# Life Cycle Cost Identification on Building Maintenance of Badan Pengelola Keuangan Daerah Pematangsiantar

Syahrizal<sup>1</sup>, Fatimah Almadinah<sup>2</sup>, Rahmi Karolina<sup>1</sup>, M. Agung P Handana<sup>1</sup> {\*imadiahmad1977@gmail.com}

<sup>1</sup>Lecturer of Department of Civil Engineering, Universitas Sumatera Utara, Medan, Indonesia <sup>2</sup>Student of Civil Engineering of Universitas Sumatera Utara, Medan, Indonesia

Abstract. Badan Pengelola Keuangan Daerah Pematangsiantar building has been established since 1981 and has been operating for more than 30 years. In order for the function of the building not to decrease during the life of the plan, routine maintenance is needed. However, maintenance carried out on the building so far has only been carried out in the events of damage or just as needed. Therefore, it is necessary to conduct a Life Cycle Cost study at Badan Pengelola Keuangan Daerah Pematangsiantar building to analyze the economic value of the building by considering the operating costs throughout the life of the plan. The purpose of this research is to make a long-term plan of Life Cycle Cost and to identify maintenance components of the building by making a financial schedule of maintenance costs over the life of the plan and to know the biggest maintenance costs. From the results of the research carried out, the total maintenance costs for the next 15 years amounted to Rp 2,052,491,356 which consisted of mechanical components maintenance amounted to Rp 386,534,267, electrical components amounted to Rp 1,078,841,811 and external spatial components amounted to Rp. 578,115,279. As well as the biggest maintenance costs on the maintenance of all components reviewed is the maintenance of electricity network with an average weight for the next 15 years of 29.86%.

Keywords: Building maintenance, financial schedule, life cycle cost, maintenance component

# **1** Introduction

Pematangsiantar City is the second largest city in North Sumatra Province. Pematangsiantar City is also has various characteristics of economic activities and consumption as a potential source of regional income. Therefore, the government of Pematangsiantar City built the *Badan Pengelola Keuangan Daerah* building in Pematangsiantar as the organizer of government affairs in the area of regional revenue in 1981 and has been operating for more than 30 years.

In order for the function of a building is not reduced throughout the life of the plan, there is a need for routine maintenance of buildings. However, maintenance of buildings so far has only been carried out if there is a damage that occurred or according to the required needs. With routine maintenance, the frequency of replacements and repairs will be increasingly frequent over the life of the building plan, resulting in high maintenance costs, then the overall costs of the project cycle will also be high [1].

To analyze the economic value of a building by considering maintenance costs throughout the life of the building plan, it is necessary to do studies of *Life Cycle Cost* [2]. The life cycle cost – LCC is the total cost of a building or its parts throughout its life, and it includes the costs of planning, design, operation, maintenance and disposal, less any residual value [3]. The purpose of the *Life Cycle Cost* is to manage life cycle costs (long-term) rather than short-term savings, to ensure a consistent service according to the purpose of designing a building, to increase sustainability and to reduce the risk of failure [4].

Based on the background above, it is necessary to do research by identifying the *Life Cycle Cost* on the components to be examined in the Badan Pengelola Keuangan Daerah building of Pematangsiantar by making a *financial schedule* of maintenance costs during the life of the plan. So that the results of this research will later provide an overview and input about *Life Cycle Cost* in the building to consider various alternatives and to find out the biggest maintenance cost during the life of the building plan.

The research purposes are as follows:

First, to calculate the long-term plan of *Life Cycle Cost* on the maintenance of the building for the next 15 years.

Secnd, to identify the maintenance components which its *Life Cycle Cost* to be calculated by making a financial schedule of maintenance costs and knowing the biggest maintenance costs during the life of the plan.

# 2 Methodology

Hidayat and Sedarmayanti suggested that research methodology is a discussion of theoretical concepts of various methods, advantages and disadvantages, which in the scientific work continued with the selection of the methods used [5]. The purpose of the existence of a research methodology is to direct the thinking process and work process to answer the problems that will be investigated further.

The research which its maintenance components to be reviewed is located in the Badan Pengelola Keuangan Daerah Pematangsiantar building at Jalan Merdeka No. 8, Pematangsiantar City.

#### 2.1 Research Processes

The problem chosen as the topic of this research is to find the background, in this case the author chooses the *Badan Pengelola Keuangan Daerah Pematangsiantar* building.

After identifying the problem and determining the title of the research, the next thing to do is to determine the purpose of the research.

