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Abstract. Until now, for trapezoidal fuzzy number (TrapFN), there have been very many 

algebra operations given by  authors, in the algebraic operations given, specifically for 

several multiplication, addition, and subtraction operations there is not much difference 

given by the various authors. However, for multiplication, division or inverse operations, 

there are many differences. Not only that for any TrapFN 𝑝, it does not produce 𝑝⨂𝑝−1 =
𝑖̃, so for the Trapezoidal fuzzy Matrix’s (TrapFM) will not apply �̃�⨂�̃�−1 = 𝐼, as a result 

various authors solve the TrapFN linear equation structure by decomposing the TrapFM 

in the form of a real number matrix, and some of them do not produce compatible solutions. 

According to that conditions, the author provides an alternative to the amplification, 

division and Operations on TrapFN in reverse which will produce 𝑝⨂𝑝−1 = 𝑖̃ . 
Furthermore, by modifying the elementary row operation, An algebraic alternative to 

TrapFN will be applied to determine the general inverse of TrapFM. At the end, an 

example of calculations for TrapFM of order 2x3 will be given 

Keywords: Trapezoidal fuzzy numbers, Modification of elementary row operations, G-

inverse 

1 Introduction 

Previous authors have written a lot about fuzzy numbers, fuzzy number matrices, and 

TrapFN matrices, with different solutions. In their solutions, the authors have certainly used 

algebraic alternatives that also vary, some still use algebra in general or algebra that has been 

changed by modifying its forms, annotations, and definitions. The form of variation of TrapFN 

that have been written in several writings such as authors [1], [2], [3], [4] fill out the form 𝑝 =
(𝑝1, 𝑝2, 𝑝3, 𝑝4), 𝑝1 ≤ 𝑝2 ≤ 𝑝3 ≤ 𝑝4 with u2 and u3 are the center points, p1  is the left point, and 

p4 is the right point. But there is also after the expansion for TrapFN p̃ = (p, q, α, β) with a and 

b are the middle points, α is the left width, and β is the appropriate width which is then converted 

in parametric form p̃(ω) = [p(ω), p(ω)] with p(ω) = p − (1 − ω)α and p(ω) = q + (1 −

ω)β, 0 < ω < 1 written by [5], [6], [7], [8], [9], [10]. The author [8] has presented the form of 
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TrapFN and their parametric forms but does not provide examples in the form of parametric 

forms, so that is one of the things that inspires the author in making this paper to provide an 

example of solving a matrix with TrapFN with parameters. 

Furthermore, the parametric form is used in various arithmetic operations of TrapFN. The 

arithmetic functions for fuzzy trapezoidal numbers are arithmetic operations of TrapFN are 

often manufactured in the same manner, including arithmetic addition, subtraction, and scalar 

multiplication. But it is different from the arithmetic of multiplication and division that the 

author has made in various forms, such as in [14], [16], [17], [18]. Not only that for any TrapFNl 

�̃�, it does not produce �̃�⨂�̃�
−1
= 𝑖,̃ so for the TrapFN matrix will not apply  �̃�⨂�̃�

−1
= �̃�, as a 

result, various authors solve the trapezoidal fuzzy numerical linear equation structure by 

decomposing the TrapFN matrix in the form of a real number matrix, and some of them do not 

produce compatible solutions. Given these circumstances, the author provides an alternative to 

the amplification, division and inverse operations of TrapFN which shall produce �̃�⨂�̃�
−1
= 𝑖.̃ 

Furthermore, the alternative operations of division, inversion and multiplication of fuzzy 

trapezoidal numbers that have been given will be applied to use the modified elementary row 

operation approach to find the universal opposite of any TrapFN matrix. 

