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Abstract 

Differentially private data publication has recently received considerable attention. However, it faces some challenges in 

differentially private high-dimensional data publication, such as the complex attribute relationships, the high computational 

complexity and data sparsity. Therefore, we propose PrivMN, a novel method to publish high-dimensional data with 

differential privacy guarantee. We first use the Markov model to represent the mutual relationships between attributes to 

solve the problem that the direction of relationship between variables cannot be determined in practical application. We then 

take advantage of approximate inference to calculate the joint distribution of high-dimensional data under differential privacy 

to figure out the computational and spatial complexity of accurate reasoning. Extensive experiments on real datasets 

demonstrate that our solution makes the published high-dimensional synthetic datasets more efficient under the guarantee 

of differential privacy. 
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1. Introduction

With the emergence of big data era, a large amount of user 

data is generated and accumulated, which becomes a new 

generation of resources to be urgently developed and 

utilized [1]. For instance, purchase records of online users 

are helpful for E-businesses to enhance the user experience 

and induce more consumption; patient information is 

helpful for doctors to improve the accuracy of diagnosis 

and level of medical services; population genetic database 

is helpful for scientists to predict disease and reduce the 

risk of illness. These data resources have such tremendous 

potential value. Therefore, how to make reasonable 

utilization is particularly important. 

A vital issue of mining and using big data is privacy 

protection, which often involves the individual privacy 

leakage. If the data are shared directly or indirectly among 

*Corresponding author. Email: chenyf@njupt.edu.cn

the illegal person, it will lead to serious consequences [2]. 

Aiming at solving the problem of sharing and publishing 

private data, traditional solutions widely use 

anonymization technologies [3]. However, these 

anonymization technologies exist two obvious defects: 

cannot be quantified and cannot resist background attacks. 

In 2006, Dwork proposed the concept of differential 

privacy [4], which is a model with strict mathematical 

foundation and good robustness for privacy protection by 

adding controllable noise. Furthermore, it can resist the 

type of attacks in case of an attacker with specific 

background knowledge, and control the privacy leakage 

risk within the acceptable limits. Differential privacy has 

been widely recognized in the industry and it has become a 

practical standard for privacy protection. 

Differential privacy was originally designed to deal with 

simple relational data. However, with the development of 

big data, many high-dimensional and heterogeneous data 
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appeared in practical applications. In the process of dealing 

with high-dimensional data, the biggest problem is the 

curse of dimensionality, that is, as the number of 

dimensions increases, the complexity and cost of analysing 

and processing multi-dimensional data increases 

exponentially. Simultaneously, as the increasing 

dimensions, it will result in the high-dimensional data 

space very sparse. Thus, one of the problems of high-

dimensional data publishing is the sparsity. In consequence, 

it cannot guarantee utility by differential privacy since 

original data are covered by noise. Another problem, which 

is more prominent in high-dimensional data differential 

privacy publishing, is that the relationship between high-

dimensional data is rather complicated, and therefore the 

simple linear processing cannot reflect the essential 

relationship between data. In addition, the change of single 

record will have a wider range of impact on the entire data, 

which results in the increase of data sensitivity. Therefore, 

for releasing high-dimensional data under differential 

privacy, it is important to reduce the data dimension and 

simplify the relationship between attributes to make the 

sensitivity controlled within a certain range. 

To deal with the problem of high-dimensional data 

representation, researchers in the field of the Probabilistic 

Graphical Model (PGM) [5] provide a new idea. They take 

advantage of the graph structure to represent the hidden 

relationship between various types of data and map all 

kinds of problems in applications onto the problem of 

calculating the probabilistic distribution of certain 

variables in the probabilistic model. In PGM, the inference 

algorithm can dispose the original data, making it easier to 

characterize the complex relationship between the data. In 

addition, the PGM has good reusability, that is, it can deal 

with a class of reasoning problems for one type of 

algorithm. Therefore, the PGM provides the possibility of 

concise representation, efficient inference and learning 

various types of probability models. Therefore, it has been 

widely applied in many fields such as data processing and 

mining. 

In this paper, considering the characteristics of high-

dimensional data, we present a PGM for high dimensional 

data modeling and simplify the complex relationships 

between data onto the mutual relationship between 

variables. Specifically, we use Markov network to 

represent the probabilistic distribution of multiple random 

variables, consequently reducing the high-dimensional 

data dimension effectively and improving data utility. In 

addition, the inference algorithm in the probabilistic 

graphical model can effectively reduce computational 

complexity. 

