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Abstract. Inventory management is very important to Water Supply Company (PDAM) 

to ensure the consistent availability and reliability of chlorine gas. Chlorine gas is 

important in the disinfecting process of clean water production. In addition, the demand 

for chlorine gas since 2020 has experienced high volatility. Therefore, this study aimed to 

develop a probabilistic Chlorine Gas inventory model, which used the (Q,r) and (R,T) 

model, with demand following exponential distribution. Demand data used in model were 

based on forecasts for multiple future periods. The results showed that the most accurate 

demand forecasting model for Chlorine Gas was achieved through the application of the 

Multiplicative Holt-Winters method. The optimal inventory management policy, as 

established by the (Q,r) model, prescribed a reorder point (r) of 1,933.76 kg, order lot size 

(Q) of 1,049.36 kg, and a total cost (𝑇𝑐(𝑄, 𝑟)) amounting to IDR 2.706.523.392,76. This 

model also achieved a service level of 99.98%. 

Keywords: Water Supply Company (PDAM), Holt-Winters forecasting, Exponential 

probabilistic inventory model. 

1 Introduction 

Company is required to participate in inventory replenishment process, including raw materials, 

semi-finished goods, or finished products. In the case of Water Supply Company (PDAM), the 

production of clean water relies on various chemicals, with Chlorine Gas being a crucial 

component. Ensuring the quality and safety of the drinking water supplied to the public is of 

greatest importance. Therefore, it is crucial to maintain a constant supply of chlorine gas 

chemicals to meet the requirements of the production department. This ensures a smooth and 

uninterrupted water distribution service to the public.  
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It is important to acknowledge that demand for chlorine gas always fluctuate, both in an 

increasing and decreasing manner. However, it can be approximated using a certain probability 

distribution. Inventory model that consider demand following a specific probability distribution 

are termed probabilistic. This model, such as probabilistic (Q,R) and (R,T), help determine 

optimal inventory replenishment strategies based on demand patterns governed by a specific 

probability distribution. 

 

Numerous studies have focused on probabilistic inventory management. [1] used the (R,s,S) 

inventory model with demand patterns following gamma and normal probability distributions. 

Also, another study explored optimal inventory policies with normally distributed demand in 

company specializing in disposable products, using the standard deviation of historical data [2]. 

[3] applied the Lagrange multiplier method to identify the optimal values for the probabilistic 

Economic Order Quantity (EOQ) when dealing with demand characterized by a uniform 

probability distribution. Furthermore, [4] used a probabilistic Periodic Order Quantity (POQ) 

model, considering imperfect items and exponential probability distribution of demand.  

 

In prior studies, particularly concerning chemical inventory modeling in PDAM, demand data 

typically comprises historical data following a normal probability distribution. For example, in 

the study by [5], they created a deterministic Economic Order Quantity (EOQ) inventory model 

for chemicals at PDAM Tirta Kencana in the city of Samarinda. Additionally, PDAM Tirta 

Mayang in Jambi and PDAM Nganjuk used probabilistic (r,Q) inventory model, assuming that 

demand follows a normal probability distribution without conducting normality assumption 

tests beforehand [6]-[7]. There is no documented inventory model with demand data distributed 

differently from normal using forecasting data in PDAM.  

 

The current study uses forecasting data from various methods, such as Single and Double 

Exponential Smoothing, Multiplicative Holt-Winters, and Additive Holt-Winters. The results 

of probabilistic inventory model (Q,r) and (R,T) are then compared with demand assumed to 

follow exponential probability distribution. 

2 Research Methodology 

The research methodology consists of data sources and methods. 

2.1 Data Source 

The data was obtained from PDAM Tirta Musi Palembang and consisted of Chlorine Gas 

demand data. This dataset included monthly time series data from January 2016 to December 

2021, as well as cost-related information, consisting of purchase, holding, and shortage costs, 

etc. 