2 Literature Review 
 Many authors have devised the note for TrapFN. in various ways [5], [6], [7], [8] ,[9], 

[10], [12], [13], [19], [20], but the basic concept is the same as the following definition: 

 

2.1 Trapezoidal Fuzzy 

Definition 2.1. A TrapFN 𝑝 = (𝑝, 𝑞, 𝛼, 𝛽) is a murky set on R equipped with a connection 

feature given by fulfills : 

a. �̃�(𝑥) higher semicontinous; 

b. 𝑝(𝑥) = 0, outside the interval [0,1] 

c. 𝑝(𝑥) monotonic increasing function at [𝑝 − 𝛼] 
d. 𝑝(𝑥) monotonic decreasing function at [𝑞 + 𝛽] 
e. 𝑝(𝑥) = 1, for 𝑥 ∈ [𝑝, 𝑞].  

 

Definition 2.2 Membership form of TrapFN  𝑝 according to: 

𝜇𝑝(𝑥) =

{
 
 

 
 1 −

𝑝 − 𝑥
𝛼

,   𝑝 − 𝛼 ≤ 𝑥 ≤ 𝑝,

1,            𝑝 ≤ 𝑥 ≤ 𝑞,

1 −
𝑥 − 𝑝
𝛽

, 𝑝 ≤ 𝑥 ≤ 𝑝 + 𝛽,

0,              others.

 

Definition 2.3 Based on Definition 2.2, an arbitrary TrapFN p̃ = (p, q, α, β) with a form with 

parameters p̃(ω) = [p(ω), p(ω)] , 0 < r < 1 that we can represent according to: 

 p(ω) = p − (1 − ω). α . 

 p(ω) = q + (1 − ω). β. 

Explanation on Definition 2.3 can be seen in Figure 1 



 

 

 

 

 

Fig. 1. TrapFN p̃ = (p, q, α, β) with p and q are the midlle points, α the width 

on the left, and β is appropriate in width.. 

The following are some alternatives to TrapFN algebra proposed by various authors such as 

[14], [19], [21], [22], [25],[26],[27],[28],[29],[30],[31]. 

Definition 2.4 Assuming two TrapFN in terms of intervals p̃(ω) = (p, q, α, β) = [p(ω), p(ω)] 

and q̃(ω) = (s, t, γ, δ) = [q(ω), q(ω)], so the following operations apply:   

1. Addition 

p̃(ω) ⊕ q̃(ω) = [p(ω), p(ω)] ⊕ [q(ω), q(ω)] 

                = [p(ω) + q(r), p(ω) + q(ω)].     (1)

     

2. Reduction 

p̃(ω) ⊖ q̃(ω) = [p(ω), p(ω)] ⊖ [q(ω), q(ω)] 

                              = [p(ω) − q(ω),  p(ω) − q(ω)].                        (2)       

3. Multiplication 

𝑝(ω)  ⊗ �̃�(ω) = [𝑚𝑖𝑛 𝑆,𝑚𝑎𝑥 𝑆] 

with 𝑆 = {𝑝(ω). 𝑞(ω), 𝑝(ω). 𝑞(ω), 𝑝(ω). 𝑞(ω), 𝑝(ω). 𝑞(ω)}                  

 

4. Scalar Multiplication 

  kp̃(ω) = {
[𝑘𝑝(𝜔), 𝑘𝑝(𝜔)], 𝑗𝑖𝑘𝑎 𝑘 < 0,

[𝑘𝑝(𝜔), 𝑘𝑝(𝜔)] , 𝑗𝑖𝑘𝑎 𝑘 ≥ 0.
                                (3)

   

 

2.2 Trapzoidal Fuzzy Matrix (TrapFM) 

A matrix of TrapFN �̃�  expressed yy  �̃�𝒊𝒋  such as the author [1] has defined the matrix 

according to : 



 

 

 

 

 

Definition 2.5 A TrapFM �̃�𝒎×𝒏 is expressed as follows : 

 

�̃� = [
�̃�𝟏𝟏 … �̃�𝟏𝒏
⋮ ⋱ ⋮

�̃�𝒎𝟏 … �̃�𝒎𝒏

] 

with �̃�𝒊𝒋 ∈ [𝟎, 𝟏], 𝟏 ≤ 𝒊 ≤ 𝒎; 𝟏 ≤ 𝒋 ≤ 𝒏.  