Literature studies in this research is needed to be done to find the data in the form of journals, books, and the internet that relate and support this research.

In this research, the data needed are: Primary data, direct interviews with respondents regarding main-tenance on the office building of *Badan Pengelola Keuangan Daerah* of *Pematangsiantar*, and Secondary Data, maintenance data of the building in 2013-2017 and inflation data in 2013-2017 based on *Badan Pusat Statistik* of *Pematangsiantar* City.

In analyzing the data in this research is by using *Life Cycle Cost* Analysis. The calculation of *Life Cycle Cost* Analysis in this research is based on the maintenance data of the building for the last 5 (five) years.

At the final stage, conclusions are made based on the data that has been analyzed which is directly related to the purposes of the research along with suggestions for further research.

#### 2.2 Preliminary Survey

Survey is an activity to visit the object of the research directly to obtain important information related to this research.

### 2.3 Data processing stage

Maintenance components that will be reviewed are divided into 3 types of maintenance [6], which are:

- a. Mechanical components. Included in the maintenance is: water network.
- b. Electrical components. Included in the maintenance are: *generatorset*, electricity network and internet / computer network.
- c. Outer spatial components. Included in the maintenance are: roof, fence and wooden *listplank*.

#### 2.3.1 Inflation

Inflation is used to calculate the amount of building maintenance costs over the next 15 years. The amount of the inflation can be taken *from Badan Pusat Statistik (BPS) of Pematangsiantar* City for the last 5 (five) years. The next stage is to get the average of the inflation value for the last 5 (five) years with the formula:

$$Average = \frac{\Sigma(inflation\ 2013-2017)}{amount\ of\ samples}$$
(1)

# 2.3.2 Table of interest

The interest table is used to get the value of the inflation factor. The table of interest used is taken from a book of compound interest tables.

#### 2.3.3 Calculating maintenance costs using the interest rate formula

Calculating maintenance costs for 15 years is by using the single payment interest rate formula [7]:

$$\mathbf{F} = \mathbf{P} \left( \mathbf{F} / \mathbf{P}, \mathbf{i} \%, \mathbf{N} \right) \tag{2}$$

### 2.3.4 Calculating the biggest maintenance cost

Determining the biggest amount of maintenance cost by calculating the percentage of component maintenance costs each year with the formula [7]:

Average = 
$$\left(\frac{\sum(maintennace\ costs\ 2018-2027)}{15}\right)$$
 (3)

Then, to get the percentage of maintenance costs each year is by using the formula [7]: Percentage =  $\left(\frac{components \ maintenance \ costs}{total \ of \ maintenance \ costs}\right) X \ 100\%$ (4)

# **3** Result and Discussion

#### 3.1 Identification of the Reviewed Building Components

Mechanical Components. Included in the mainte-nance of mechanical components is:

Table 1. Maintenance Costs of Mechanical Components in 2013-2017

| Maintenance | Maintenance Cost |
|-------------|------------------|
|             | Water Network    |
| 2013        |                  |
| 2014        |                  |
| 2015        | Rp 15.000.000    |
| 2016        | Rp 15.000.000    |
| 2017        | Rp 17.000.000    |

\_

Source: Kasubbag Data dan Program Badan Pengelolaan Keuangan Daerah Pematangsiantar

Electrical Components. Included in the maintenance of electrical components are:

Table 2. Maintenance Costs of Electrical Components of in 2013-2017

| Mainta | Maintenance Cost |               |               |  |
|--------|------------------|---------------|---------------|--|
| manne  | Comonatomant     | Electrical    | Internet/Comp |  |
| nance  | Generalorsel     | Network       | uter Network  |  |
| 2013   | Rp 10.000.000    |               | Rp 5.000.000  |  |
| 2014   | Rp 12.300.000    |               |               |  |
| 2015   | Rp 12.000.000    | Rp 20.000.000 | Rp 10.000.000 |  |
| 2016   | Rp 12.000.000    | Rp 40.000.000 | Rp 10.000.000 |  |
| 2017   | Rp 14.000.000    | Rp 35.000.000 | Rp 12.000.000 |  |

Source: Kasubbag Data dan Program Badan Pengelolaan Keuangan Daerah Pematangsiantar