2.2 Method 

The study method was based on the following steps:  

1. Forecasting demand data for Chlorine Gas chemicals from the production department to 

the warehouse and procurement department at PDAM. Demand forecasting for chlorine 



 

 

 

 

gas incorporated methods such as Single and Double Exponential Smoothing, 

Multiplicative Holt-Winters, and Additive Holt-Winters. The definitions of variable and 

parameter of forecasting methode could be seen in Table 1.  

Table 1. Defining variables and parameters of forecasting method. 

Variables and Parameters The Defining Variables and Parameters 

𝑍𝑡 the actual demand for chlorine gas in period t 

𝑆𝑡+1 forecasting value for chlorine gas for period (𝑡 + 1) 

𝑆𝑡 forecasting demand for chlorine gas for period 𝑡 

𝛼 smoothing constant with a value between 0 and 1 

𝛽𝑡 the trend in period t 

𝛽𝑡−1 the trend in period t-1 

𝛾 the second parameter for trend smoothing 

𝐹𝑡+𝑚 forecasting chlorine gas demand for m periods ahead 

m the number of periods for future demand forecasting 

𝐼𝑡 the seasonal smoothing value at the (𝑡)th time 

𝐼𝑡−𝑀 the seasonal smoothing value at the (𝑡 − 𝑀)th time 

𝐼𝑡−𝑀+𝑚 the seasonal smoothing value at the (𝑡 − 𝑀 + 𝑚)th time 

M the length of the seasonal cycle 

 

a. The Single Exponential Smoothing method followed the equation below 

                                                         �̂�𝑡+1 = 𝛼𝑍𝑡 + (1 − 𝛼)�̂�𝑡                                                  (1) 

[8]-[9]. 

b. The Double Exponential Smoothing method consisted of the following equations: 

 

𝑆𝑡 = 𝛼𝑍𝑡 + (1 − 𝛼)(𝑆𝑡−1 + 𝛽𝑡−1) 

𝛽𝑡 = 𝛾(𝑆𝑡 − 𝑆𝑡−1) + (1 − 𝛾)𝛽𝑡−1 

                                                             𝐹𝑡+𝑚 = 𝑆𝑡 + 𝛽𝑡𝑚                                                         (2) 

[10]. 

c. The Additive Holt-Winters method was defined with the following equations: 

𝑆𝑡 = 𝛼(𝑍𝑡 − 𝐼𝑡−𝑀) + (1 − 𝛼)(𝑆𝑡−1 + 𝛽𝑡−1) 

𝐼𝑡 = 𝛽𝑡(𝑍𝑡 − 𝑆𝑡) + (1 − 𝛽𝑡) 

                                                      𝐹𝑡+𝑚 = (𝑆𝑡 + 𝛽𝑡𝑚)𝐼𝑡−𝑀+𝑚                                                 (3) 

[10]. 

d. The Multiplicative Holt-Winters method was defined using the equations below: 

𝑆𝑡 = 𝛼(𝑍𝑡/𝐼𝑡−𝑀) + (1 − 𝛼)(𝑆𝑡−1 + 𝛽𝑡−1) 

𝐼𝑡 = 𝛽(𝑍𝑡/𝑆𝑡) + (1 − 𝛽)𝐼𝑡−𝑀 

                                                      𝐹𝑡+𝑚 = (𝑆𝑡 + 𝛽𝑡𝑚)𝐼𝑡−𝑀+𝑚                                                 (4) 

[11]. 

2. Comparing the adequacy of chlorine gas demand forecasting results was performed using 

the Mean Absolute Percentage Error (MAPE), Mean Absolute Deviation (MAD), and 

Mean Square Deviation (MSD) metrics. 

The MAPE formula was expressed as followed: 

                                                𝑀𝐴𝑃𝐸 =  
1

𝑛
∑

|𝑍𝑡−�̂�𝑡|

𝑍𝑡
× 100 %𝑛

𝑡=1                                              (5) 

 



 

 

 

 

where 𝑛 is the number of chlorine gas demand data points, 𝑍𝑡 denotes the actual data for 

period 𝑡 and �̂�𝑡 shows the forecasting data for period 𝑡.  