In the form of a TrapFM, which can ye expressed in the form 

 

�̃� = [
(𝒑𝟏𝟏, 𝒒𝟏𝟏, 𝜶𝟏𝟏, 𝜷𝟏𝟏) … (𝒑𝟏𝒏, 𝒒𝟏𝒏, 𝜶𝟏𝒏, 𝜷𝟏𝒏)

⋮ ⋱ ⋮
(𝒑𝒎𝟏, 𝒒𝒎𝟏, 𝜶𝒎𝟏, 𝜷𝒎𝟏) … (𝒑𝒎𝒏, 𝒒𝒎𝒏, 𝜶𝒎𝒏, 𝜷𝒎𝒏)

] 

 

Below is a sample of the of a TrapFM if it is in fuzzy parametric as follows: 

 

�̃�(𝒓) = [

[𝒑𝟏𝟏(𝒓), 𝒑𝟏𝟏(𝒓)] … [𝒑𝟏𝒏(𝒓), 𝒑𝟏𝒏(𝒓)]

⋮ ⋱ ⋮

[𝒑𝒎𝟏(𝒓), 𝒑𝒎𝟏𝟏(𝒓)] … [𝒑𝒎𝒏(𝒓), 𝒑𝒎𝒏(𝒓)]

] 

 

3 Materials and Methods 
3.1  Alterations to Elementary Row Operations 

 The dispute of fundamental operation method is used to determine the inverse of real 

numbers. But this time we use it in determining the inver of TrapFM, but previously it has not 

been found to find the inverse with TrapFN, so with that the author will modify it so that it can 

solve an inverse matrix with TrapFN. 

For real matrix, the row of elementary operation method that able to be used is : 

1. Switching the position of two rows 

2. Multiplication of by a constant that isn't zero. 

3. Adding/subtract rows repeated in several of the same person 

 

Alterations to the basic row operation for matrices consisting of fuzzy trapezoidal numbers 

follows: 

1. Row multiplied yy a trapezoidal fuzzy non-zero numyer(�̃�). 
2. Changing numbers a row with the product of a TrapFN with one additional rows. 

3.2 Steps of the G-inverse 

 Up to now, there has been no writing that discusses the overall opposite of the TrapFM, 

so the steps this can be applied to find the G-inverse are the steps to determine the real matrix's 

generic inverse shown in the following table [25],[26] and equivalent for TrapFM. The 

definition of The fuzzy matrices G-inverse looks like this: 

Definition 3.1 TrapFM�̃�(𝑟) is said to be the matrix's G-inverse �̃�(ω) if �̃�(ω)⨂ �̃�⨂ �̃�(ω) = 

�̃�(𝑟). For that reason, any generalized matrix's inverse �̃�(𝑟), �̃�(𝑟) applicable: 



 

 

 

 

a. �̃�(ω) ⨂ 𝐺 ̃(ω)= �̃�(ω)⨂ �̃�(ω) 

b. 𝐺 ̃(ω) ⨂ �̃�(ω)⨂ 𝐺 ̃(ω)= 𝐺 ̃(ω) 

Following are the steps to find G-inverse from any TrapFM 

1. If the fuzzy matrix is 𝑈 is not expressed in phrases with parameters, then first convert it 

into a matrix with parametrically formed parts. 

2. Determine the nonsingular matrix of the matrix's minor  �̃�(ω) ordered 𝑚 × 𝑛 with rank 𝑟 

(𝑟 ≤ min {𝑚, 𝑛}) is indicated by �̃�(ω).  

3. Determine the inverse of matrix �̃�(𝑟), then transpose  �̃�−𝟏(ω) to acquire (�̃�−𝟏(ω))
𝒕
.  

4. Furthermore, (�̃�−𝟏(ω))
𝒕
 will be inserted components [0, 0] for elements other than the 

fuzzy tiny matrix, with a size like the  matrix �̃�(ω), resulting in a new matrix called the 

matrix 𝑊 ̃(ω) . 