Our contributions of this paper are as follows: 

(i) We propose the Markov network model to represent

relationships between the variables without

specifying directions of dependencies. The design of

the potential function in undirected graph model is

not constrained by the probability distribution and

more flexible. Meanwhile, it also avoids the

constraint of global acyclic in directed graph model.

(ii) We develop the propagation-based approximate

inference algorithm to deal with the NP-hard

problem of exact inference algorithm as its

computational complexity and spatial complexity

grows exponentially. We specifically infer the

distribution by the confidence-update propagation

algorithm and this method can be applied to any

structure network.

The remainder of the paper is organized as follows. The 

related work is presented in Section 2. Then, we describe 

some preliminaries in Section 3. The details of PrivMN are 

proposed in Section 4, followed by an extensive 

experimental evaluation in Section 5. Finally, a conclusion 

is depicted in Section 6.    

2. Related Work

At present, the main research of differentially private data 

publication is how to guarantee the publishing accuracy of 

query result with the privacy budget. There are two kinds 

of applications, interactive data publishing and non-

interactive data publishing. 

The main question of interactive data publishing is how 

to answer as many data queries as possible with a limited 

privacy budget. In the early stage, Roth et al. [6] improved 

the Laplace mechanism, which is firstly proposed by 

Dwork et al. This method provides more inquiries under 

the same privacy budget. Gupta et al. [7] proposed a 

universal iterative dataset generation framework, which 

supports more queries as a whole. In general, the algorithm 

of interactive publishing method is relatively complicated, 

and the unknown of subsequent queries makes it have 

many limitations on query quantity and application mode. 

The main problem of the non-interactive data publishing 

is how to design an efficient publishing algorithm to make 

it not only satisfy the differential privacy, but also has more 

utility. There are two main non-interactive data publishing 

strategies. One is adding noise to the original data and then 

optimizing the data and publishing the optimized result. 

Dwork [8] proposed an early representative method, which 

combines with Laplace mechanism to publish an equal-

width histogram under differential privacy guarantee. 

However, one of the problems of histogram releasing is the 

consistency of the range query results. Therefore, many 

researchers propose some techniques to improve the 

availability and accuracy of the published equal-width 

histograms. For example, the post-processing method 

proposed by Hay et al. [9] made the result of the publication 

guarantee the consistency under the condition of 

differential privacy, which not only satisfies the query 

accuracy but also reduces the noise addition. 

However, the privacy cost of the above releasing 

strategy is usually high. Therefore, another strategy is 

generally adopted, that is, convert or compress the original 

data first and then add noise to the processed data. These 

strategy release techniques mainly includes histogram, 

wavelet transform, Fourier transform, and division based 
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on tree structure or mesh structure. For instance, Xiao et al. 

[10] first proposed a multi-dimensional histogram

distribution method DPCube that divides the original data

into units and adds Laplace noise for each unit count, and

then uses k-d tree to post-process all the units, which

effectively reduces the query error. The wavelet transform

method proposed by Xiao et al. [11] performs wavelet

transform on the data before adding noise, which improves

the accuracy of counting query to a certain extent. Barak et

al. [12] proposed the method of Fourier transform

contingency table, which achieves the non-redundant

encoding of marginal frequency. Meanwhile, the addition

of the noise in the Fourier domain will not undermine the

consistency between the edge frequencies, and solve the

contradiction between the data accuracy and consistency in

the process of privately protecting contingency table.

When it comes to dealing with the problem of 

differential privacy protection for high-dimensional data, a 

basic idea is to propose an effective variable selection 

method to reduce the dimension to a reasonable degree 

(dimensionality reduction) on the premise of losing less 

information and then process the low-dimensional data. 

For example, Qardaji et al. [13] evenly divided two-

dimensional spatial data onto equal-width cells and then 

add noise to each cell. Chen et al. [14] used a classification 

tree to generalize the high-dimensional dataset and finally 

publish noise counts. The PriView method proposed by 

Qardaji et al. [15] used the cover design method of 

combination principle to select views, which decomposes 

the high-dimensional data onto the low-dimensional views, 

and then adds the noises to form the low-dimensional noisy 

marginal table, and finally uses the maximum entropy 

optimization algorithm to reconstruct the k-attribute 

marginal table for data publishing. This method contains 

well performed data in low-dimensional marginal table, 

and provide effective privacy protection, in which several 

data processing methods enlighten the later in processing 

high-dimensional data. However, it is only applicable in 

binary data sets, so the value in real life is limited. Due to 

the increasing perturbation errors and computation 

complexity, Xu et al. [16] proposed DPPro that publishes 

high-dimensional data via random projection to maximize 

utility while guaranteeing privacy. Ren et al. [17] identified 

correlations and joint distributions among multiple 

attributes to reduce the dimensionality of crowdsourced 

data, which achieves both efficiency and effectiveness. 

