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Abstract. Development of interval numbers have shown various beliefs regarding the 

arithmetic and the formulas, one of them is regarding interval numbers with powers. 

However, there is a deficiency regarding further use for the previous formula of interval 

number �̃� with power 𝑘 where 𝑘 is a positive integer, that is the basic characteristic of 

exponents does not apply such as �̃�𝑘 ⊗ �̃�𝑙 ≠ �̃�𝑘+𝑙. There are some multiplication formulas

for interval numbers, but the result of multiplication of an interval number with its invers 

is not equal to 𝐼 = [1,1]. Therefore, this article will establish a new formula for interval

numbers with powers of positive integers using the new formula of multiplication for 

interval numbers so that �̃�𝑘 ⊗ �̃�𝑙 = �̃�𝑘+𝑙 apply. Based on this new formula of interval

numbers with positive integer powers, formula for interval numbers with fractional powers 

will also be construct along with the properties that apply to this formula. 

Keywords: Interval arithmetic, Powers of interval number 

1 Introduction 

There is a property of exponents in real numbers such as 𝑎𝑚 ⊗ 𝑎𝑛 = 𝑎𝑚+𝑛, this basic property

underlies other properties therefore this property should also apply in interval numbers such that 

�̃�𝑚 ⊗ �̃�𝑛 = �̃�𝑚+𝑛 . In order to determine whether this property apply to interval numbers, we

need to specify the multiplication formula we are going to use. There are many opinions 

regarding the multiplication operation that applies to interval numbers. In [1-4], minimum, 

maximum and some constants are used in the multiplication of two interval numbers. 

Meanwhile in [6-13], multiplying two interval numbers is sufficient by only using the maximum 

and minimum. The formulas for multiplication of two interval numbers given in [1-4] and [6-

13] will not be used in this article because those still have deficiency such as the multiplication

of an interval number and its invers does not generate an identity of interval number and division

is undefined if several conditions are not fulfilled. In [14-16], suppose there is an interval

number �̃� = [𝑎, 𝑎] then the inverse of �̃� cannot be determined if 𝑎 < 0 and 𝑎 = 0. In [10-

11],[14] and [17], the invers of an interval number �̃� = [𝑎, 𝑎] is undefined if 𝑎 = 0 and 𝑎 = 0.

Whereas in [1-4],[7-9],[14-15] and [17-19], the invers of an interval number �̃� is undefined if

SICBAS 2023, November 03, Palembang, Indonesia
Copyright © 2024 EAI
DOI 10.4108/eai.3-11-2023.2347908

mailto:%7brasi.adishamita1569@student.unri.ac.id
mailto:mashadi@lecturer.unri.ac.id
mailto:mmuliana@gmail.com
mailto:mashadi@lecturer.unri.ac.id


 

 

 

 

0 ∈ �̃�. Other opinions regarding the formula for invers of interval numbers are given in [1-

4],[14-15],[90-11],[13] and [20], but the results of multiplication of any interval numbers and 

its invers does not generate identity 𝐼 = [1,1]. In this case, new formula given in [21] will be 

used based on the definition of positive fuzzy triangular numbers shown in [22-27]. In [21], the 

general formula of the inverse of an interval number is also given so that the multiplication of 

the interval and its invers is an identity of interval numbers.  

In [1] interval numbers with powers of positive integers are introduced. The general formula for 

interval number �̃� to the power of 𝑘 where 𝑘 is a positive integer are �̃�𝑘 = [𝑎𝑘, 𝑎
𝑘

] if 𝑎𝑘 < 𝑎
𝑘
 

and �̃�𝑘 = [𝑎
𝑘

, 𝑎𝑘] if 𝑎
𝑘

< 𝑎𝑘. But, the exponential property does not apply if you use this 

formula, so that �̃�𝑚 ⊗ �̃�𝑛 ≠ �̃�𝑚+𝑛. Using the multiplication formula given in [21], the 

exponential property does not apply. In [6], the multiplication formula given in [6-13] is used 

such as using the maximum and minimum, but even if we used this multiplication formula, the 

exponential property still does not apply if 𝑎 ≤ 0. In order for the exponential property applied 

to interval numbers, we need to determine a new formula for interval numbers with positive 

integer powers using multiplication operation of interval numbers given in [21]. Based on this 

new formula for interval numbers with powers of positive integers, we can construct the formula 

for interval numbers with powers of fractional numbers. Using these new formulas, we can show 

that the exponential property applies to interval numbers so that �̃�𝑚 ⊗ �̃�𝑛 = �̃�𝑚+𝑛 for any 

interval number �̃� and 𝑚, 𝑛 are positive rational numbers. 

2 Literature Study 

2.1 Algebra of Interval Number 

General form of any interval number ã is �̃� = [𝑎, 𝑎] ∈ 𝐼𝑅 where 𝐼𝑅 = {�̃� = [𝑎, 𝑎] | 𝑎, 𝑎 ∈

ℝ, 𝑎 ≤ 𝑎}. Let �̃� = [𝑎, 𝑎] dan �̃� = [𝑏, 𝑏] be some interval numbers where �̃�, �̃� ∈ 𝐼𝑅∗ and 𝐼𝑅∗ 

defined as 𝐼𝑅∗ = {�̃� = [𝑥, 𝑥] | 𝑥, 𝑥 ∈ ℝ }. In [29], the algebra of interval numbers is shown as 

follows: 

i. �̃� ⊕ �̃� = [𝑎 + 𝑏, 𝑎 + 𝑏] 

ii. �̃� ⊖ �̃� = [𝑎 − 𝑏, 𝑎 − 𝑏] 

iii. 𝑘�̃� = {
[𝑘𝑎, 𝑘𝑎],    𝑘 ≥ 0

[𝑘𝑎, 𝑘𝑎],    𝑘 < 0
 

iv. �̃� ⊗ �̃� = [𝑎 ⋅ 𝑚(�̃�) + 𝑏 ⋅ 𝑚(�̃�) − 𝑚(�̃�)𝑚(�̃�), 𝑎 ⋅ 𝑚(�̃�) + 𝑏 ⋅ 𝑚(�̃�) − 𝑚(�̃�)𝑚(�̃�)] 

v. 
�̃�

�̃�
= �̃� ⊗

1

�̃�
 

where 
1

�̃�
= [

2⋅𝑚(�̃�)−𝑏

𝑚(�̃�)
2 ,

2⋅𝑚(�̃�)−𝑏

𝑚(�̃�)
2 ] 

 

2.1   Midpoint Theorems 

Definition 2.1.1 In [1-8], [11] and [17], midpoint of an interval number �̃� = [𝑎, 𝑎] is defined as 

follows 

𝑚(�̃�) =
𝑎 + 𝑎

𝑎
 



 

 

 

 

 

Theorem 2.1.2 Let �̃� = [𝑎, 𝑎] and �̃� = [𝑏, 𝑏] be any interval numbers, then  

1. 𝑚(�̃� ⊗ �̃�) = 𝑚(�̃�) ⋅ 𝑚(�̃�) 

2. 𝑚(�̃�𝑛) = 𝑚(�̃�)𝑛 

3. 𝑚 (
1

�̃�
) =

1

𝑚(�̃�)
 

Proof : 

1. 𝑚(�̃� ⊗ �̃�) =
𝑎⋅𝑚(�̃�)+𝑏⋅𝑚(�̃�)−𝑚(�̃�)𝑚(�̃�)+𝑎⋅𝑚(𝑏)+𝑏⋅𝑚(�̃�)−𝑚(�̃�)𝑚(�̃�)

2
 

=  
𝑚(�̃�)(𝑎 + 𝑎) + 𝑚(�̃�)(𝑏 + 𝑏) − 2𝑚(�̃�)𝑚(�̃�)

2
 

= 𝑚(�̃�)𝑚(�̃�) + 𝑚(�̃�)𝑚(�̃�) − 𝑚(�̃�)𝑚(�̃�) 

= 𝑚(�̃�)𝑚(�̃�) 

2. 𝑚 (
1

�̃�
) =

1

2
(

2⋅𝑚(�̃�)−𝑎

𝑚(�̃�)2 +
2⋅𝑚(�̃�)−𝑎

𝑚(�̃�)2 ) 

=
2𝑚(�̃�)

2𝑚(�̃�)2
−

𝑎

2𝑚(�̃�)2
+

2𝑚(�̃�)