5. Transpose the matrix  𝑊 ̃(𝑟)  resulting in (𝑊 ̃(ω))
𝑡

. Let's say  ((𝑊 ̃(ω))
𝑡
= 𝐺 ̃(ω) )  . 

𝐺 ̃(ω) is the matrix's generic inverse �̃�(ω). 
6. The general reverse needs to match the the generic inverse's definition in order to 

demonstrate that the G-inverse obtained is accurate, especially  �̃�(ω)⨂ 𝐺 ̃(ω)⨂ �̃�(ω) = 

�̃�(ω).  

4 Result and Discussion 

Algebra procedures for adding, subtractive, and scalar division that have been made by 

various authors have fulfilled the properties of algebra, so the algebra operations will still be 

used such as equations (1), (2), and (3) in Definition 2.6. Furthermore, what will be modified is 

the division, inversion, and multiplication of TrapFN. 

 

Definition 4.1 Consider any fuzzy trapezoidal quantity. 𝑝(ω) = (𝑝, 𝑞, 𝛼, 𝛽) = [𝑝(ω), 𝑝(ω)] 

and �̃�(ω) = (𝑠, 𝑡, 𝛾, 𝛿) = [𝑞(ω), 𝑞(ω)], then the median importance of the TrapFN �̃� and �̃� is 

constructed that is represented by by 𝔪(𝑝) and 𝔪(�̃�) with value 𝔪(𝑝) and 𝔪(�̃�) as follows: 

𝔪(𝑝) =
𝑎+𝑏

2
 dan 𝔪(�̃�) =

𝑐+𝑑

2
 

 

 

The consequence has the following definition pair TrapFN: 

 

𝑝(ω) ⊗ �̃�(ω) = [𝑝(ω).𝔪(�̃�) + 𝑞(ω).𝔪(𝑝) − 𝔪(𝑝).𝔪(�̃�), 𝑝(ω)𝔪(𝑞) + 𝑞(ω).𝔪(𝑝) −

𝔪(𝑝).𝔪(�̃�)]     

 

𝑝(ω)⊗ �̃�(ω) = [(𝑝 − (1 − ω) ∝).𝔪(�̃�) + (𝑠 − (1 − ω)𝛾).𝔪(𝑝) − 𝔪(𝑝).𝔪(�̃�), 
    (𝑞 + (1 − ω)𝛽).𝔪(�̃�) + (𝑡 + (1 − ω)𝛿).𝔪(𝑝) − 𝔪(𝑝).𝔪(�̃�)]                     (4) 

                                                                                                                             

Additionally, for every fuzzy number in a trapezoidal form �̃�ω with 𝔪(�̃�) ≠ 0, it will 

be displayed that there is  �̃�(ω) such that �̃� ⊗ �̃� = 𝑖̃ = [1,1,0,0] with �̃� =  
1

𝑝
.  



 

 

 

 

Suppose 

𝑝 = (𝑝, 𝑞, ∝, 𝛽) = (𝑝 − (1 − ω)𝛼, 𝑞 + (1 − ω)𝛽 = [𝑝(ω), 𝑞(ω)]= 𝑝(ω) 

𝑖̃ = (𝑐, 𝑑, 𝛾, 𝛿) = (𝑐 − (1 − ω)𝛾, 𝑑 + (1 − ω)𝛿 = [ 𝑖̃(ω),  𝑖̃(ω)]= 𝑖̃(ω) 

 

 

Using the idea mentioned higher, the following theorem utiliseable to represent the 

inverse of a TrapFN: 

 

Theorem 4.1 For any TrapFN 𝑝 = (𝑝, 𝑞, 𝛼, 𝛽)  with 𝔪(�̃�) ≠ 0  there is �̃� =  
�̃�

𝑝
=

 [
2𝔪(𝑝)−𝑎

(𝔪(𝑢))
2 ,

2𝔪(𝑝)−𝑞

(𝔪(𝑢))
2 ,

−𝛼

(𝔪(𝑢))
2 ,

−𝛽

(𝔪(𝑢))
2], such that  𝑝 ⊗ �̃� =  𝑖̃ = [1,1,0,0] =  �̃� ⊗ 𝑝 . 