MAPE values were evaluated as: 

• 𝑀𝐴𝑃𝐸 < 10%, showing a very good forecasting ability.  

• 10% ≤ 𝑀𝐴𝑃𝐸 < 20%, considered good forecasting ability.  

• 20% ≤ 𝑀𝐴𝑃𝐸 < 50%, representing moderate forecasting ability.  

• 𝑀𝐴𝑃𝐸 ≥ 50%, suggesting poor forecasting ability.  

       MAD and MSD were also determined using the following equations: 

                                                       𝑀𝐴𝐷 =  
1

𝑛
∑ |𝑍𝑡 − �̂�𝑡|𝑛

𝑡=1                                                    (6) 

                                                      𝑀𝑆𝐷  =  
1

𝑛
∑ (𝑍𝑡 − �̂�𝑡)

2𝑛
𝑡=1                                                  (7) 

[12]  

The calculations for steps 1 and 2 were facilitated by Minitab 20. 

3. The Kolmogorov-Smirnov (KS) method was used to test the assumption of probability 

distribution in chlorine gas demand data. With 𝑋𝑖 representing the sorted residual data from 

smallest to largest, Equation (8) was used to test hypotheses 𝐻0 and 𝐻1. Specifically, 

hypotheses 𝐻0 = Residuals follow a specified distribution and 𝐻1 = Residuals do not 

follow a specified distribution, with the rejection region for 𝐻0 being 𝐾𝑆_𝑣𝑎𝑙𝑢𝑒 >
 𝐾𝑆𝛼,𝑛 or 𝐾𝑆_𝑃𝑣𝑎𝑙𝑢𝑒 <  α. The 𝐾𝑆_𝑣𝑎𝑙𝑢𝑒 Equation was expressed with the equation 

below: 

                                                𝐾𝑆_𝑣𝑎𝑙𝑢𝑒 = 𝑠𝑢𝑝𝑥|𝐹𝑛(𝑥) − 𝐹0(𝑥)|                                           (8) 

where  

𝐹𝑛(𝑥) is the cumulative probability of a specific distribution 

𝐹0(𝑥) is the empirical cumulative probability of the tested data 

[13]-[14].  

4. Inventory optimization comprised probabilistic inventory model (Q,r) and (R,T) with 

chlorine gas demand following exponential probability distribution. The optimal solution 

was obtained by minimizing the Total Cost (𝑇𝑐) through the Hadley Within algorithm 

[15]–[18]. The total cost referred to the sum of Purchase Cost (𝑃𝑐), Ordering Cost (𝑂𝑐), 

Storage Cost (Stc) and Shortage Cost (𝑆ℎ𝑐) according to Equation (9). 

                                                       𝑇𝑐 = 𝑃𝑐 + 𝑂𝑐 + 𝑆𝑡𝑐 + 𝑆ℎ𝑐                                               (9) 

Equation (9) for the (Q,r) model was expanded into: 

                𝑇𝑐(𝑄, 𝑟) = 𝐷. 𝑝 + (𝐴1 +
𝐴2𝐷

𝑄
) + ℎ. (

1

2
𝑄 + 𝑟 − 𝐷𝐿) +

𝐶𝑢𝐷

𝑄
∫ (𝑥 − 𝑟)𝑓(𝑥)𝑑𝑥

∞

𝑟
             (10) 

Equation (9) for the (R,T) model was further broken down into: 

                     𝑇𝑐(𝑅, 𝑇) = 𝐷. 𝑝 + (𝐴1 +
𝐴2

𝑇
) + ℎ (𝑅 − 𝐷𝐿 +

𝐷𝑇

2
) +

𝐶𝑢

𝑇
∫ (𝑧 − 𝑅)𝑓(𝑧)𝑑𝑧

∞

𝑅
             (11) 