2𝑚(�̃�)2
−

𝑎

2𝑚(�̃�)2
 

=
2

𝑚(�̃�)
−

𝑚(�̃�)

𝑚(�̃�)2
 

=
1

𝑚(�̃�)
 

3. 𝑚(�̃�𝑛) = 𝑚(�̃�1 ⊗ �̃�2 ⊗∙∙∙⊗ �̃�𝑛) 

=  𝑚((�̃�1 ⊗ �̃�2 ⊗∙∙∙⊗ �̃�𝑛−1) ⊗ �̃�𝑛) 

= 𝑚(�̃�1 ⊗ �̃�2 ⊗∙∙∙⊗ �̃�𝑛−1) ⋅ 𝑚(�̃�𝑛) 

 = 𝑚(�̃�1) ⋅ 𝑚(�̃�2) ∙∙∙ 𝑚(�̃�𝑛−1) ⋅ 𝑚(�̃�𝑛) 

 = 𝑚(�̃�)𝑛 

3 Result and Discussion 

3.1 Intervals Numbers with Positive Integers Powers 

In this section, we will show the general form of interval numbers with powers of positive 

integers and fractions. Then, we will also show several properties that apply to these interval 

numbers 

 

Theorem 3.1.1 Let �̃� be any interval number and 𝑛 is positive integer, then 

 

�̃�𝑛 = [(𝑛𝑎) ⋅ 𝑚(�̃�𝑛−1) − (𝑛 − 1) ⋅ 𝑚(�̃�𝑛), (𝑛𝑎) ⋅ 𝑚(�̃�𝑛−1) − (𝑛 − 1) ⋅ 𝑚(�̃�𝑛)] 

 

Proof : 

We will use induction method. Let 𝑆 be a set where 𝑃(𝑛) is true for 𝑛 ∈ ℕ. If 𝑛 = 1, then 

 

�̃� = [(1 ⋅ 𝑎) ⋅ 𝑚(�̃�)1−1 − (1 − 1) ⋅ 𝑚(�̃�)1−1, (1 ⋅ 𝑎) ⋅ 𝑚(�̃�)1−1 − (1 − 1) ⋅ 𝑚(�̃�)1−1] 



 

 

 

 

�̃� = [𝑎, 𝑎] 

 

Therefore, 𝑃(1) is true dan 1 ∈ 𝑆. Next, we assume that 𝑃(𝑘) is true and wish to infer from this 

assumption that 𝑃(𝑘 + 1) is also true. If 𝑘 ∈ 𝑆,then 

�̃�𝑘 = [(𝑘𝑎) ⋅ 𝑚(�̃�𝑘−1) − (𝑘 − 1) ⋅ 𝑚(�̃�𝑘), (𝑘𝑎) ⋅ 𝑚(�̃�𝑘−1) − (𝑘 − 1) ⋅ 𝑚(�̃�𝑘)] 

 

If we multiply �̃� to both sides, then 

 

�̃�𝑘 ⊗ �̃� = [(𝑘𝑎) ⋅ 𝑚(�̃�𝑘−1) − (𝑘 − 1) ⋅ 𝑚(�̃�𝑘), (𝑘𝑎) ⋅ 𝑚(�̃�𝑘−1) − (𝑘 − 1) ⋅ 𝑚(�̃�𝑘)] ⊗ �̃� 

= [((𝑘𝑎) ⋅ 𝑚(�̃�𝑘−1) − (𝑘 − 1) ⋅ 𝑚(�̃�𝑘)) 𝑚(�̃�) + 𝑎 ⋅ 𝑚(�̃�𝑘) − 𝑚(�̃�𝑘)

⋅ 𝑚(�̃�), ((𝑘𝑎) ⋅ 𝑚(�̃�𝑘−1) − (𝑘 − 1) ⋅ 𝑚(�̃�𝑘))𝑚(�̃�) + 𝑎 ⋅ 𝑚(�̃�𝑘)

− 𝑚(�̃�𝑘) ⋅ 𝑚(�̃�)] 

= [(𝑘𝑎) ⋅ 𝑚(�̃�)𝑘 − (𝑘 − 1) ⋅ 𝑚(�̃�)𝑘+1 + 𝑎 ⋅ 𝑚(�̃�)𝑘 − 𝑚(�̃�)𝑘+1, (𝑘𝑎) ⋅ 𝑚(�̃�)𝑘

− (𝑘 − 1) ⋅ 𝑚(�̃�)𝑘+1 + 𝑎 ⋅ 𝑚(�̃�)𝑘 − 𝑚(�̃�)𝑘+1] 

= [(𝑎 ⋅ 𝑚(�̃�)𝑘)(𝑘 + 1) − 𝑚(�̃�)𝑘+1(𝑘 − 1 + 1), (𝑎 ⋅ 𝑚(�̃�)𝑘)(𝑘 + 1)

− 𝑚(�̃�)𝑘+1(𝑘 − 1 + 1)] 

= [(𝑘 + 1)(𝑎 ⋅ 𝑚(�̃�)𝑘) − ((𝑘 + 1) − 1)𝑚(�̃�)𝑘+1, (𝑘 + 1)(𝑎 ⋅ 𝑚(�̃�)𝑘)

− ((𝑘 + 1) − 1)𝑚(�̃�)𝑘+1] 

= �̃�𝑘+1 

 

Therefore, 𝑃(𝑘 + 1) is true and (𝑘 + 1) ∈ 𝑆. Based on principle of mathematical induction, this 

formula holds for all 𝑛 ∈ ℕ. 

 

Theorem 3.1.2 Let �̃� be any interval number and 𝑝, 𝑞 are positive integers, then 

 

�̃�𝑝 ⊗ �̃�𝑞 = �̃�𝑝+𝑞 

 

Proof : 

 

�̃�𝑝 ⊗ �̃�𝑞 = [(𝑝𝑎) ⋅ 𝑚(�̃�𝑝−1) − (𝑝 − 1) ⋅ 𝑚(�̃�𝑝), (𝑝𝑎) ⋅ 𝑚(�̃�𝑝−1) − (𝑝 − 1) ⋅ 𝑚(�̃�𝑝)]

⊗  [(𝑞𝑎) ⋅ 𝑚(�̃�𝑞−1) − (𝑞 − 1) ⋅ 𝑚(�̃�𝑞), (𝑞𝑎) ⋅ 𝑚(�̃�𝑞−1) − (𝑞 − 1)

⋅ 𝑚(�̃�𝑞)] 

= [((𝑝𝑎) ⋅ 𝑚(�̃�𝑝−1) − (𝑝 − 1) ⋅ 𝑚(�̃�𝑝)) 𝑚(�̃�𝑞)

+ ((𝑞𝑎) ⋅ 𝑚(�̃�𝑞−1) − (𝑞 − 1) ⋅ 𝑚(�̃�𝑞)) 𝑚(�̃�𝑝)

− 𝑚(�̃�𝑝)𝑚(�̃�𝑞), ((𝑝𝑎) ⋅ 𝑚(�̃�𝑝−1) − (𝑝 − 1) ⋅ 𝑚(�̃�𝑝))𝑚(�̃�𝑞)

+ ((𝑞𝑎) ⋅ 𝑚(�̃�𝑞−1) − (𝑞 − 1) ⋅ 𝑚(�̃�𝑞)) 𝑚(�̃�𝑝) − 𝑚(�̃�𝑝)𝑚(�̃�𝑞)] 

=1 Introduction 

There is a property of exponents in real numbers such as 𝑎𝑚 ⊗ 𝑎𝑛 = 𝑎𝑚+𝑛, this basic 

property underlies other properties therefore this property should also apply in interval numbers 

such that �̃�𝑚 ⊗ �̃�𝑛 = �̃�𝑚+𝑛. In order to determine whether this property apply to interval 



 

 

 

 

numbers, we need to specify the multiplication formula we are going to use. There are many 

opinions regarding the multiplication operation that applies to interval numbers. In [1-4], 

minimum, maximum and some constants are used in the multiplication of two interval numbers. 