Outer Spatial Components. Included in the mainte-nance of outer spatial components are:

| Table 3. Maintenance Costs of Outer Spatial Control | nponents in 2013-2017 |
|-----------------------------------------------------|-----------------------|
|-----------------------------------------------------|-----------------------|

| Mai  | nto             | Maintenance Cost |               |  |
|------|-----------------|------------------|---------------|--|
| nan  | re Poof         | Fanca            | Wooden        |  |
| man  | Kool            | Tence            | Lisplank      |  |
| 201  | 3               |                  |               |  |
| 2014 | 4               |                  |               |  |
| 201  | 5               |                  |               |  |
| 201  | 6               |                  |               |  |
| 201  | 7 Rp 20.824.732 | 2 Rp 2.019.689   | Rp 16.823.445 |  |

Source: Kasubbag Data dan Program Badan Pengelolaan Keuangan Daerah Pematangsiantar

### **3.2 Inflation**

Cost estimation is calculated by the effect of inflation. Inflation data taken at *Badan Pusat Statistik* of Pematangsiantar City are as follows:

| Table 4. Inflation of Pematangsiantar City |               |  |
|--------------------------------------------|---------------|--|
| Year                                       | Inflation (%) |  |
| 2013                                       | 12,02         |  |
| 2014                                       | 7,94          |  |
| 2015                                       | 3,36          |  |
| 2016                                       | 4,76          |  |
| 2017                                       | 3,10          |  |

Source: Indeks Harga Konsumen dan Inflasi Kota Pematangsiantar

Next, to get the average inflation value for the last 5 (five) years is by using the formula:  $\bar{x} = \frac{x_{1+x_{2}+x_{3}+\dots+x_{n}}}{x_{n}}$ 

п which:  $\bar{x}$ = Average

x1, x2, x3 = Value of samples

= Amount of sampels n

So that the average is obtained as follows:  $\bar{x} = \frac{12,02\% + 7,94\% + 3,36\% + 4,76\% + 3,10\%}{2}$ 5  $\bar{x} = 6 \%$ 

Based on the calculation above, the inflation value to be used for the next 15 years is 6% and is assumed to be fixed. Then, to get the value of the inflation factor of 6% can be seen in the following table:

| Table 5. | 5. Factors of 6% Compund Interest |               |  |  |  |
|----------|-----------------------------------|---------------|--|--|--|
| Ν        | Single Payment                    |               |  |  |  |
|          | Factors of                        | Factors of    |  |  |  |
|          | Number of                         | Present Value |  |  |  |
|          | Compound                          | P/F           |  |  |  |
|          | F/P                               |               |  |  |  |
|          |                                   |               |  |  |  |
| 1        | 1.0600                            | 0.9434        |  |  |  |
| 2        | 1.1236                            | 0.8900        |  |  |  |
| 3        | 1.1910                            | 0.8396        |  |  |  |
| 4        | 1.2625                            | 0.7921        |  |  |  |
| 5        | 1.3382                            | 0.7434        |  |  |  |
| 6        | 1.4185                            | 0.705         |  |  |  |
| 7        | 1.5036                            | 0.6651        |  |  |  |
| 8        | 1.5938                            | 0.6274        |  |  |  |
| 9        | 1.6895                            | 0.5919        |  |  |  |
| 10       | 1.7908                            | 0.5584        |  |  |  |
| 11       | 1.8983                            | 0.5268        |  |  |  |
| 12       | 2.0122                            | 0.4970        |  |  |  |
| 13       | 2.1329                            | 0.4688        |  |  |  |
| 14       | 2.2609                            | 0.4423        |  |  |  |
| 15       | 2.3966                            | 0.4173        |  |  |  |

Source: Taufik, Hendra. 2009. Tabel – Tabel Bunga Majemuk, Department of Civil Engineering The University of Riau Pekanbaru.

### 3.3 Maintenance Cost Estimation With the Effect of Inflation by Using Rate Interest Formula

The calculation of components maintenance costs estimation that will be calculated to the next 15 years, can use a single payment interest rate formula (looking for F if P is known) as follows [7]:

F = P (F/P, i%, N)

(2)

### 3.4 Recapitulation of Maintenance Costs of Mechanical Components

(1)

For the recapitulation of maintenance costs of mechanical components, it will be shown in table 6 and figure 1.