The probability density function (fkp) and cumulative probability distribution function 

𝐹(𝑥) for a random variable X following exponential probability distribution (𝛽, 𝛾) with 

parameters 𝛾 and 𝛽, was expressed with the equation below: 

                                                     𝑓(𝑥) =
1

𝛽
𝑒

−
(𝑥−𝛾)

𝛽   for 𝑥 > 0                                               (12) 

 

                                                  𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = 1 − 𝑒
−

(𝑥−𝛾)

𝛽                                           (13) 



 

 

 

 

Calculations for steps 3 and 4 were facilitated using Python software. The definitions of 

variables and parameters at this stage could be seen in Table 2. 

5. The results obtained were interpreted. 

Table 2. Defining variables and parameters. 

Variables and Parameters The Defining Variables and Parameters 

η service level 

N expected amount of inventory shortage each cycle (unfulfilled 

demand) 

𝐷𝐿 demand expectations during the lead period 

𝛼 percentage of unfulfilled requests, where η=1-α 

r the amount of inventory at the time the order was placed 

(reorder point) 

X random variable of demand for chlorine gas during a lead 

period 

𝑓(𝑥) demand opportunity density function at lead time (x) 

D demand expectations over the planning horizon (kg/year) 

L lead time (year) 

𝑄 order lot size for each order (kg) 

𝑝 price of goods per kg 

𝐴2 cost of contracting (IDR per year) 

𝐴1 message fee (IDR per message) 

ℎ holding cost per unit (% unit per year) of the price of goods per 

unit, proportional to the number of goods and storage time 

𝐶𝑢 unit cost of inventory shortage (IDR per unit), proportional to 

the number of items that cannot be fulfilled. 

𝑇𝑐 total cost 

ss the number of goods in the warehouse (safety stock) 

T the time when the order is placed 

R the desired maximum inventory 

Z the random variable of chlorine gas demand at (T+L) 

3 Result and Discussion 

3.1  Chlorine Gas Demand Forecasting 

 

The method used in demand forecasting for chlorine gas in 2022 and 2023 was the Single and 

Double Exponential Smoothing, Multiplicative Holt-Winters, and Additive Holt-Winters. 

Monthly time series data samples from January 2016 to December 2021 were used for this 

purpose. The comparative results of these four methods could be seen in Table 3. 

Table 3. Suitability of forecasting results. 

No. Method MAPE MAD MSD 

1 Single Eksponensial Smoothing (𝛼 = 0.74) 8 832 1,452,355 

2 Double Eksponential Smoothing (𝛼 = 0,92; 𝛾 = 0.03) 8 928 1,627,599 

3 Multiplikatif Holt-Winters  (𝛼 = 0.70; 𝛾 = 0.01; 𝛿 = 0.00) 7 754 1,115,038 

4 Aditif Holt-Winters (𝛼 = 0.70; 𝛾 = 0.00; 𝛿 = 0.00) 7 769 1,211,045 



 

 

 

 

According to Table 3, both the Multiplicative Holt-Winters and Additive Holt-Winters methods 

delivered the smallest MAPE values, which were 7. Furthermore, the Multiplicative Holt-

Winters method produced the lowest MAD and MSD values, specifically 754 and 1,115,038, 

respectively. The Multiplicative Holt-Winters method with level (α) = 0.70, trend (γ) = 0.01, 

and seasonal (δ) = 0.00 was used to forecast chlorine gas demand. Demand and forecasting data 

for chlorine gas were shown in Figure 1. Figure 1 shows the actual demand and fitted demand 

data for the Holt-Winters Multiplicative method from 2016 to 2021 with blue and red color 

plots. Chlorine Gas demand forecast data for 2022 and 2023 are shown with green plots. The 

upper and lower bounds of the forecast data are colored in purple. Also shown in Figure 1, the 

ups and downs of the mean forecast of chlor gas demand tend not to be large. 