Meanwhile in [6-13], multiplying two interval numbers is sufficient by only using the maximum 

and minimum. The formulas for multiplication of two interval numbers given in [1-4] and [6-

13] will not be used in this article because those still have deficiency such as the multiplication 

of an interval number and its invers does not generate an identity of interval number and division 

is undefined if several conditions are not fulfilled. In [14-16], suppose there is an interval 

number �̃� = [𝑎, 𝑎] then the inverse of �̃� cannot be determined if 𝑎 < 0 and 𝑎 = 0. In [10-

11],[14] and [17], the invers of an interval number �̃� = [𝑎, 𝑎] is undefined if 𝑎 = 0 and 𝑎 = 0. 

Whereas in [1-4],[7-9],[14-15] and [17-19], the invers of an interval number �̃� is undefined if 

0 ∈ �̃�. Other opinions regarding the formula for invers of interval numbers are given in [1-

4],[14-15],[90-11],[13] and [20], but the results of multiplication of any interval numbers and 

its invers does not generate identity 𝐼 = [1,1]. In this case, new formula given in [21] will be 

used based on the definition of positive fuzzy triangular numbers shown in [22-27]. In [21], the 

general formula of the inverse of an interval number is also given so that the multiplication of 

the interval and its invers is an identity of interval numbers.  

In [6] interval numbers with powers of positive integers are introduced. The general 

formula for interval number �̃� to the power of 𝑘 where 𝑘 is a positive integer are �̃�𝑘 = [𝑎𝑘, 𝑎
𝑘

] 

if 𝑎𝑘 < 𝑎
𝑘
 and �̃�𝑘 = [𝑎

𝑘
, 𝑎𝑘] if 𝑎

𝑘
< 𝑎𝑘. But, the exponential property does not apply if you 

use this formula, so that �̃�𝑚 ⊗ �̃�𝑛 ≠ �̃�𝑚+𝑛. Using the multiplication formula given in [21], the 

exponential property does not apply. In [6], the multiplication formula given in [6-13] is used 

such as using the maximum and minimum, but even if we used this multiplication formula, the 

exponential property still does not apply if 𝑎 ≤ 0. In order for the exponential property applied 

to interval numbers, we need to determine a new formula for interval numbers with positive 

integer powers using multiplication operation of interval numbers given in [21]. Based on this 

new formula for interval numbers with powers of positive integers, we can construct the formula 

for interval numbers with powers of fractional numbers. Using these new formulas, we can show 

that the exponential property applies to interval numbers so that �̃�𝑚 ⊗ �̃�𝑛 = �̃�𝑚+𝑛 for any 

interval number �̃� and 𝑚, 𝑛 are positive rational numbers. 

2 Literature Study 

2.1 Algebra of Interval Number 

General form of any interval number ã is �̃� = [𝑎, 𝑎] ∈ 𝐼𝑅 where 𝐼𝑅 = {�̃� = [𝑎, 𝑎] | 𝑎, 𝑎 ∈

ℝ, 𝑎 ≤ 𝑎}. Let �̃� = [𝑎, 𝑎] dan �̃� = [𝑏, 𝑏] be some interval numbers where �̃�, �̃� ∈ 𝐼𝑅∗ and 𝐼𝑅∗ 

defined as 𝐼𝑅∗ = {�̃� = [𝑥, 𝑥] | 𝑥, 𝑥 ∈ ℝ }. In [29], the algebra of interval numbers is shown as 

follows: 

vi. �̃� ⊕ �̃� = [𝑎 + 𝑏, 𝑎 + 𝑏] 

vii. �̃� ⊖ �̃� = [𝑎 − 𝑏, 𝑎 − 𝑏] 

viii. 𝑘�̃� = {
[𝑘𝑎, 𝑘𝑎],    𝑘 ≥ 0

[𝑘𝑎, 𝑘𝑎],    𝑘 < 0
 

ix. �̃� ⊗ �̃� = [𝑎 ⋅ 𝑚(�̃�) + 𝑏 ⋅ 𝑚(�̃�) − 𝑚(�̃�)𝑚(�̃�), 𝑎 ⋅ 𝑚(�̃�) + 𝑏 ⋅ 𝑚(�̃�) − 𝑚(�̃�)𝑚(�̃�)] 



 

 

 

 

x. 
�̃�

�̃�
= �̃� ⊗

1

�̃�
 

where 
1

�̃�
= [

2⋅𝑚(�̃�)−𝑏

𝑚(�̃�)
2 ,

2⋅𝑚(�̃�)−𝑏

𝑚(�̃�)
2 ] 

 

2.1   Midpoint Theorems 

Definition 2.1.1 In [1-8],[11] and [17], midpoint of an interval number �̃� = [𝑎, 𝑎] is defined as 

follows 

𝑚(�̃�) =
𝑎 + 𝑎

𝑎
 

 

Theorem 2.1.2 Let �̃� = [𝑎, 𝑎] and �̃� = [𝑏, 𝑏] be any interval numbers, then  

4. 𝑚(�̃� ⊗ �̃�) = 𝑚(�̃�) ⋅ 𝑚(�̃�) 

5. 𝑚(�̃�𝑛) = 𝑚(�̃�)𝑛 

6. 𝑚 (
1

�̃�
) =

1

𝑚(�̃�)
 

Proof : 

4. 𝑚(�̃� ⊗ �̃�) =
𝑎⋅𝑚(�̃�)+𝑏⋅𝑚(�̃�)−𝑚(�̃�)𝑚(�̃�)+𝑎⋅𝑚(𝑏)+𝑏⋅𝑚(�̃�)−𝑚(�̃�)𝑚(�̃�)

2
 

=  
𝑚(�̃�)(𝑎 + 𝑎) + 𝑚(�̃�)(𝑏 + 𝑏) − 2𝑚(�̃�)𝑚(�̃�)

2
 

= 𝑚(�̃�)𝑚(�̃�) + 𝑚(�̃�)𝑚(�̃�) − 𝑚(�̃�)𝑚(�̃�) 

= 𝑚(�̃�)𝑚(�̃�) 

5. 𝑚 (
1

�̃�
) =

1

2
(

2⋅𝑚(�̃�)−𝑎

𝑚(�̃�)2 +
2⋅𝑚(�̃�)−𝑎

𝑚(�̃�)2 ) 

=
2𝑚(�̃�)

2𝑚(�̃�)2
−

𝑎

2𝑚(�̃�)2
+

2𝑚(�̃�)

2𝑚(�̃�)2
−

𝑎

2𝑚(�̃�)2
 

=
2

𝑚(�̃�)
−

𝑚(�̃�)

𝑚(�̃�)2
 

=
1

𝑚(�̃�)
 

6. 𝑚(�̃�𝑛) = 𝑚(�̃�1 ⊗ �̃�2 ⊗∙∙∙⊗ �̃�𝑛) 

=  𝑚((�̃�1 ⊗ �̃�2 ⊗∙∙∙⊗ �̃�𝑛−1) ⊗ �̃�𝑛) 

= 𝑚(�̃�1 ⊗ �̃�2 ⊗∙∙∙⊗ �̃�𝑛−1) ⋅ 𝑚(�̃�𝑛) 

 = 𝑚(�̃�1) ⋅ 𝑚(�̃�2) ∙∙∙ 𝑚(�̃�𝑛−1) ⋅ 𝑚(�̃�𝑛) 

 = 𝑚(�̃�)𝑛 



 

 

 

 

3 Result and Discussion 

3.1 Intervals Numbers with Positive Integers Powers 

In this section, we will show the general form of interval numbers with powers of positive 

integers and fractions. Then, we will also show several properties that apply to these interval 

numbers 

Theorem 3.1.1 Let �̃� be any interval number and 𝑛 is positive integer, then 

 

�̃�𝑛 = [(𝑛𝑎) ⋅ 𝑚(�̃�𝑛−1) − (𝑛 − 1) ⋅ 𝑚(�̃�𝑛), (𝑛𝑎) ⋅ 𝑚(�̃�𝑛−1) − (𝑛 − 1) ⋅ 𝑚(�̃�𝑛)] 

 

Proof : 

We will use induction method. Let 𝑆 be a set where 𝑃(𝑛) is true for 𝑛 ∈ ℕ. If 𝑛 = 1, then 

 

�̃� = [(1 ⋅ 𝑎) ⋅ 𝑚(�̃�)1−1 − (1 − 1) ⋅ 𝑚(�̃�)1−1, (1 ⋅ 𝑎) ⋅ 𝑚(�̃�)1−1 − (1 − 1) ⋅ 𝑚(�̃�)1−1] 

       �̃� = [𝑎, 𝑎] 

