the experiment lasted 30 minutes, there was



also an air-conditioning necessary so that the temperature
of the room (28◦C) was stable. Another challenge of work-
ing with temperature is the time delay of the measurement.
Because of this, after the measurement of temperature was
triggered, we had to measure it again a few seconds later
and correct the first measurement. Although these physical
conditions make experiments more complex, it is shown that
robots controlled by the BEECLUST algorithm are still able
to react on environmental changes. After switching off the
heat lamp of the global optimum area the aggregation started
to dissolve in the global optimum area 2 minutes later and
after another 3 minutes robots start to form a cluster in the
local optimum area (which is now the new global optimum).

The experiment with a social seed was originally designed
to analyse the social component of the BEECLUST algo-
rithm. The simulation results [14] showed that the decision-
making can be influenced by a social stimulus. In the simu-
lated experiment, the minimum of three social seeds were
needed to be placed in the local optimum area in order
to make the main swarm to spend more time in the lo-
cal optimum area than in the global optimum area. In real
robot experiments, the effect of social seed is even stronger.
Here, a single robot as a social seed is enough to influence
the decision making process of the swarm significantly. As
the BEECLUST algorithm is derived from the behaviour of
young honeybees, experimenting with a temperature gradi-
ent gets us closer to the situation that young honeybees are
faced with. Because of the strong effect of the social stim-
uli, we suspect that also in honeybees this social stimuli can
be very strong. Further experiments with honeybees can be
done to investigate this.

In the last scenario, we study if robots that cannot mea-
sure temperature (thus, have always a waiting time of t =
0s) decrease the performance of intact robots. Due to the
fact that such impaired robots trigger the measurement of
temperature of fully functional robots, there is also the possi-
bility that adding impaired robots could lead to an improve-
ment of performance. Our results show that even adding
a big number of impaired robots (more than double the
amount of fully functional robots) does not harm the swarms
decision making process significantly, although an aggrega-
tion of only 3 robots is unstable even without any distur-
bances. The aggregation stays unstable also in presence of
the impaired robots. Thus adding impaired robots does not
have any significant effect neither increasing nor decreas-
ing the performance of the main swarm controlled by the
BEECLUST algorithm.

5. CONCLUSION & FUTURE WORK
In this paper we study the BEECLUST algorithm with

robots under various conditions in a temperature gradient.
We conclude that robots controlled by the BEECLUST al-
gorithm are still able to react on environmental changes al-
though the physical conditions in a temperature gradient are
more difficult than in a light gradient. When placing a social
seed in the local optimum, the effect is even stronger than in
the simulation results presented in [14], although the social
component included in the BEECLUST algorithm is mini-
mal in terms of active communication: namely recognition
of another robot. Adding robots with impaired sensors to a
swarm of fully functional robots does not harm the swarms’
decision making process significantly. This result was very
surprising, as robots with impaired sensors do not stop and

therefore cannot be part of an aggregation.
In future we will investigate the application of BEECLUST

in relation with other behavioral algorithms. We may also
perform the same experiments with real honeybees. As
the BEECLUST algorithm is derived from the behaviour of
young honeybees, we expect similar effects and thus provide
feedback for biological swarm research of honeybees.
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