 

Fig. 1. Forecasting results plot using the multiplicative Holt-Winters method. 

3.2   Exponential Demand Distribution Test 

To verify the assumption of exponential probability distribution for chlorine gas demand data 

within a one-year planning horizon, the KS test was conducted. The test results showed a KS-

value = 0.2656 and KS-Pvalue = 0.5399. Based on these values, demand data for the one-year 

planning horizon followed exponential  probability distribution (𝛽𝑡 , 𝛾𝑡), or accepted 𝐻0, as the 

KS-Pvalue exceeded the alpha value (0.05). The parameter values consisted of the scale 

parameter 𝛽𝑡 = 34,739.6437 and the location parameter 𝛾𝑡 = 102,034.68. Similarly, for 

demand data during the lead-time, it also followed exponential  probability distribution (𝛽𝐿 , 𝛾𝐿)   

with a scale parameter 𝛽𝐿 = 190.3575 days and a location parameter 𝛾𝐿 = 559.09, because the 

KS-value = 0.2656 and KS-Pvalue = 0.5399 were greater than alpha (0,05).  

 

3.3   Probabilistic Inventory Model (r,Q) with Exponentially Distributed Gas Chlorine 

Demand 

The estimated cost data comprised several costs, namely purchase (p) = IDR 19,493.2 per kg 

per year, holding (h) = IDR 1,949.32 per kg per year (equivalent to 10% of Chlorine gas price 

per kg), contract ordering (𝐴1) = IDR 36,000,000 per year, telephone ordering (𝐴2) = IDR 5000 

per order, and shortage (Cu) (equal to 105% of the purchase cost) = IDR 20,467.86 per kg per 

year. The lead time (L) was 2 days, and it was equivalent to 0.005479 years. The average demand 

for gas chlorine for one planning horizon (D) was calculated as (𝛽𝑡 + 𝛾𝑡) = 34,739.6437 +



 

 

 

 

102,034.68 =136,774.3237 kg. Meanwhile, demand for gas chlorine during the lead time (𝐷𝐿) 

was computed as 𝐷𝐿 = 𝜇 = 𝐸(𝑥) = 𝛽𝐿 + 𝛾𝐿 =  190.3575 + 559.09 = 749.4475 kg.  

 

The Exact Method using the Hadley-Within algorithm was applied to determine the optimal 

inventory policy as followed: 

1. Wilson formula was used to determine the initial value of 𝑄0 was calculated using 

Equation (14):     

                                                                  𝑄0 = √
2𝐴2𝐷

ℎ
                                                          (14) 

2. The probability of chlorine gas shortage during lead-time in the i-th iteration (𝛼𝑖) was 

calculated using Equation (15): 

                                                                 𝛼𝑖 =
𝑄(𝑖−1)ℎ

𝐶𝑢𝐷
                                                            (15) 

For the first iteration 𝑄0 = 837.646 kg and 𝛼1 = 0.00059 are obtained. Since demand for 

chlorine gas during lead time followed exponential probability distribution (𝛽𝐿 , 𝛾𝐿), 

Equation (13) was substituted with 𝛾 = 𝛾𝐿, 𝛽 = 𝛽𝐿, 𝑟 = 𝑟𝑖, and 𝛼 = 𝛼𝑖 into Equation (16): 

                                                                 1 − 𝐹(𝑟) = 𝛼                                                         (16) 

After the substitution, the following equation was obtained reorder point in the i-th 

iteration (𝑟𝑖): 

                                                         𝑟𝑖 = {−𝑙𝑛(𝛼𝑖)𝛽𝐿} + 𝛾𝐿                                                    (17) 

 

For the 1st iteration 𝑟1 = 1,976.66 kg.             