Therefore, 𝑃(1) is true dan 1 ∈ 𝑆. Next, we assume that 𝑃(𝑘) is true and wish to infer from this 

assumption that 𝑃(𝑘 + 1) is also true. If 𝑘 ∈ 𝑆,then 

�̃�𝑘 = [(𝑘𝑎) ⋅ 𝑚(�̃�𝑘−1) − (𝑘 − 1) ⋅ 𝑚(�̃�𝑘), (𝑘𝑎) ⋅ 𝑚(�̃�𝑘−1) − (𝑘 − 1) ⋅ 𝑚(�̃�𝑘)] 

 

If we multiply �̃� to both sides, then 

 

�̃�𝑘 ⊗ �̃� = [(𝑘𝑎) ⋅ 𝑚(�̃�𝑘−1) − (𝑘 − 1) ⋅ 𝑚(�̃�𝑘), (𝑘𝑎) ⋅ 𝑚(�̃�𝑘−1) − (𝑘 − 1) ⋅ 𝑚(�̃�𝑘)] ⊗ �̃� 

= [((𝑘𝑎) ⋅ 𝑚(�̃�𝑘−1) − (𝑘 − 1) ⋅ 𝑚(�̃�𝑘)) 𝑚(�̃�) + 𝑎 ⋅ 𝑚(�̃�𝑘) − 𝑚(�̃�𝑘)

⋅ 𝑚(�̃�), ((𝑘𝑎) ⋅ 𝑚(�̃�𝑘−1) − (𝑘 − 1) ⋅ 𝑚(�̃�𝑘))𝑚(�̃�) + 𝑎 ⋅ 𝑚(�̃�𝑘)

− 𝑚(�̃�𝑘) ⋅ 𝑚(�̃�)] 

= [(𝑘𝑎) ⋅ 𝑚(�̃�)𝑘 − (𝑘 − 1) ⋅ 𝑚(�̃�)𝑘+1 + 𝑎 ⋅ 𝑚(�̃�)𝑘 − 𝑚(�̃�)𝑘+1, (𝑘𝑎) ⋅ 𝑚(�̃�)𝑘

− (𝑘 − 1) ⋅ 𝑚(�̃�)𝑘+1 + 𝑎 ⋅ 𝑚(�̃�)𝑘 − 𝑚(�̃�)𝑘+1] 

= [(𝑎 ⋅ 𝑚(�̃�)𝑘)(𝑘 + 1) − 𝑚(�̃�)𝑘+1(𝑘 − 1 + 1), (𝑎 ⋅ 𝑚(�̃�)𝑘)(𝑘 + 1)

− 𝑚(�̃�)𝑘+1(𝑘 − 1 + 1)] 

= [(𝑘 + 1)(𝑎 ⋅ 𝑚(�̃�)𝑘) − ((𝑘 + 1) − 1)𝑚(�̃�)𝑘+1, (𝑘 + 1)(𝑎 ⋅ 𝑚(�̃�)𝑘)

− ((𝑘 + 1) − 1)𝑚(�̃�)𝑘+1] 

= �̃�𝑘+1 

 

Therefore, 𝑃(𝑘 + 1) is true and (𝑘 + 1) ∈ 𝑆. Based on principle of mathematical induction, this 

formula holds for all 𝑛 ∈ ℕ. 

 

Theorem 3.1.2 Let �̃� be any interval number and 𝑝, 𝑞 are positive integers, then 

 

�̃�𝑝 ⊗ �̃�𝑞 = �̃�𝑝+𝑞 

 

Proof : 

 



 

 

 

 

�̃�𝑝 ⊗ �̃�𝑞 = [(𝑝𝑎) ⋅ 𝑚(�̃�𝑝−1) − (𝑝 − 1) ⋅ 𝑚(�̃�𝑝), (𝑝𝑎) ⋅ 𝑚(�̃�𝑝−1) − (𝑝 − 1) ⋅ 𝑚(�̃�𝑝)]

⊗  [(𝑞𝑎) ⋅ 𝑚(�̃�𝑞−1) − (𝑞 − 1) ⋅ 𝑚(�̃�𝑞), (𝑞𝑎) ⋅ 𝑚(�̃�𝑞−1) − (𝑞 − 1)

⋅ 𝑚(�̃�𝑞)] 

= [((𝑝𝑎) ⋅ 𝑚(�̃�𝑝−1) − (𝑝 − 1) ⋅ 𝑚(�̃�𝑝)) 𝑚(�̃�𝑞)

+ ((𝑞𝑎) ⋅ 𝑚(�̃�𝑞−1) − (𝑞 − 1) ⋅ 𝑚(�̃�𝑞)) 𝑚(�̃�𝑝)

− 𝑚(�̃�𝑝)𝑚(�̃�𝑞), ((𝑝𝑎) ⋅ 𝑚(�̃�𝑝−1) − (𝑝 − 1) ⋅ 𝑚(�̃�𝑝))𝑚(�̃�𝑞)

+ ((𝑞𝑎) ⋅ 𝑚(�̃�𝑞−1) − (𝑞 − 1) ⋅ 𝑚(�̃�𝑞)) 𝑚(�̃�𝑝) − 𝑚(�̃�𝑝)𝑚(�̃�𝑞)] 

= [(𝑝𝑎) ⋅ 𝑚(�̃�𝑝−1) ⋅ 𝑚(�̃�𝑞) − (𝑝 − 1) ⋅ 𝑚(�̃�𝑝) ⋅ 𝑚(�̃�𝑞) + (𝑞𝑎) ⋅ 𝑚(�̃�𝑞−1) ⋅ 𝑚(�̃�𝑝)

− (𝑞 − 1) ⋅ 𝑚(�̃�𝑞) ∙ 𝑚(�̃�𝑝) − 𝑚(�̃�𝑝)𝑚(�̃�𝑞), (𝑝𝑎) ⋅ 𝑚(�̃�𝑝−1)
⋅ 𝑚(�̃�𝑞) − (𝑝 − 1) ⋅ 𝑚(�̃�𝑝) ⋅ 𝑚(�̃�𝑞) + (𝑞𝑎) ⋅ 𝑚(�̃�𝑞−1) ⋅ 𝑚(�̃�𝑝)

− (𝑞 − 1) ⋅ 𝑚(�̃�𝑞) ∙ 𝑚(�̃�𝑝) − 𝑚(�̃�𝑝)𝑚(�̃�𝑞)] 

= [(𝑝𝑎) ⋅ 𝑚(�̃�)𝑝−1+𝑞 − (𝑝 − 1) ⋅ 𝑚(�̃�)𝑝+𝑞 + (𝑞𝑎) ⋅ 𝑚(�̃�)𝑝−1+𝑞 − (𝑞 − 1)

⋅ 𝑚(�̃�)𝑝+𝑞 − 𝑚(�̃�)𝑝+𝑞 , (𝑝𝑎) ⋅ 𝑚(�̃�)𝑝−1+𝑞 − (𝑝 − 1) ⋅ 𝑚(�̃�)𝑝+𝑞

+ (𝑞𝑎) ⋅ 𝑚(�̃�)𝑝−1+𝑞 − (𝑞 − 1) ⋅ 𝑚(�̃�)𝑝+𝑞 − 𝑚(�̃�)𝑝+𝑞] 

= [(𝑝 + 𝑞) ⋅ 𝑎𝑚(�̃�)𝑝−1+𝑞 − (𝑝 + 𝑞 − 1) ⋅ 𝑚(�̃�)𝑝+𝑞 , (𝑝 + 𝑞) ⋅ 𝑎𝑚(�̃�)𝑝−1+𝑞

− (𝑝 + 𝑞 − 1) ⋅ 𝑚(�̃�)𝑝+𝑞] 

= �̃�𝑝+𝑞  

 

3.2   Interval Numbers with Positive Fractional Powers 

Theorem 3.2.1 Let �̃� be any interval number and 𝑎, 𝑏 are positive integers, then 

 

�̃�
𝑎
𝑏 = [

𝑎𝑥 + (𝑏 − 𝑎)𝑚(�̃�)

𝑏 ⋅ 𝑚(�̃�)1−
𝑎
𝑏

,
𝑎𝑥 + (𝑏 − 𝑎)𝑚(�̃�)

𝑏 ⋅ 𝑚(�̃�)1−
𝑎
𝑏

] 