|             | Maintenance Cost |            |  |
|-------------|------------------|------------|--|
| Maintenance | Wate             | er Network |  |
| 2018        | Rp               | 16.606.667 |  |
| 2019        | Rp               | 17.603.067 |  |
| 2020        | Rp               | 18.659.000 |  |
| 2021        | Rp               | 19.779.167 |  |
| 2022        | Rp               | 20.965.133 |  |
| 2023        | Rp               | 22.223.167 |  |
| 2024        | Rp               | 23.556.400 |  |
| 2025        | Rp               | 24.969.533 |  |
| 2026        | Rp               | 26.468.833 |  |
| 2027        | Rp               | 28.055.867 |  |
| 2028        | Rp               | 29.740.033 |  |
| 2029        | Rp               | 31.524.467 |  |
| 2030        | Rp               | 33.415.433 |  |
| 2031        | Rp               | 35.420.767 |  |
| 2032        | Rp               | 37.546.733 |  |

Table 6. Recapitulation of Maintenance Costs of Mechanical Components for 15 Years



Fig.1. Graph Total of Maintenance Costs of Mechanical Components for 15 Years

# 3.5 Recapitulation of Maintenance Costs of Electrical Components

For the recapitulation of maintenance costs of electrical components, it will be shown in table figure 2



Fig.2. Graph Total of Maintenance Costs of Electrical Components for 15 Years

### 3.6 Recapitulation of Maintenance Costs of Outer Spatial Components

For the recapitulation of maintenance costs of outer spatial components, it will be shown in table 7 and figure 3 below.

| Maintenance | Maintenance Cost |            |    |           |    |               |
|-------------|------------------|------------|----|-----------|----|---------------|
|             |                  | Roof       |    | Fence     | Wo | oden Lisplank |
| 2018        | Rp               | 20.824.732 | Rp | 2.140.870 | Rp | 17.832.852    |
| 2019        |                  |            | Rp | 2.269.323 | Rp | 18.902.823    |
| 2020        |                  |            | Rp | 2.405.450 | Rp | 20.036.723    |
| 2021        |                  |            | Rp | 2.549.857 | Rp | 21.239.599    |
| 2022        | Rp               | 26.291.224 | Rp | 2.702.748 | Rp | 22.513.134    |
| 2023        |                  |            | Rp | 2.864.929 | Rp | 23.864.057    |
| 2024        |                  |            | Rp | 3.036.804 | Rp | 25.295.732    |
| 2025        |                  |            | Rp | 3.218.980 | Rp | 26.813.207    |
| 2026        | Rp               | 33.190.458 | Rp | 3.412.265 | Rp | 28.423.210    |
| 2027        |                  |            | Rp | 3.616.859 | Rp | 30.127.425    |
| 2028        |                  |            | Rp | 3.833.976 | Rp | 31.935.946    |
| 2029        |                  |            | Rp | 4.064.018 | Rp | 33.852.136    |
| 2030        | Rp               | 41.903.526 | Rp | 4.307.795 | Rp | 35.882.726    |
| 2031        |                  |            | Rp | 4.566.315 | Rp | 38.036.127    |
| 2032        |                  |            | Rp | 4.840.387 | Rp | 40.319.068    |

Table 7. Recapitulation of Maintenance Costs of Outer Spatial Components for 15 Years



Fig.3. Graph Total of Maintenance Costs of Outer Spatial Components for 15 Years

### **3.7 Total of Maintenance Costs**

For the recapitulation of the total of maintenance costs, it will be shown in table 8 and figure 4.

| Maintenance | Total of Maintenance Cost |            |    |             |    |             |
|-------------|---------------------------|------------|----|-------------|----|-------------|
|             | М                         | lechanical | I  | Electrical  | Ou | ter Spatial |
| 2018        | Rp                        | 16.606.667 | Rp | 45.626.667  | Rp | 40.798.454  |
| 2019        | Rp                        | 17.603.067 | Rp | 48.364.267  | Rp | 21.172.145  |
| 2020        | Rp                        | 18.659.000 | Rp | 51.265.616  | Rp | 22.442.173  |
| 2021        | Rp                        | 19.779.167 | Rp | 54.342.627  | Rp | 23.789.457  |
| 2022        | Rp                        | 20.965.133 | Rp | 57.602.083  | Rp | 51.507.106  |
| 2023        | Rp                        | 22.223.167 | Rp | 61.057.859  | Rp | 26.728.986  |
| 2024        | Rp                        | 23.556.400 | Rp | 64.721.110  | Rp | 28.332.536  |
| 2025        | Rp                        | 24.969.533 | Rp | 68.603.749  | Rp | 30.032.187  |
| 2026        | Rp                        | 26.468.833 | Rp | 72.722.061  | Rp | 65.025.933  |
| 2027        | Rp                        | 28.055.867 | Rp | 77.084.037  | Rp | 33.744.284  |
| 2028        | Rp                        | 29.740.033 | Rp | 81.709.881  | Rp | 35.769.921  |
| 2029        | Rp                        | 31.524.467 | Rp | 86.613.165  | Rp | 37.916.154  |
| 2030        | Rp                        | 33.415.433 | Rp | 91.808.965  | Rp | 82.094.046  |
| 2031        | Rp                        | 35.420.767 | Rp | 97.317.941  | Rp | 42.602.442  |
| 2032        | Rp                        | 37.546.733 | Rp | 103.158.787 | Rp | 45.159.455  |