3. The amount of chlorine gas shortage during lead time (𝑁𝑖) and the order quantity of 

chlorine gas was computed for each order (𝑄𝑖) in the i-th iteration through Equations (18) 

and (19): 

                                𝑁𝑖 = ∫ (𝑥 − 𝑟𝑖)𝑓(𝑥)𝑑𝑥
∞

𝑟𝑖
 = ∫ (𝑥 − 𝑟𝑖)

1

𝛽𝐿
𝑒

−
(𝑥−𝛾𝐿)

𝛽𝐿 𝑑𝑥
∞

𝑟𝑖
                            (18) 

 

                                                            𝑄𝑖 = √
2𝐷(𝐴2+𝐶𝑢𝑁𝑖)

ℎ
                                                       (19) 

For the 1st iteration, the values 𝑁1  = 0.11 kg and 𝑄1 = 1,010.23 kg are obtained. 

4. Recomputing 𝛼2 and the value of 𝑟2 in the 2nd iteration using the same process in steps 2 

and 3, the process continued till values for 𝑟𝑖−1 and 𝑟𝑖 that were relatively close were 

obtained, thereby finishing in the i-th iteration. In this study, a value of 𝑟 = 𝑟8 = 𝑟9 =
 1,933.76 kg was obtained after the 9th iteration, with a value of 𝑄 = 𝑄9 = 1,049.36 kg, 

and a value of 𝑁 = 𝑁9 = 0.14 kg. These values for 𝑟, 𝑄 and 𝑁 represent the optimal 

inventory policy for chlorine gas management. The total cost (𝑇𝑐(𝑄, 𝑟)) per year for 

managing chlorine gas inventory using the (r,Q) Back Order model, as determined through 

Equation (10), was calculated to be 𝑇𝑐(𝑄, 𝑟) = IDR 2.706.523.392,76.  

5. Obtaining the optimal safety stock (ss) and the service level () for the Back Order case 

using Equation (20) and Equation (21):  

                                                                  𝑠𝑠 = 𝑟 − 𝐷𝐿                                                            (20) 

                                                             =
𝐷𝐿−𝑁  

𝐷𝐿 
× 100%                                                     (21) 

 



 

 

 

 

The value of ss and  were determined to be 𝑠𝑠 = 1,184.31 kg and  = 99.98%. 

 

 

3.4   Probabilistic Inventory Model (R,T) with Exponentially Distributed Gas Chlorine 

Demand 

In the same case as before, the Hadley-Within algorithm was used to iteratively 

determine the optimal values of  𝑇 and 𝑅 through the following procedure: 

1. Calculating the value of 𝑇 using Equation (22): 

                         𝑇 = √
2𝐴2

𝐷ℎ
                                                             (22) 

2. Determining the shortage probability 𝛼 and the maximum inventory level of chlorine gas 

𝑅,  using Equations (23) and (24):  

            𝛼 =
𝑇ℎ

𝐶𝑢
                                                                (23) 

           1 − 𝐹(𝑅) = 𝛼                                                          (24) 

If Z represents demand for chlorine gas at (𝑇 + 𝐿) and follows exponential probability 

distribution (
(𝑇+𝐿)

𝐿
𝛽𝐿 ,

(𝑇+𝐿)

𝐿
𝛾𝐿), the value 𝑅 can be calculated by substituting Equation 

(13), with 𝛾 =
(𝑇+𝐿)

𝐿
𝛾𝐿, 𝛽 =

(𝑇+𝐿)

𝐿
𝛽𝐿 , and 𝑟 = 𝑅 into Equation (24). Based on the condition 

stated above, the following equation can be formulated:  

                                                 𝑅 = {−𝑙𝑛(𝛼)𝛽𝐿
(𝑇+𝐿)

𝐿
} + 𝛾𝐿

(𝑇+𝐿)

𝐿
                                           (25) 

where 𝑇 = 0.0061 year, 𝛼 = 0.00058 and the maximum inventory level of chlorine gas is 

𝑅 = 4,185.93 kg.  