 

Proof : 

 

We will use induction method. Let 𝑆 be a set where 𝑃(𝑛) is true for 𝑛 ∈ ℚ+. If 𝑛 = 1, then 

 

�̃� = [
1 ⋅ 𝑥 + (1 − 1)𝑚(�̃�)

1 ⋅ 𝑚(�̃�)1−1
,
1 ⋅ 𝑥 + (1 − 1)𝑚(�̃�)

1 ⋅ 𝑚(�̃�)1−1
] 

�̃� = [𝑥, 𝑥] 

 

Therefore, 𝑃(1) is true dan 1 ∈ 𝑆. Next, we assume that 𝑃(𝑘) is true and wish to infer from this 

assumption that 𝑃(𝑘 + 1) is also true. If 𝑘 ∈ 𝑆 where 𝑘 =
𝑐

𝑑
, then 

 

�̃�
𝑐
𝑑 = [

𝑐𝑥 + (𝑑 − 𝑐)𝑚(�̃�)

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑

,
𝑐𝑥 + (𝑑 − 𝑐)𝑚(�̃�)

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑

] 

 

If we multiply �̃� to both sides, then 

 



 

 

 

 

�̃�
𝑐
𝑑 ⊗ �̃� = [

𝑐𝑥 + (𝑑 − 𝑐)𝑚(�̃�)

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑

,
𝑐𝑥 + (𝑑 − 𝑐)𝑚(�̃�)

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑

] ⊗ �̃� 

 

= [(
𝑐𝑥 + (𝑑 − 𝑐)𝑚(�̃�)

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑

) 𝑚(�̃�) + 𝑥 ⋅ 𝑚 (�̃�
𝑐
𝑑) − 𝑚 (�̃�

𝑐
𝑑)

⋅ 𝑚(�̃�), (
𝑐𝑥 + (𝑑 − 𝑐)𝑚(�̃�)

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑

) 𝑚(�̃�) + 𝑥 ⋅ 𝑚 (�̃�
𝑐
𝑑) − 𝑚 (�̃�

𝑐
𝑑)

⋅ 𝑚(�̃�)] 

= [(
1

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑

) 𝑐𝑥𝑚(�̃�) + (𝑑 − 𝑐)𝑚(�̃�)2 + 𝑥𝑑 ⋅ 𝑚(�̃�)
𝑐
𝑑𝑚(�̃�)1−

𝑐
𝑑 − 𝑑

⋅ 𝑚(�̃�)
𝑐
𝑑

+1𝑚(�̃�)1−
𝑐
𝑑 , (

1

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑

) 𝑐𝑥𝑚(�̃�) + (𝑑 − 𝑐)𝑚(�̃�)2

+ 𝑥𝑑 ⋅ 𝑚(�̃�)
𝑐
𝑑𝑚(�̃�)1−

𝑐
𝑑 − 𝑑 ⋅ 𝑚(�̃�)

𝑐
𝑑

+1𝑚(�̃�)1−
𝑐
𝑑  ] 

= [(
1

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑

) 𝑐𝑥𝑚(�̃�) + (𝑑 − 𝑐)𝑚(�̃�)2 + 𝑥𝑑 ⋅ 𝑚(�̃�) − 𝑑

⋅ 𝑚(�̃�)2, (
1

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑

) 𝑐𝑥𝑚(�̃�) + (𝑑 − 𝑐)𝑚(�̃�)2 + 𝑥𝑑 ⋅ 𝑚(�̃�)

− 𝑑 ⋅ 𝑚(�̃�)2 ] 

= [(
(𝑐 + 𝑑) ⋅ 𝑥 + (𝑑 − (𝑐 + 𝑑))𝑚(�̃�)

𝑑 ⋅ 𝑚(�̃�)−
𝑐
𝑑

) , (
(𝑐 + 𝑑) ⋅ 𝑥 + (𝑑 − (𝑐 + 𝑑))𝑚(�̃�)

𝑑 ⋅ 𝑚(�̃�)−
𝑐
𝑑

)] 

= [(
(𝑐 + 𝑑) ⋅ 𝑥 + (𝑑 − (𝑐 + 𝑑))𝑚(�̃�)

𝑑 ⋅ 𝑚(�̃�)1−(
𝑐+𝑑

𝑑
)

) , (
(𝑐 + 𝑑) ⋅ 𝑥 + (𝑑 − (𝑐 + 𝑑))𝑚(�̃�)

𝑑 ⋅ 𝑚(�̃�)1−(
𝑐+𝑑

𝑑
)

)] 

= �̃�
𝑐+𝑑

𝑑  

=  �̃�
𝑐
𝑑

+1
 

 

Therefore, 𝑃(𝑘 + 1) is true and (𝑘 + 1) ∈ 𝑆. Next, we assume that 𝑃(𝑘 − 1) is also true where 

𝑘 =
𝑐

𝑑
. To prove this, we will use invers formula of interval numbers. 

 

�̃�
𝑐
𝑑 ⊗ �̃�−1 = [

𝑐𝑥 + (𝑑 − 𝑐)𝑚(�̃�)

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑

,
𝑐𝑥 + (𝑑 − 𝑐)𝑚(�̃�)

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑

] ⊗ [
2 ⋅ 𝑚(�̃�) − 𝑥

𝑚(�̃�)2
,
2 ⋅ 𝑚(𝑥) − 𝑥

𝑚(�̃�)2
] 

 



 

 

 

 

= [(
𝑐𝑥 + (𝑑 − 𝑐)𝑚(�̃�)

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑

) 𝑚(�̃�−1) + (
2 ⋅ 𝑚(�̃�) − 𝑥

𝑚(�̃�)2
) 𝑚 (�̃�

𝑐
𝑑) − 𝑚 (�̃�

𝑐
𝑑)

⋅ 𝑚(�̃�−1), (
𝑐𝑥 + (𝑑 − 𝑐)𝑚(�̃�)

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑

) 𝑚(�̃�−1) + (
2 ⋅ 𝑚(𝑥) − 𝑥

𝑚(�̃�)2
) 𝑚 (�̃�

𝑐
𝑑)

− 𝑚 (�̃�
𝑐
𝑑) ⋅ 𝑚(�̃�−1)] 

= [
𝑐𝑥 ⋅ 𝑚(�̃�−1) + (𝑑 − 𝑐)𝑚(�̃�) ⋅ 𝑚(�̃�−1)

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑

+
2 ⋅ 𝑚(�̃�)𝑚 (�̃�

𝑐
𝑑) − 𝑥 ⋅ 𝑚 (�̃�

𝑐
𝑑)

𝑚(�̃�)2

− 𝑚 (�̃�
𝑐
𝑑) ⋅ 𝑚(�̃�−1),

𝑐𝑥 ⋅ 𝑚(�̃�−1) + (𝑑 − 𝑐)𝑚(�̃�) ⋅ 𝑚(�̃�−1)

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑

+
2 ⋅ 𝑚(�̃�)𝑚 (�̃�

𝑐
𝑑) − 𝑥 ⋅ 𝑚 (�̃�

𝑐
𝑑)

𝑚(�̃�)2
− 𝑚 (�̃�

𝑐
𝑑) ⋅ 𝑚(�̃�−1)] 

= [
𝑐𝑥 ⋅ 𝑚(�̃�−1)𝑚(�̃�)2 + (𝑑 − 𝑐)𝑚(�̃�)𝑚(�̃�−1)𝑚(�̃�)2

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑 ⋅ 𝑚(�̃�)2

+
2𝑑 ⋅ 𝑚(�̃�)𝑚 (�̃�

𝑐
𝑑) 𝑚(�̃�)1−

𝑐
𝑑 − 𝑑𝑥 ⋅ 𝑚 (�̃�

𝑐
𝑑) 𝑚(�̃�)1−

𝑐
𝑑

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑 ⋅ 𝑚(�̃�)2

−
𝑚 (�̃�

𝑐
𝑑

−1) ⋅ 𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑 ⋅ 𝑚(�̃�)2

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑 ⋅ 𝑚(�̃�)2

,   
𝑐𝑥 ⋅ 𝑚(�̃�−1)𝑚(�̃�)2

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑 ⋅ 𝑚(�̃�)2

+
(𝑑 − 𝑐)𝑚(�̃�)𝑚(�̃�−1)𝑚(�̃�)2

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑 ⋅ 𝑚(�̃�)2

+
2𝑑 ⋅ 𝑚(�̃�)𝑚 (�̃�

𝑐
𝑑) 𝑚(�̃�)1−

𝑐
𝑑 − 𝑑𝑥 ⋅ 𝑚 (�̃�

𝑐
𝑑) 𝑚(�̃�)1−

𝑐
𝑑

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑 ⋅ 𝑚(�̃�)2

−
𝑚 (�̃�

𝑐
𝑑

−1) ⋅ 𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑 ⋅ 𝑚(�̃�)2

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑 ⋅ 𝑚(�̃�)2

 ] 