Some attempts on differential privacy data publishing 

have been made in the field of the PGM. Since Pearl [18] 

and Lauritzen [19] first introduced the concept of the 

graphical model into the field of artificial intelligence and 

statistical learning in the late 1980s, the graphical model 

has been rapidly applied to many fields. Zhang et al. [20] 

proposed the PrivBayes method that uses the Bayesian 

network of the digraph model to represent the relationship 

between data attributes and combine a series of low-

dimensional noise conditional probability tables by the 

chain rule of the Bayesian network to form a joint 

distribution for data publishing. Intuitively, the scheme 

circumvents the curse of dimensionality, because it injects 

noise into the low-dimensional edges of the distribution 

rather than the high-dimensional dataset itself. Therefore, 

the construction of Bayesian networks becomes very 

challenging. One of the focuses of this solution is to 

introduce a new method that uses proxy functions instead 

of mutual information to build models more accurately. It 

is the first time for the PGM to be introduced into the field 

of high-dimensional data differential privacy publishing, 

which provided more ideas for subsequent research. 

However, the scheme over-accesses the data, and as the 

attributes increases, the privacy budget will decrease 

dramatically, making the conditional distribution 

unreliable. 

Based on PrivBayes, Su et al. [21] presented DP-SUBN, 

which develops a non-overlapping covering design 

(NOCD) method for generating all 2-way marginal of a 

given set of attributes to improve the fitness of the Bayesian 

network and reduce the communication cost. In addition, 

Chen et al. [22] proposed another scheme JTree, which 

mainly uses attribute dependence graph to form attribute 

clusters, then adds noise to form low-dimensional noise 

marginal table, and finally publishing by sampling. JTree 

is a new sampling-based solution for publishing high-

dimensional data under differential privacy with a solid 

foundation for statistical inference. The framework is 

implemented by a common threshold mechanism, which is 

an extended version of the sparse vector technique [23] and 

the threshold query technique [24]. Additionally, the 

scheme applies a joint tree algorithm to establish an 

inference mechanism that infers the distribution of 

connected data. Not only is it significantly better than 

PrivBayes, the most advanced technology for publishing 

high-dimensional data, but it also achieves comparable and 

sometimes even higher accuracy than PriView. However, 

the computational efficiency of the scheme is relatively 

low, and the joint tree algorithm used in it uses the relevant 

theory in the cluster tree, so the computational complexity 

and spatial complexity of the tree width exponential 

relationship cannot be avoided. Such precise inference 

algorithms are not suitable for networks with large tree 

widths. 

Different from the above solutions, we focus on the 

mutual relationship between multiple attributes, as well as 

the computational complexity and spatial complexity. To 

solve these problems, our PrivMN uses the method of high-

dimensional contingency table data publication and 

provides an approximate distribution of the original dataset 

based on the inference theory of probabilistic graphical 

model. 

3. Preliminaries

3.1. Differential Privacy 

3.1.1. Basic Definition 
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For a finite domain 𝛧 , 𝓏 ∈ Ζ  is the element in 𝛧 . The 

dataset 𝐷 is consist of 𝓏 sampled from 𝛧, and its sample 

size is n and the number of attributes is dimension d. 

Let datasets 𝐷 and 𝐷′ have the same attribute structure. 
The difference between them is denoted as 𝐷∆𝐷′  and 

|𝐷∆𝐷′|  indicates the number of records in 𝐷∆𝐷′ . If 
|𝐷∆𝐷′| = 1, 𝐷 and 𝐷′ are called adjacent datasets.

Definition 1: 𝜖-Differential privacy [25]. A randomized 

algorithm M satisfies 𝜖-Differential privacy, if for any two 

neighbouring databases 𝐷  and 𝐷′ , and for any 𝛰 ⊆ 
𝑅𝑎𝑛𝑔𝑒(𝑀), 

𝑃𝑟[𝑀(𝐷) ∈ 𝛰] ≤ 𝑒𝑥𝑝(𝜖) ∙ 𝑃𝑟[𝑀(𝐷′) ∈ 𝛰]     (1)

Where the probability Pr [∙]  is taken over 𝑀 ’s 

randomness and is the risk of privacy leakage. The 

parameter 𝜖 is privacy protection budget. 