3. Calculating the total inventory cost 𝑂𝑇  for the (R,T) model using Equation (11). It should 

be noted that the shortage 𝑁 was initially calculated through Equation (26) : 

                             𝑁 = ∫ (𝑧 − 𝑅1)𝑓(𝑧)𝑑𝑧
∞

𝑅1
= ∫ (𝑧 − 𝑅1)

1

𝛽𝐿
𝑒

−
(𝑧−

(𝑇+𝐿)
𝐿 𝛾𝐿)

(𝑇+𝐿)
𝐿 𝛽𝐿 𝑑𝑧

∞

𝑅1
                       (26) 

The obtained value for 𝑁 = 0.23 kg, and the total cost 𝑇𝑐(𝑅, 𝑇) = IDR 2,709,653,862.34. 

4. Calculating the optimal safety stock (𝑠𝑠) and the service level () for the Back Order case 

using Equation (27) and Equation (21):  

                                                     𝑠𝑠 =  𝑅1 − (𝐷 × (𝐿 + 𝑇1))                                               (27) 

The value of ss and  were determined to be 𝑠𝑠 = 2,598.84 kg and  = 99.98%. 

5. The process was repeated in steps 2 to 4 with 𝑇 = 𝑇 ± ∆𝑇, till the minimum total cost 

(𝑇𝑐(𝑅, 𝑇)) was achieved and the optimal time interval T was determined. The results were 

obtained using ∆𝑇 = 0.001 as shown in Table 4.  

 
Table 4. Calculation Results for 𝑇 and 𝑅 

𝑇 (year) 𝑅 (kg) 𝑠𝑠 (kg) 𝑁 (kg) 𝑇𝑐(𝑅, 𝑇) (IDR) 

0.0051 8,239.62 6,789.30 0.38 2,718,583,302.32 

0.0061 4,185.93 2,598.84 0.23 2,709,653,862.34 

0.0071 9,488.18 7,764.31 0.63 2,720,763,413.77 



 

 

 

 

Table 4 shows that 𝑇 = 0.0061 years provides the optimal result with 𝑇𝑐(𝑅, 𝑇) = IDR 

2,709,653,862.34. 

3.5   Sensitivity Analysis 

Based on the results obtained from the (Q,r) model and the (R,T) model with exponential 

distribution for chlorine gas demand, the (Q,r) model provided superior optimization compared 

to the (R,T) model. The total cost (Tc) in the (Q,r) model was lower than in the (R,T) model. 

Sensitivity testing is performed on the (Q,r) model to determine the impact of underestimating 

or overestimating the parameters inputted in the inventory model on the optimal value of the lot 

size of each order (Q), reorder point (r) and total cost (Tc) of this inventory system. This 

sensitivity analysis is done by increasing and decreasing the magnitude of one parameter by 

about -20% to 20% with the value of the other parameters fixed. The results can be observed in 

Table 5.  

Table 5. Sensitivity Analysis Results of Changes in Model Parameters on 𝑇𝑐(𝑄, 𝑟) 

Parameter Change 𝑟 

 (year) 

𝑄  

(kg) 

𝑠𝑠  

(kg) 

𝑁 

(kg) 

 
(%) 

𝑇𝑐(𝑄, 𝑟)  
(IDR) 