 

= [
𝑐𝑥 ⋅ 𝑚(�̃�) + (𝑑 − 𝑐)𝑚(�̃�)2 + 2𝑑 ⋅ 𝑚(�̃�)2 − 𝑑𝑥 ⋅ 𝑚(�̃�) − 𝑑 ⋅ 𝑚(�̃�)2

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑 ⋅ 𝑚(�̃�)2

,

𝑐𝑥 ⋅ 𝑚(�̃�) + (𝑑 − 𝑐)𝑚(�̃�)2 + 2𝑑 ⋅ 𝑚(�̃�)2 − 𝑑𝑥 ⋅ 𝑚(�̃�) − 𝑑 ⋅ 𝑚(�̃�)2

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑 ⋅ 𝑚(�̃�)2

 ] 

 



 

 

 

 

= [
𝑥 ⋅ 𝑚(�̃�)(𝑐 − 𝑑) + 𝑚(�̃�)2(𝑑 − 𝑐 + 2𝑑 − 𝑑)

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑 ⋅ 𝑚(�̃�)2

,

𝑥 ⋅ 𝑚(�̃�)(𝑐 − 𝑑) + 𝑚(�̃�)2(𝑑 − 𝑐 + 2𝑑 − 𝑑)

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑 ⋅ 𝑚(�̃�)2

] 

 

= [
𝑥 ⋅ (𝑐 − 𝑑) + 𝑚(�̃�)(𝑑 − (𝑐 − 𝑑))

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑 ⋅ 𝑚(�̃�)

,
𝑥 ⋅ 𝑚(�̃�)(𝑐 − 𝑑) + 𝑚(�̃�)2(𝑑 − (𝑐 − 𝑑))

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑 ⋅ 𝑚(�̃�)

] 

 

= [
𝑥 ⋅ (𝑐 − 𝑑) + 𝑚(�̃�)(𝑑 − (𝑐 − 𝑑))

𝑑 ⋅ 𝑚(�̃�)1−(
𝑐
𝑑

−1)
,

𝑥 ⋅ 𝑚(�̃�)(𝑐 − 𝑑) + 𝑚(�̃�)2(𝑑 − (𝑐 − 𝑑))

𝑑 ⋅ 𝑚(�̃�)1−(
𝑐
𝑑

−1)
] 

= (�̃�)
𝑐−𝑑

𝑑  

= (�̃�)
𝑐
𝑑

−1
 

 

Therefore, 𝑃(𝑘 − 1) is true and (𝑘 − 1) ∈ 𝑆. Based on principle of mathematical induction, this 

formula holds for all 𝑛 ∈ ℚ+. 

  

Theorem 3.2.2 Let �̃� be any interval number and 𝑎, 𝑏 are positive integers, then 

 

𝑚 (�̃�
𝑎
𝑏) = 𝑚(�̃�)

𝑎
𝑏 

 

Proof : 

 

𝑚 (�̃�
𝑎
𝑏) =

𝑎𝑥 + (𝑏 − 𝑎)𝑚(�̃�) + (𝑏 − 𝑎)𝑚(�̃�)

2𝑏 ⋅ 𝑚(�̃�)1−
𝑎
𝑏

 

=
𝑎(𝑥 + 𝑥) + 2(𝑏 − 𝑎)𝑚(�̃�)

2𝑏 ⋅ 𝑚(�̃�)1−
𝑎
𝑏

 

=
𝑎𝑚(�̃�)

𝑏 ⋅ 𝑚(�̃�)1−
𝑎
𝑏

+
2𝑏𝑚(�̃�)

2𝑏 ⋅ 𝑚(�̃�)1−
𝑎
𝑏

−
2𝑎𝑚(�̃�)

2𝑏 ⋅ 𝑚(�̃�)1−
𝑎
𝑏

 

=
𝑎

𝑏
𝑚(�̃�)

𝑎
𝑏 + 𝑚(�̃�)

𝑎
𝑏 −

𝑎

𝑏
𝑚(�̃�)

𝑎
𝑏  

= 𝑚(�̃�)
𝑎
𝑏  

 

Theorem 3.2.3 Let �̃�  be any interval number and 𝑎, 𝑏, 𝑐, 𝑑 are positive integers, then 

 

�̃�
𝑎
𝑏 ⊗ �̃�

𝑐
𝑑 = �̃�

𝑎
𝑏

+
𝑐
𝑑 

 

 Proof : 



 

 

 

 

�̃�
𝑎
𝑏 ⊗ �̃�

𝑐
𝑑 = [

𝑎𝑥 + (𝑏 − 𝑎)𝑚(�̃�)

𝑏 ⋅ 𝑚(�̃�)1−
𝑎
𝑏

,
𝑎𝑥 + (𝑏 − 𝑎)𝑚(�̃�)

𝑏 ⋅ 𝑚(�̃�)1−
𝑎
𝑏

]

⊗ [
𝑐𝑥 + (𝑑 − 𝑐)𝑚(�̃�)

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑

,
𝑐𝑥 + (𝑑 − 𝑐)𝑚(�̃�)

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑

] 

= [(
𝑎𝑥 + (𝑏 − 𝑎)𝑚(�̃�)

𝑏 ⋅ 𝑚(�̃�)1−
𝑎
𝑏

) 𝑚 (�̃�
𝑐
𝑑) + (

𝑐𝑥 + (𝑑 − 𝑐)𝑚(�̃�)

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑

) 𝑚 (�̃�
𝑎
𝑏)

− 𝑚 (�̃�
𝑎
𝑏) 𝑚 (�̃�

𝑐
𝑑) , (

𝑎𝑥 + (𝑏 − 𝑎)𝑚(�̃�)

𝑏 ⋅ 𝑚(�̃�)1−
𝑎
𝑏

) 𝑚 (�̃�
𝑐
𝑑)

+ (
𝑐𝑥 + (𝑑 − 𝑐)𝑚(�̃�)

𝑑 ⋅ 𝑚(�̃�)1−
𝑐
𝑑

) 𝑚 (�̃�
𝑎
𝑏) − 𝑚 (�̃�

𝑎
𝑏) 𝑚 (�̃�

𝑐
𝑑)] 

= [
𝑎𝑥 ⋅ 𝑚(�̃�)

𝑎
𝑏

+
𝑐
𝑑

𝑏 ⋅ 𝑚(�̃�)
+

(𝑏 − 𝑎)𝑚(�̃�)
𝑎
𝑏

+
𝑐
𝑑

𝑏
+

𝑐𝑥 ⋅ 𝑚(�̃�)
𝑎
𝑏

+
𝑐
𝑑

𝑑 ⋅ 𝑚(�̃�)
+

(𝑑 − 𝑐)𝑚(�̃�)
𝑎
𝑏

+
𝑐
𝑑

𝑑

− 𝑚(�̃�)
𝑎
𝑏

+
𝑐
𝑑 ,

𝑎𝑥 ⋅ 𝑚(�̃�)
𝑎
𝑏

+
𝑐
𝑑

𝑏 ⋅ 𝑚(�̃�)
+

(𝑏 − 𝑎)𝑚(�̃�)
𝑎
𝑏

+
𝑐
𝑑

𝑏
+

𝑐𝑥 ⋅ 𝑚(�̃�)
𝑎
𝑏

+
𝑐
𝑑

𝑑 ⋅ 𝑚(�̃�)

+
(𝑑 − 𝑐)𝑚(�̃�)

𝑎
𝑏

+
𝑐
𝑑

𝑑
− 𝑚(�̃�)

𝑎
𝑏

+
𝑐
𝑑] 

= [𝑚(�̃�)
𝑎
𝑏

+
𝑐
𝑑 (

𝑎𝑥

𝑏 ⋅ 𝑚(�̃�)
+

(𝑏 − 𝑎)