From definition 1, we can see that the privacy budget 𝜖 

is used to control the same output algorithm 𝑀 to obtain 

same output probability ratio of two neighbouring datasets, 

which reflects the level of privacy protection in fact. The 

smaller the value of 𝜖 , the higher the level of privacy 

protection. When 𝜖 equals 0, the protection level reaches 

the highest. At this time, the algorithm will output two 

identical probability distribution results for any 

neighboring dataset, but these results will not have any 

available information for a user. 

3.1.2 Global Sensitivity 
Differentially private protection can be achieved by adding 

an appropriate amount of interference noise to the return 

values of query function. Too much noise will affect the 

availability of the output, while too little will not provide 

enough security. The size of the noise is generally 

controlled by global sensitivity. 

Definition 2: Sensitivity [4]. Let f be a function that 

maps a dataset into a fixed-size vector of real numbers 

(i.e.𝐷 → 𝑅^𝑑). For any two neighbouring databases 𝐷 and 

𝐷′, the sensitivity of f is defined as

GS𝑓 = max
𝐷,𝐷′

‖𝑓(𝐷) − 𝑓(𝐷′)‖𝑝                  (2)

Where p denotes 𝐿𝑝  norm used to measure ∆f , and we

usually use 𝐿1 norm.

3.1.3. Noisy Mechanism 
In practice, we usually add noise to algorithms to achieve 

differential privacy. In this paper, we rely on two best 

known and widely used methods, namely Laplace 

mechanism [8] and exponential mechanism [26]. The 

Laplace mechanism is suitable for numerical datasets, 

while the exponential mechanism for non-numerical 

datasets. 

3.1.3.1. Laplace Mechanism 
Laplace mechanism realizes the differential privacy 

by adding random noises that obey Laplace distribution to 

perturb the exact query result. 

Theorem 1 [8]. For any function 𝑓: 𝐷 → 𝑅𝑑 , the

mechanism 𝑀 

M(𝐷) = 𝑓(𝐷) + 𝑌  (3) 

satisfies 𝜖 -Differential privacy, where Y~Lap(∆𝑓/𝜀)  is 

i.i.d. Laplace variable with scale parameter 
∆𝑓

𝜖
. The greater

the sensitivity of algorithm 𝑀, the more amount of noise 

added. 

3.1.3.2. Exponential Mechanism 
If the output is not numeric, we need to use availability 

function to evaluate the output. Let the output domain of 

query function is Range, and each value r ∈ Range in the 

domain is an entity object. Under the exponential 

mechanism, the function 𝑞(𝐷, 𝑟) → 𝑅 is the availability 

function of the output value r, which used to evaluate the 

quality of 𝑟. 

Theorem 2 [26]. Let the input of random M is dataset D, 

and output is an entity object 𝑟 ∈ 𝑅𝑎𝑛𝑔𝑒 .  𝑞(𝐷, 𝑟)  is 

availability function with its sensitivity ∆𝑞 . The 

mechanism 𝑀 

𝑀(𝐷, 𝑞) = {𝑟: |𝑃𝑟 [𝑟 ∈ 𝑅𝑎𝑛𝑔𝑒] ∝ 𝑒𝑥𝑝 (
𝜀𝑞(𝐷,𝑟)

2∆𝑞
)} (4) 

satisfies 𝜖-Differential privacy. 

3.1.4. Utility Measurement of Differential Privacy 
The quality of the published data is largely related to the 

publishing mechanism, and there are some metrics to 

measure the effect of the publishing mechanism, as 

following:   

3.1.4.1 Privacy Budget 
 As definition 1 shows, the added noise is related to the 

allocated privacy budget 𝜖. In order to protect the data from 

being leaked, it is necessary to add noise to the data to 

protect the original data information. The more the privacy 

budget is introduced, the more noise is added, which leads 

to decrease of data utility. So it needs less privacy budgets 

to be introduced under the premise of privacy. 