L 

Seven days 6,431.97 1,737.92 3,808.90 0.81 99.96 2,712,981,785.29 

Six days 5,565.49 1,585.61 3,317.15 0.63 99.97 2,711,726,305.15 

Five days 4,683.88 1,439.61 2,810.26 0.47 99.97 2,710,453,604.32 

Four days 3,785.68 1,300.91 2,286.79 0.34 99.97 2,709,162,798.32 

Three days 2,869.41 1,170.52 1,745.24 0.23 99.97 2,707,852,995.07 

Two days 1,933.76 1,049.36 1,184.31 0.14 99.98 2,706,523,392.76 

One day 977.53 938,21 602.80 0.06 99.98 2,705,173,180.41 

P 

+20% 1,968.44 1,049.36 1,219.00 0.11 99.98 3,239,824,849.95 

+10% 1,951.88 1,049.36 1,202.43 0.13 99.98 2,973,175,638.72 

+0% 1,933.76 1,049.36 1,184.31 0.14 99.98 2,706,523,392.76 

-10% 1,913.69 1,049.36 1,164.24 0.15 99.97 2,439,867,328.25 

-20% 1,891.27 1,049.23 1,141.82 0.17 99.97 2,173,206,698.85 

𝛽𝑡 

+20% 2,205.73 1,116.95 1,418.21 0.17 99.97 2,842,548,449.46 

+10% 2,069.84 1,083.07 1,301.35 0.15 99.97 2,774,535,934.15 

+0% 1,933.76 1,049.36 1,184.31 0.14 99.98 2,706,523,392.76 

-10% 1,797.43 1,015.81 1,067.02 0.12 99.98 2,638,510,687.99 

-20% 1,660.90 982.46 949.53 0.11 99.98 2,570,497,950.14 

𝛾𝑡 

+20% 2,061.63 1,108.27 1,200.36 0.13 99.98 3,104,466,011.79 

+10% 1,997.99 1,079.30 1,192.63 0.13 99.98 2,905,496,221.71 

+0% 1,933.76 1,049.36 1,184.31 0.14 99.98 2,706,523,392.76 

-10% 1,868.79 1,018.32 1,175.25 0.15 99.97 2,507,546,990.25 

-20% 1,803.00 986.09 1,165.37 0.15 99.97 2,308,566,655.59 

 
Table 5 shows that as the values of the lead time parameter (L), chlorine gas price (P), scale 

parameters (𝛽𝑡) and location parameters (𝛾𝑡) of the probability distribution of demand increase, 

the reorder point (r), order lot size (Q), safety stock (ss) and total cost (Tc) will increase. Because 

of the increase in lead time, the ordering lot must be increased to anticipate stock shortages so 

that the safety stock in the warehouse also increases. Increased safety stock causes storage costs 

to rise, which in turn increases total costs. However, the increase in lead time causes the service 



 

 

 

 

level () to decrease, although not significantly. This happens because increasing lead time will 

increase the possibility of a shortage of chlorine gas, thereby reducing the service level. 

 

Increasing prices will increase the reorder point (r), order lot size (Q), and total price (Tc). 

Increasing the scale parameter (𝛽𝑡) of demand will increase the average demand because the 

expected demand is equal to the scale parameter (𝐸(𝑥)  =  𝛽𝑡) in one planning horizon. This 

also increases the demand during lead time (𝐷𝐿), so the reorder point (r), order lot size (Q), 

safety stock (ss) and total cost (Tc) will increase to anticipate shortages (N), which will also 

increase. This will reduce the level of service (). 

4 Conclusion  

The conclusions and recommendations were as followed: 

1. The Multiplicative Holt-Winters method, with level (𝛼) = 0.70, trend (𝛾) = 0.01, and 

seasonal (𝛿) = 0.00, outperformed the Single and Double Exponential Smoothing, as well 

as Additive Holt-Winters methods in forecasting chlorine gas demand. Furthermore, it 

obtained the lowest values for MAPE, MAD, and MSD, which were 7, 754, and 1,115,038, 

respectively. 

2. Concerning inventory policy for chlorine gas, the (Q,r) model proved to be more efficient 

than the (R,T) model. Therefore, orders were expected to be placed at reorder point (r) of 

1,933.76 kg, with order lot size (Q) of 1,049.36 kg. The total cost difference between 

inventory model (Q,r) and (R,T) amounts to IDR 3,130,469.58. 

3. Based on the sensitivity analysis of the (Q,r) model, it was evident that changes in 

parameters, whether positive or negative, such as L, P, 𝛽𝑡 and 𝛾𝑡 have an impact on 

variables Q, r, ss, and 𝑇𝑐(𝑄, 𝑟). 
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