 Table 8. Table of the Total of Maintenance Costs for 15 Years



Fig.4. Graph of the Total of Maintenance Costs for 15 Years

# 3.8 Graph of the Average of Maintenance Costs

To find the average maintenance cost every year, the following formula can be used:  $Average = \left(\frac{\Sigma(maintenance\ costs\ 2018-2032)}{15}\right)$ (3)

Then, to find the percentage of maintenance costs every year, the following formula is used:  $Percentage = \left(\frac{components \ maintenance \ costs}{total \ of \ maintenance \ costs}\right) X \ 100\%$ (4)

Based on the formula above, the results of the average maintenance costs of all components are reviewed in the following table:

Table 9. The average maintenance costs of all components for 15 years

| Maintenance               | Maintenance Costs |
|---------------------------|-------------------|
| Water Network             | Rp 25.768.951     |
| Generatorset              | Rp 19.836.610     |
| Electrical Network        | Rp 52.086.178     |
| Internet/Computer Network | Rp 15.214.647     |
| Roof                      | Rp 30.552.485     |
| Fence                     | Rp 3.322.038      |
| Wooden Listplank          | Rp 27.671.651     |
| Total                     | Rp 174.452.559    |



Fig.5. Graph of the Average of Maintenance Costs of All Components for 15 Years

Based on Figure 3.5 above, it can be concluded that the highest cost of maintenance on the maintenance of all reviewed components is in the maintenance of electricity network with an average weight of 29.86% for the next 15 years.

# 4 Conclusion

From the results of the discussion, the amount of maintenance costs based on *financial schedule* for the next 15 years can be summarized as follows:

- a. the total cost of the building maintenance is Rp. 2,052,491,356 and it is expected that an increase in maintenance costs will not be constant due to differences in maintenance cycle time for each components.
- b. the maintenance of mechanical components is Rp. 386,534,267 and it is estimated that there will be an increase in maintenance costs every year.
- c. the maintenance of electrical components is Rp 1,078,841,811 and it is estimated that there will be an increase in maintenance costs every year.
- d. the maintenance of the outer spatial components is Rp. 578,115,279 and it is estimated that there will be an increase in maintenance costs every 4 years.
- e. the biggest maintenance costs on the maintenance of all reviewed components is in electricity network maintenance with an average weight of 29.86% for the next 15 years.

### References

- [1] G. P. Kamagi, J. E. C. Tjakra, J., Langi, and G. Y. Malingkas, "ANALISIS LIFE CYCLE COST PADA PEMBANGUNAN GEDUNG (Studi Kasus: Proyek Bangunan Rukan Bahu Mall Manado)," J. Sipil Statik, vol. 1, no. 8, 2013.
- [2] P. A. Wongkar, Y. K., Tjakra, J., & Pratasis, "Analisis Life Cycle Cost Pada Pembangunan Gedung (Studi Kasus: Sekolah St. URSULA Kotamobagu)," J. Sipil Statik, vol. 4, no. 4, 2016.
- [3] D. Langdon and M. Consulting, "Life Cycle Costs in Construction," London, United Kingdom, 2003.
- [4] J. Marliansyah, "ANALISIS RENCANA LIFE CYCLE COST GEDUNG HOSTEL PADA KAWASAN RUMAH SAKIT JIMBUN MEDIKA KEDIRI," J. Magister Tek. Sipil, pp. 1–17, 2015.
- [5] S. H. Sedarmayanti, *Metodologi Penelitian*. Bandung: Mandar Maju, 2002.
- [6] H. Mulyandari and R. A. Saputra, *Pemeliharaan Bangunan: Basic Skill Facility Management*. 2010.
- [7] I. N. Pujawan, *Ekonomi Teknik*. Surabaya: Penerbit Guna Widya, 2004.