 

Proof : Consider 𝑝 = [𝑝, 𝑞, ∝, 𝛽] with �̃�(𝑝) ≠ 0 . Will be determined �̃� = [𝑐, 𝑑, 𝛾, 𝛿] such 

that 𝑝  ⊗ �̃� =  𝑖̃ = [1,1,0,0] =  �̃� ⊗ 𝑝 .  Given that it needs to be applied 𝑝 ⊗ �̃� =  𝑖̃ =

[1,1,0,0], then 𝔪(�̃� ⊗ �̃�) = 𝔪(�̃�) 𝔪(�̃�) = 1  or  𝔪(�̃�) =
1

𝔪(�̃�)
  as a result,  

𝑝  ⊗ �̃� = [𝑝.𝔪(�̃�) + 𝑐.𝔪(𝑝) −𝔪(𝑝).𝔪(�̃�), 𝑏.𝔪(�̃�) + 𝑑.𝔪(𝑝) −𝔪(𝑝).𝔪(�̃�),
∝.𝔪(�̃�) + 𝛾.𝔪(𝑝), 𝛽.𝔪(�̃�) + 𝛿.𝔪(𝑝 )] 

 

𝑝  ⊗ �̃� = [𝑝
1

𝔪(𝑝)
+ 𝑐.𝔪(𝑝) − 1, 𝑞

1

𝔪(𝑝)
+ 𝑑.𝔪(𝑝) − 1, ∝

1

𝔪(𝑝)
+ 𝛾.𝔪(𝑝),

𝛽.
1

𝔪(𝑝)
+ 𝛿.𝔪(𝑝)] 

= [1,1,0,0] 

 

So, it is proven that 𝑝 ⊗ �̃� = 𝜄.̃ 
 

Based on Theorem 4.1, The following formula can be used to divide two fuzzy, trapezoidal 

values. 

 

Theorem 4.2 For any pair of TrapFN 𝑝 = [𝑝, 𝑞, ∝ , 𝛽] and �̃� = [𝑠, 𝑡, 𝛾, 𝛿] then The section of 

TrapFN is.  

𝑝

�̃�
= 𝑝  ⊗ 

1

�̃�
=  [

𝑝. 𝔪(�̃�) + 2𝔪(𝑝).𝔪(�̃�) − 𝑠.𝔪(𝑝) − 𝔪(𝑝).𝔪(�̃�)

(𝔪(�̃�))
2 , 

      
𝑞. 𝔪(�̃�) + 2𝔪(𝑝).𝔪(�̃�) − 𝑡.𝔪(𝑝) − 𝔪(𝑝).𝔪(�̃�)

(𝔪(�̃�))
2 ,

∝. 𝔪(�̃�) − 𝛾.𝔪(𝑝)

(𝔪(�̃�))
2 ,

𝛽. 𝔪(�̃�) − 𝛿.𝔪(𝑝)

(𝔪(�̃�))
2 ] 

 

 

Proof : From the Theorem 4.2, we get 



 

 

 

 

𝑝 

�̃�
=  𝑝  ⊗

1

�̃�
= [𝑝, 𝑞, ∝, 𝛽] ⊗ [

2𝔪(�̃�) − 𝑠

(𝔪(�̃�))
2 ,

2𝔪(�̃�) − 𝑡

(𝔪(�̃�))
2 ,

−𝛾

(𝔪(�̃�))
2 ,

−𝛿

(𝔪(�̃�))
2] 

  = [𝑝.
1

𝔪(�̃�)
+ (

2𝔪(�̃�) − 𝑠

(𝔪(�̃�))
2 )𝔪(�̃�) − 𝔪(�̃�).