3.1.4.2 Error 
The utility can be evaluated by the difference between the 

output processed by the publishing mechanism and the 

original data set, which is error. There some error 

measurement methods such as KL divergence, L2 error 

distance, and average variable distance. The most 

commonly used is the L2 error distance, also known as the 

Euclidean distance, which is used to measure the absolute 

distance between points in a multidimensional space. The 

distance formula is: 

dist(X, Y) = √∑ (𝑋𝑖 − 𝑌𝑖)
2𝑛

𝑖=1  (5) 

For example, in two dimensions: 

d = √(𝑋1 − 𝑋2)2 + (𝑌1 − 𝑌2)2              (6)

However, for high-dimensional data, the KL distance is 

the better choice, and the KL distance is also called relative 

entropy. Based on the concept of information entropy, the 

distance between two probability distributions represents 

the difference between the two data set. Besides, because 

of the asymmetry in KL distance, the JS distance has better 

performance, which can be seen as the symmetrical and 

smooth version of the KL distance. The error measurement 

method can be selected according to practical needs, and 
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the key is to minimize the difference between the 

synthesized data set and the original data set by the 

measurement error. 

3.1.4.3 Calculating Validity 
When choosing the publishing mechanism, the complexity 

of the algorithm should be considered. The appropriate 

algorithm is feasible in calculation, and makes balance 

between calculation accuracy and calculation cost. The 

accuracy of some algorithms is very high, but 

correspondingly, the computational cost is also heavy. For 

example, accurate reasoning in PGM is very efficient in 

simple networks, but the calculations on many complex 

models are NP-Hard. Accordingly, the approximate 

reasoning algorithm for compromise accuracy and 

computational cost is promising. 

3.2. Markov Network 

3.2.1. Basic Conception 
Markov Random Field (MRF) is also known as Markov 

Network. In general, the Markov Network is a complete 

joint probability distribution model for a group of random 

variables X which have Markov property, and ISing Mode 

is one of the earliest Markov Networks. 

Definition 3: Let  G = (𝑉, 𝐸) be an undirected 

connection graph, where node 𝑉𝑗 ∈ 𝑉 represents a random

variable. If the node 𝑉𝑖  and 𝑉𝑗  in edge (𝑉𝑖 , 𝑉𝑗) ∈ 𝐸 satisfy

the local Markov property: 

 The probability of each possible distribution is

greater than 0.

 The conditional probability distribution of an

arbitrary node is only related to the value of its

adjacent node (Locality).

Then the network structure is called Markov Network, 

denoted as ℋ. 

3.2.2. Conditional Independence 
In the Markov network, there is a conclusion on the 

property of independence that if X𝐵  ‘splits’ X𝐴 and X𝐶 , X𝐴

and X𝐶  are independent when X𝐵  is given, and this

property is also called Markov property. 

Definition 4: If a set of observed variables Z is given, 

there is no path between any two nodes 𝓍 ∈ Χ and 𝓎 ∈ Y, 

then we call node set Z separates 𝓍  and 𝓎  in Markov 

network ℋ  and denoted as sepℋ(𝑋; 𝑌|𝑍) . The global

independence associated with ℋ is defined as: 

I(ℋ) = {𝑋 ⊥ 𝑌|𝑍}: sepℋ(𝑋; 𝑌|𝑍)          (7)

3.2.3. Joint Probability Distribution 
Definition 5: According to Hammersley-Clifford Theorem 

[27] [28] and Local Markov Property, the joint probability

distribution of Markov network is defined as:

p(𝑥) =
1

𝑧
∏ 𝜓𝑖(𝑥𝑖)𝑖   (8) 

𝜓𝑖(𝑥𝑖)  is a non-negative real-valued function of 𝑥𝑖 ,

which usually called the potential function of a clique, and 

the variable 𝑥𝑖  belongs to set X. Z is the normalization

constant of partition function and its value is Z =
∑ ∏ 𝜓𝑖(𝑥𝑖)𝑖𝑥 .

4. PrivMN Algorithm

4.1. PrivMN Overview 

In this paper, we consider the following problem: Given a 

dataset 𝐷 with d attributes, we want to generate a synthetic 

dataset that has approximate the joint distribution of 

original dataset 𝐷 while satisfying differential privacy. 

For example, we have a d-dimensional dataset 𝐷 

(suppose d is 6): 

Table 1. Original dataset 

A1 A2 A3 A4 A5 A6 count 

0 0 0 0 0 0 1 

0 0 0 0 0 1 0 

0 0 0 0 1 0 3 

… … … … … … … 

1 1 1 1 1 1 5 

As you can see, the dataset 𝐷  is a table made up of 

records set as shown in Table 1, which has a capacity of 2𝑑.