𝑏
+

𝑐𝑥

𝑑 ⋅ 𝑚(�̃�)
+

(𝑑 − 𝑐)

𝑑

− 1) , 𝑚(�̃�)
𝑎
𝑏

+
𝑐
𝑑 (

𝑎𝑥

𝑏 ⋅ 𝑚(�̃�)
+

(𝑏 − 𝑎)

𝑏
+

𝑐𝑥

𝑑 ⋅ 𝑚(�̃�)
+

(𝑑 − 𝑐)

𝑑

− 1)] 

= [𝑚(�̃�)
𝑎𝑑+𝑏𝑐

𝑏𝑑 (
𝑥

𝑚(�̃�)
(

𝑎

𝑏
+

𝑐

𝑑
) +

𝑏𝑑 − 𝑎𝑑 − 𝑏𝑐

𝑏𝑑
) , 𝑚(�̃�)

𝑎𝑑+𝑏𝑐
𝑏𝑑 (

𝑥

𝑚(�̃�)
(

𝑎

𝑏
+

𝑐

𝑑
)

+
𝑏𝑑 − 𝑎𝑑 − 𝑏𝑐

𝑏𝑑
)] 

= [𝑚(�̃�)
𝑎𝑑+𝑏𝑐

𝑏𝑑 (
𝑥

𝑚(�̃�)
(

𝑎𝑑 + 𝑏𝑐

𝑏𝑑
)

+
(𝑏𝑑 − 𝑎𝑑 − 𝑏𝑐)𝑚(�̃�)

𝑏𝑑 ⋅ 𝑚(�̃�)
) , 𝑚(�̃�)

𝑎𝑑+𝑏𝑐
𝑏𝑑 (

𝑥

𝑚(�̃�)
(

𝑎𝑑 + 𝑏𝑐

𝑏𝑑
)

+
(𝑏𝑑 − 𝑎𝑑 − 𝑏𝑐)𝑚(�̃�)

𝑏𝑑 ⋅ 𝑚(�̃�)
)] 

= [
𝑥(𝑎𝑑 + 𝑏𝑐) + (𝑏𝑑 − 𝑎𝑑 − 𝑏𝑐)𝑚(�̃�)

𝑏𝑑 ⋅ 𝑚(�̃�)1−
𝑎𝑑+𝑏𝑐

𝑏𝑑

,
𝑥(𝑎𝑑 + 𝑏𝑐) + (𝑏𝑑 − 𝑎𝑑 − 𝑏𝑐)𝑚(�̃�)

𝑏𝑑 ⋅ 𝑚(�̃�)1−
𝑎𝑑+𝑏𝑐

𝑏𝑑

] 

= �̃�
𝑎𝑑+𝑏𝑐

𝑏𝑑  

= �̃�
𝑎
𝑏

+
𝑐
𝑑 



 

 

 

 

  

Corollary 3.2.4 Let �̃� be any interval number and 𝑛 is positive integer, then 

 

(�̃�𝑛)
1
𝑛 = �̃� 

 

Proof : 

(�̃�𝑛)
1
𝑛 = ((𝑛𝑎) ⋅ 𝑚(�̃�𝑛−1) − (𝑛 − 1) ⋅ 𝑚(�̃�𝑛), (𝑛𝑎) ⋅ 𝑚(�̃�𝑛−1) − (𝑛 − 1) ⋅ 𝑚(�̃�𝑛))

1
𝑛

 

= [
1

𝑛 ⋅ 𝑚(�̃�𝑛)1−
1
𝑛

((𝑛𝑎) ⋅ 𝑚(�̃�𝑛−1) − (𝑛 − 1) ⋅ 𝑚(�̃�𝑛) + (𝑛 − 1)

⋅ 𝑚(�̃�𝑛)) ,
1

𝑛 ⋅ 𝑚(�̃�𝑛)1−
1
𝑛

((𝑛𝑎) ⋅ 𝑚(�̃�𝑛−1) − (𝑛 − 1) ⋅ 𝑚(�̃�𝑛)

+ (𝑛 − 1) ⋅ 𝑚(�̃�𝑛))] 

= [
𝑛𝑎 ⋅ 𝑚(�̃�)𝑛−1

𝑛 ⋅ 𝑚(�̃�)𝑛(1−
1
𝑛

)
,

𝑛𝑎 ⋅ 𝑚(�̃�)𝑛−1

𝑛 ⋅ 𝑚(�̃�)𝑛(1−
1
𝑛

)
] 

= [𝑎, 𝑎] 

 

 

Corollary 3.2.5 Let �̃�  be any interval number and 𝑏, 𝑐 are positive integers, then 

 

(�̃�
𝑏
𝑐 )

𝑐
𝑏

= �̃� 

 

Proof : 

(�̃�
𝑏
𝑐 )

𝑐
𝑏

= [
𝑏𝑎 + (𝑐 − 𝑏)𝑚(�̃�)

𝑐 ⋅ 𝑚(�̃�)1−
𝑏
𝑐

,
𝑏𝑎 + (𝑐 − 𝑏)𝑚(�̃�)

𝑐 ⋅ 𝑚(�̃�)1−
𝑏
𝑐

]

𝑐
𝑏

 

= [
1

𝑏 ⋅ 𝑚(�̃�)
𝑏
𝑐

(1−
𝑐
𝑏

)
(

𝑐(𝑏𝑎 + (𝑐 − 𝑏)𝑚(�̃�))

𝑐 ⋅ 𝑚(�̃�)1−
𝑏
𝑐

+ (𝑏 − 𝑐)𝑚(�̃�)
𝑏
𝑐 ) ,

1

𝑏 ⋅ 𝑚(�̃�)
𝑏
𝑐

(1−
𝑐
𝑏

)
(

𝑐(𝑏𝑎 + (𝑐 − 𝑏)𝑚(�̃�))

𝑐 ⋅ 𝑚(�̃�)1−
𝑏
𝑐

+ (𝑏 − 𝑐)𝑚(�̃�)
𝑏
𝑐 )] 



 

 

 

 

= [
1

𝑏 ⋅ 𝑚(�̃�)
𝑏
𝑐

−1
(

𝑏𝑎 + (𝑐 − 𝑏)𝑚(�̃�)

𝑚(�̃�)1−
𝑏
𝑐

−
(𝑐 − 𝑏)𝑚(�̃�)

𝑏
𝑐 ⋅ 𝑚(�̃�)1−

𝑏
𝑐

𝑚(�̃�)1−
𝑏
𝑐

) ,
1

𝑏 ⋅ 𝑚(�̃�)
𝑏
𝑐

−1
(

𝑏𝑎 + (𝑐 − 𝑏)𝑚(�̃�)

𝑚(�̃�)1−
𝑏
𝑐

−
(𝑐 − 𝑏)𝑚(�̃�)

𝑏
𝑐 ⋅ 𝑚(�̃�)1−

𝑏
𝑐

𝑚(�̃�)1−
𝑏
𝑐

)] 

= [(
𝑏𝑎 + (𝑐 − 𝑏)𝑚(�̃�)

𝑏 ⋅ 𝑚(�̃�)
𝑏
𝑐

−1+1−
𝑏
𝑐

−
(𝑐 − 𝑏)𝑚(�̃�)

𝑏
𝑐

+1−
𝑏
𝑐

𝑏 ⋅ 𝑚(�̃�)
𝑏
𝑐

−1+1−
𝑏
𝑐

) , (
𝑏𝑎 + (𝑐 − 𝑏)𝑚(�̃�)

𝑏 ⋅ 𝑚(�̃�)
𝑏
𝑐

−1+1−
𝑏
𝑐

−
(𝑐 − 𝑏)𝑚(�̃�)

𝑏
𝑐

+1−
𝑏
𝑐

𝑏 ⋅ 𝑚(�̃�)
𝑏
𝑐

−1+1−
𝑏
𝑐

)] 

= [𝑎, 𝑎] 

 

 

Corollary 3.2.6 Let �̃�  is any interval number and 𝑏, 𝑐 are positive integers, then 

 

(�̃�
𝑟
𝑠)

𝑡
𝑢

= (�̃�
𝑡
𝑢)

𝑟
𝑠
 

 

Proof : 

(�̃�
𝑟
𝑠)

𝑡
𝑢

= [
𝑟𝑎 + (𝑠 − 𝑟)𝑚(�̃�)