1

𝔪(�̃�)
, 𝑞.

1

𝔪(𝑞)
+ (

2𝔪(�̃�) − 𝑡

(𝔪(�̃�))
2 )𝔪(�̃�) − 𝔪(�̃�).

1

𝔪(𝑞)
,

∝
1

𝔪(𝑞)
+ (

−𝛾

(𝔪(�̃�))
2)𝔪(�̃�), 𝛽

1

𝔪(�̃�)
+ (

−𝛿

𝔪2(𝑞)
)𝔪(�̃�)] 

=

[
 
 
 
 
𝑝.𝔪(�̃�) + 2𝔪(�̃�).𝔪(�̃�) − 𝑠.𝔪(�̃�) − 𝔪(�̃�).𝔪(�̃�)

(𝔪(�̃�))
2 ,

𝑞. 𝔪(�̃�) + 2𝔪(�̃�).𝔪(𝑞) − 𝑡.𝔪(�̃�) − 𝔪(�̃�).𝔪(�̃�)

(𝔪(�̃�))
2 ,

∝ 𝔪(�̃�) − 𝛾.𝔪(�̃�)

(𝑚(�̃�))
2 ,

𝛽. 𝔪(�̃�) − 𝛿.𝔪(�̃�)

(𝑚(�̃�))
2

]
 
 
 
 

 

 

 

Example. Given a TrapFM,  �̃�2×3 . Determine the G-inverse of the matrix  �̃�. 

 

�̃� = [
(0, 1, 1, 3) (−1, 2, 2, 3) (−2, 3, 3, 1)

(−4,−2, 1, 1) (1, 4, 3, 2) (2, 5, 2, 1)
] 

 

Transformed into a TrapM in parametric form, so that 

 

�̃�(𝑟) = [
[−1 + ω, 4 − 3ω] [−3 + 2ω, 5 − 3ω] [−5 + 3ω, 4 − ω]

[−5 + ω,−1 − ω] [−2 + 3ω, 6 − 2ω] [2ω, 6 − ω]
] 

 

because of rank �̃�(ω) = 2, and found 3 minor matrix from �̃�(ω) that is 

 

           �̃�1(ω) = [
[−1 + ω, 4 − 3ω] [−3 + 2ω, 5 − 3ω]

[−5 + ω,−1 − ω] [−2 + 3ω, 6 − 2ω]
] 

 

 �̃�2(ω) = [
[−3 + 2ω, 5 − 3ω] [−5 + 3ω, 4 − ω]

[−2 + 3ω, 6 − 2ω] [2ω, 6 − ω]
] 

 

�̃�3(𝑟) =  [
[−1 + ω, 4 − 3ω] [−5 + 3ω, 4 − ω]

[−5 + ω,−1 − ω] [2ω, 6 − ω]
] 

 

So that it will produce  3 G-inverse of the matrix �̃�. Making Use of simple  

rows of operations, the matrix's inverse  �̃�1(ω) is 

�̃�1
−1(ω) = [

[
532

121
−
248

121
ω,−

656

121
+
592

121
ω] [

8

121
−
12

121
ω,− 

36

121
−

4

121
ω]

[
964

121
−
500

121
ω,−

1060

121
+
860

121
ω] [

80

121
−
32

121
ω𝑟,−

8

121
+

4

121
ω]

] 

 

Then transpose the matrix 𝑀1
−1(ω), so that 

 



 

 

 

 

(�̃�1
−1(ω))

𝑡
= [

[
532

121
−
248

121
ω,−

656

121
+
592

121
ω] [

964

121
−
500

121
ω,−

1060

121
+
860

121
ω]

[
8

121
−
12

121
ω,− 

36

121
−

4

121
ω] [

80

121
−
32

121
ω,−

8

121
+

4

121
ω]