The attributes in dataset 𝐷 can be numeric or non-numeric, 

and non-numeric attributes can be classified for data 

statistics. The attribute set is defined as 𝐴 = {𝐴1, 𝐴2, ⋯ 𝐴𝑑},

and the domain of an attribute 𝐴𝑖  is represented by Ω 𝑖
which size is |Ω 𝑖|.

The relationship between high-dimensional data is more 

complicated, and it cannot directly express the relationship 

between attributes. For example, two attributes of a person 

such as education and salary, although there is no absolute 

directional relationship, there is indeed a correlation. 

Therefore, we first use the Markov network model in the 

probabilistic graphical model to model the original dataset 

and graphically represent the relationship between all the 

attributes: 

Fig.1. Establish Markov network 

A5 
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After that, we use the noise mechanism to realize 

differential privacy protection. There are mainly two 

methods for differential privacy protection in contingency 

table release: One is to add noise to each cell in the 

contingency table. This method can maintain the 

consistency of the marginal frequency of contingency table, 

but it will cause the large accumulation noise of marginal 

frequency. The other is to calculate the marginal frequency 

firstly, and then release them after adding noise to them. 

The availability of data by the later method is good, but it 

will break the consistency of marginal frequency. We adopt 

the second method. Moreover, in order to reduce the 

amount of noise, we further cluster the Markov network for 

the subsequent approximate inference and generate the 

corresponding marginal distribution P(A1A2A3) , 
P(A1A3A4), P(A3A4A5A6) as Fig 2.

Fig.2. Attributes cluster clique 

Then, we add noise to each marginal distribution and 

generate a noise marginal table. At the same time, taking 

the problem of consistency into account, we use the method 

in [18] to deal with the consistency. 

Finally, combining with the cluster graph and the noise 

marginal table, the joint distribution of the dataset is 

obtained and then synthetic data set formed by sampling is 

released, as Table 2. 

Table 2. The joint distribution of the dataset 

A1 A2 A3 A4 A5 A6 Probability 

0 0 0 0 0 0 0.067 

0 0 0 0 0 1 0.003 

0 0 0 0 1 0 0.09 

… … … … … … … 

1 1 1 1 1 1 0.2 

In order to verify that the synthetic dataset is similar to 

the original dataset and the synthetic dataset is available, 

we need a measure to evaluate the error. Information 

entropy (KL distance) in information theory can represents 

the distance between two probability distributions and 

measure the difference between the two. Because KL 

distance is asymmetric, we use the smoothed version JS 

distance of information entropy to measure the 

approximation of two datasets. 

The method proposed in this paper includes the 

following four steps and the process of PrivMN is showed 

in Fig.3: 

(i) Represent attributes relationship: use a graphical

model to represent the relationship between

attributes and establish the Markov model.

(ii) Approximate inference: infer approximately on the

model based on the method of cluster graph

confidence-propagation and obtain a series of low-

dimensional marginal tables.

(iii) Generate noisy marginal: add noise to the low-

dimensional marginal table by Laplace mechanism

to form noisy marginal table.

(iv) Publishing synthetic dataset: combine the noisy

marginal tables and the Markov model to generate

a synthetic dataset.

Fig.3. The detail steps of PrivMN 

4.2. Represent Attributes Relationship 

As mentioned before, we use Markov network to represent 

the relationship between attributes. Firstly, we need to 

measure the relationship between attributes, there are many 

kinds of measures, such as chi-square test, mean-square 

contingency, Cramer's V coefficient, mutual Information 

and so on. In this paper, we choose mutual information to 

measure the correlation between two attributes. One reason 

is that mutual information is different from other 

correlation coefficients, that it is not limited to real-valued 

random variables and can express the degree of similarity 

generally. The other is not only for its small sensitivity but 

also for its capability of seizing the linear and non-linear 

correlations. 

Given two attributes 𝐴𝑘 and 𝐴𝑙, the mutual information

I(𝐴𝑘, 𝐴𝑙) is defined as:

I(𝐴𝑘, 𝐴𝑙) = ∑ ∑ 𝑝𝑖𝑗𝑙𝑜𝑔
𝑝𝑖𝑗

𝑝𝑖∙𝑝∙𝑗
 

 |Ω 𝑙|
𝑗=1

 |Ω 𝑘|
𝑖=1 (9) 

Where 𝑝𝑖𝑗  is the joint distribution of 𝐴𝑘  and  𝐴𝑙 . 𝑝𝑖∙ =

∑ 𝑝𝑖𝑗𝑗  and 𝑝∙𝑗 = ∑ 𝑝𝑖𝑗𝑖  is marginal distribution.