𝑠 ⋅ 𝑚(�̃�)1−
𝑟
𝑠

,
𝑟𝑎 + (𝑠 − 𝑟)𝑚(�̃�)

𝑠 ⋅ 𝑚(�̃�)1−
𝑟
𝑠

]

𝑡
𝑢

 

= [
1

𝑢 ⋅ 𝑚(�̃�)
𝑟
𝑠

(1−
𝑡
𝑢

)
(

𝑡𝑟𝑎 + 𝑡(𝑠 − 𝑟)𝑚(�̃�)

𝑠 ⋅ 𝑚(�̃�)1−
𝑟
𝑠

+
(𝑢 − 𝑡)𝑚(�̃�)

𝑟
𝑠 (𝑠 ⋅ 𝑚(�̃�)1−

𝑟
𝑠)

𝑠 ⋅ 𝑚(�̃�)1−
𝑟
𝑠

) ,
1

𝑢 ⋅ 𝑚(�̃�)
𝑟
𝑠

(1−
𝑡
𝑢

)
(

𝑡𝑟𝑎 + 𝑡(𝑠 − 𝑟)𝑚(�̃�)

𝑠 ⋅ 𝑚(�̃�)1−
𝑟
𝑠

+
(𝑢 − 𝑡)𝑚(�̃�)

𝑟
𝑠 (𝑠 ⋅ 𝑚(�̃�)1−

𝑟
𝑠)

𝑠 ⋅ 𝑚(�̃�)1−
𝑟
𝑠

)] 

= [(
𝑡𝑟𝑎 + 𝑡(𝑠 − 𝑟)𝑚(�̃�)

𝑢 ⋅ 𝑠 ⋅ 𝑚(�̃�)1−
𝑡𝑟
𝑢𝑠

+
𝑠(𝑢 − 𝑡)𝑚(�̃�)

𝑢 ⋅ 𝑠 ⋅ 𝑚(�̃�)1−
𝑡𝑟
𝑢𝑠

) , (
𝑡𝑟𝑎 + 𝑡(𝑠 − 𝑟)𝑚(�̃�)

𝑢 ⋅ 𝑠 ⋅ 𝑚(�̃�)1−
𝑡𝑟
𝑢𝑠

+
𝑠(𝑢 − 𝑡)𝑚(�̃�)

𝑢 ⋅ 𝑠 ⋅ 𝑚(�̃�)1−
𝑡𝑟
𝑢𝑠

)] 



 

 

 

 

= [(
𝑡𝑟𝑎 + 𝑚(�̃�)(𝑡𝑠 − 𝑡𝑟 + 𝑢𝑠 − 𝑡𝑠)

𝑢 ⋅ 𝑠 ⋅ 𝑚(�̃�)1−
𝑡𝑟
𝑢𝑠

) , (
𝑡𝑟𝑎 + 𝑚(�̃�)(𝑡𝑠 − 𝑡𝑟 + 𝑢𝑠 − 𝑡𝑠)

𝑢 ⋅ 𝑠 ⋅ 𝑚(�̃�)1−
𝑡𝑟
𝑢𝑠

)] 

= [(
𝑡𝑟𝑎 + 𝑚(�̃�)(𝑟𝑢 − 𝑡𝑟 + 𝑠𝑢 − 𝑟𝑢)

𝑢 ⋅ 𝑠 ⋅ 𝑚(�̃�)1−
𝑡𝑟
𝑢𝑠

) , (
𝑡𝑟𝑎 + 𝑚(�̃�)(𝑟𝑢 − 𝑡𝑟 + 𝑠𝑢 − 𝑟𝑢)

𝑢 ⋅ 𝑠 ⋅ 𝑚(�̃�)1−
𝑡𝑟
𝑢𝑠

)] 

= [(
𝑡𝑟𝑎 + 𝑟(𝑢 − 𝑡)𝑚(�̃�)

𝑢 ⋅ 𝑠 ⋅ 𝑚(�̃�)1−
𝑡𝑟
𝑢𝑠

+
𝑢(𝑠 − 𝑟)𝑚(�̃�)

𝑢 ⋅ 𝑠 ⋅ 𝑚(�̃�)1−
𝑡𝑟
𝑢𝑠

) , (
𝑡𝑟𝑎 + 𝑟(𝑢 − 𝑡)𝑚(�̃�)

𝑢 ⋅ 𝑠 ⋅ 𝑚(�̃�)1−
𝑡𝑟
𝑢𝑠

+
𝑢(𝑠 − 𝑟)𝑚(�̃�)

𝑢 ⋅ 𝑠 ⋅ 𝑚(�̃�)1−
𝑡𝑟
𝑢𝑠

)] 

= [
1

𝑠 ⋅ 𝑚(�̃�)
𝑡
𝑢

(1−
𝑟
𝑠

)
(

𝑡𝑟𝑎 + 𝑟(𝑢 − 𝑡)𝑚(�̃�)

𝑢 ⋅ 𝑚(�̃�)1−
𝑡
𝑢

+
(𝑠 − 𝑟)𝑚(�̃�)

𝑡
𝑢 (𝑢 ⋅ 𝑚(�̃�)1−

𝑡
𝑢)

𝑢 ⋅ 𝑚(�̃�)1−
𝑡
𝑢

) ,
1

𝑠 ⋅ 𝑚(�̃�)
𝑡
𝑢

(1−
𝑟
𝑠

)
(

𝑡𝑟𝑎 + 𝑟(𝑢 − 𝑡)𝑚(�̃�)

𝑢 ⋅ 𝑚(�̃�)1−
𝑡
𝑢

+
(𝑠 − 𝑟)𝑚(�̃�)

𝑡
𝑢 (𝑢 ⋅ 𝑚(�̃�)1−

𝑡
𝑢)

𝑢 ⋅ 𝑚(�̃�)1−
𝑡
𝑢

)] 

= [
𝑡𝑎 + (𝑢 − 𝑡)𝑚(�̃�)

𝑢 ⋅ 𝑚(�̃�)1−
𝑡
𝑢

,
𝑡𝑎 + (𝑢 − 𝑡)𝑚(�̃�)

𝑢 ⋅ 𝑚(�̃�)1−
𝑡
𝑢

]

𝑟
𝑠

 

= (�̃�
𝑡
𝑢)

𝑟
𝑠
 

 

Using the multiplication formula given in [21], interval numbers can be raised to different 

positive integer powers to obtain the pattern of �̃�𝑛 where 𝑛 is any positive integers. Based on 

this pattern, a new formula can be formed for interval numbers with positive integer powers. If 

we using the previous formula of interval numbers with powers of positive integers which was 

given in [6], one of the basic properties in exponents does not apply such as �̃�𝑚 ⊗ �̃�𝑛 ≠ �̃�𝑚+𝑛. 

But, by using the new formula for interval numbers with positive integer powers, it has been 

shown above that �̃�𝑚 ⊗ �̃�𝑛 = �̃�𝑚+𝑛 where 𝑚, 𝑛 are positive integers so that the exponential 

property apply to interval numbers with powers of positive integers. Furthermore, using the new 

formula of interval numbers with powers of positive integers, we can construct the formula for 

interval numbers with powers of fractional numbers. Let say �̃�
1

𝑛 = �̃�, then (�̃�
1

𝑛)
𝑛

= �̃�𝑛. Use the 

new formula for �̃�𝑛 and calculate to find 𝑏 and 𝑏. Therefore, we got the formula for interval 

numbers with powers of fractional numbers 1/𝑛 or the formula for �̃�
1

𝑛 is obtained. Then, we can 

determine the formula for �̃�
𝑚

𝑛  by calculate (�̃�
1

𝑛)
𝑚

. It can be shown that the exponential property 



 

 

 

 

and several other properties also apply to this formula of interval numbers with positive rational 

powers. 

4 Conclusion 

Based on the multiplication formula we used, a pattern is obtained to determined the general 

form of interval numbers with positive integer powers and it has been shown that the exponential 

property applies to this formula. Using this formula for interval numbers with positive integer 

powers, a general formula for interval numbers with fractional powers is formed. To show that 

the formula is valid, it is also shown that the exponential properties apply to the formula. By 

using the formulas we provided above, future research endeavors can explore about the 

convergence of sequences of interval numbers with positive integers and fractional powers and 

the properties that apply to those sequences. 
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