]  

 

Next, add an element  [0,0] on the matrix (�̃�1
−1(ω))

𝑡
  for all elements other than the fuzzy 

matrix's small component, ensuring that the matrix's order is the same as �̃�(ω)), and creating a 

new matrix is obtained which is denoted by  �̃�(ω) 
 

�̃�(𝑟) =  [
[
532

121
−
248

121
ω,−

656

121
+
592

121
ω] [

964

121
−
500

121
ω,−

1060

121
+
860

121
ω] [0,0]

[
8

121
−
12

121
ω,− 

36

121
−

4

121
ω] [

80

121
−
32

121
ω,−

8

121
+

4

121
ω] [0,0]

] 

 

Then transpose the matrix �̃�(ω) so that the matrix is obtained �̃�1(ω) with ((�̃�(ω)) 𝑡 = �̃�1) 

so that 

�̃�1(ω) =

[
 
 
 
 [
532

121
−
248

121
ω,−

656

121
+
592

121
ω] [

8

121
−
12

121
ω,− 

36

121
−

4

121
ω]

[
964

121
−
500

121
ω,−

1060

121
+
860

121
ω] [

80

121
−
32

121
ω,−

8

121
+

4

121
ω]

[0,0] [0,0] ]
 
 
 
 

 

 

Matrix �̃�1(ω)  is the matrix's generic inverse. �̃�(ω) . Moreover, it is readily demonstrated 

�̃�(ω)⨂�̃�1(ω)⨂�̃�(ω) = �̃�(ω). In the same way, we can obtain the overall inverse of  �̃�2(ω) 
and �̃�3(ω) that is �̃�2(ω) and �̃�3(ω) as follows : 

 

�̃�2(r) = [

[0,0] [0,0]

[−28 + 18ω,−79 + 103ω] [14 − 8𝑟, 5 − 13ω]

[24 − 16ω, 53 − 71ω] [−10 + 6ω,−3 + 9ω]
] 

and 

�̃�3(r) =

[
 
 
 
 [
1260

169
−
48

13
ω,−

976

169
+
704

169
ω] [

80

169
−
4

13
ω,− 

24

169
−
56

169
ω]

[0,0] [0,0]

[
1340

169
− 4ω,−

1052

169
+
700

169
ω] [

128

169
−
4

13
ω,− 

24

169
−
56

169
ω]]
 
 
 
 

 

 

It is also readily demonstrable that  �̃�(ω) ⊗ �̃�2(ω)⊗ �̃�(ω) = �̃�(ω)  and 

�̃�(ω)⨂�̃�3(ω)⨂�̃�(ω) = �̃�(ω). 

5. Conclusion 

Regarding any two fuzzy trapezoidal numbers 𝑝 = (𝑝, 𝑞, ∝, 𝛽) = [𝑝(ω), 𝑝(ω)] = 𝑝(ω)  and 

�̃� = (𝑠, 𝑡, 𝛾, 𝛿) = [𝑞(ω), 𝑞(ω)] = �̃�(ω) the multiplication process that is employed is as shown 

in equation (4). This result will be able to prove the division and the TrapFN' inverse in Theorem 

4.1 and Theorem 4.2. 



 

 

 

 

Then so far basic row operations cannot be used for TrapFN matrices, then, by applying 

the algebraic functions provided in this document, basic row operations can be applied to find 

the G-inverse along with the opposite of any TrapFN matrix. to ensure that the inverse result 

obtained can prove �̃� ⊗ 𝑃 = �̃�−1⊗ �̃� = 𝐼, can also prove the true G-inverse with �̃�(ω) ⊗
�̃�(ω) ⊗ �̃�(ω) = �̃�(ω) or �̃�(ω) ⊗ �̃�(ω) ⊗ �̃�(ω) = �̃�(ω) . Thus the alternative arithmetic 

able to be employed for find the TrapFN' inverse provided in this study by other methods such 

as the moore-penrose method. 
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