In this paper, we consider that 𝐴𝑘  and  𝐴𝑙  are

independent if I(𝐴𝑘 , 𝐴𝑙) ≤ θ𝑘𝑙  for some small threshold

θ𝑘𝑙 > 0. We choose Cramer's V coefficient as the threshold

and Cramer's V coefficient is a method to calculate the 

correlation degree of between attributes in contingency 

table which attribute is greater than 2x2.  

Cramer's V coefficient is calculated as follows: 

θ𝑘𝑙 = √
𝒳2

𝑛 min [(|Ω 𝑘|−1)(|Ω 𝑙|−1)]
 (10) 

Where n is the size of a sample formed by two attributes, 

the domain of an attribute 𝐴𝑖 is represented by Ω 𝑖 and its

size is |Ω 𝑖|. 𝒳
2 is the value of chi-square.
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We present the process of establishing Markov network 

in Algorithm 1: 

Algorithm 1 Establish Markov Network 

Input: Dataset D with attributes 𝐀 = {𝑨𝟏, 𝑨𝟐, ⋯ 𝑨𝒅}
Input: Privacy parameter 𝛜𝟏 

Output: Markov network 𝓗 

1: Initialize 𝓗 = (𝑽, 𝑬) with 𝐕 = {𝑨𝟏, 𝑨𝟐, ⋯ 𝑨𝒅} and 𝐄 =
∅; 

2: 𝛈 = 𝐋𝐚𝐩 (
𝟏

𝝐𝟏
); 

3: for each attribute pair (𝑨𝒌, 𝑨𝒍) do

4:   calculate 𝐈(𝑨𝒌, 𝑨𝒍);

5:   if 𝐈(𝑨𝒌, 𝑨𝒍) + 𝜼 ≥ 𝜽𝒌𝒍 + 𝐋𝐚𝐩 (
𝟏

𝝐𝟏
) then 

6: Add edge (𝑨𝒌, 𝑨𝒍) into 𝓗;
7: return 𝓗; 

4.3. Approximate Inference 

We have obtained the Markov network by Algorithm 1 

which reveals attribute relations obviously. Then, we need 

to infer the model and the purpose of the inference is to 

achieve the marginal distribution and the conditional 

distribution of the given model. However, it is still 

complicated to obtain the required marginal distribution by 

inferring directly on the Markov network. Therefore, we 

need further clustering on the Markov network to reduce 

the computational complexity. 

The cluster graph that we constructed in this step is a 

data structure, which provides a flowchart of the factor 

processing. Each node in the cluster graph is a cluster 

associated with a subset of the variables. The graph also 

contains undirected edges that connect non-empty 

intersection sets in the domain. Each edge between a pair 

of clusters 𝐶𝑖 and 𝐶𝑗 is relevant to a cut set S𝑖,𝑗 that S𝑖,𝑗 ⊆

𝐶𝑖 ∩ 𝐶𝑗 . In addition, we make use of a simple structure

called Bethe clustering graph, which can transform a 

general clustering graph into a clustering graph satisfying 

the confidence- propagation algorithm. 

We obtain a series of clusters 𝐶𝑖  and cut sets S𝑖,𝑗  after

clustering Markov network that satisfy the family-

preserving of cluster graph: Each factor ∅ ∈ Φ is related to 

a cluster graph 𝐶𝑖 , expressed as α(𝜙) , and satisfy

Scope[𝜙] ⊆ 𝐶𝑖.

After obtaining the clustering graph, we ratiocinate in 

the clustering graph by the confidence-propagation 

algorithm in Algorithm 2. Confidence-propagation 

Algorithm of clustering Graph is an approximate 

calculation and iterative algorithm based on the undirected 

graph model. It updates the current probability distribution 

of the entire clustering graph by exchanging information 

between the nodes in the clustering graph. Moreover, it can 

solve probabilistic inference problems of the probabilistic 

graphical model and spread all information on parallel. 
After several iterations, the confidence of all nodes is no 

longer changed. At this time, the clustering graph reaches 

the convergence state. Moreover, the marginal distribution 

of each cluster is the optimal solution. This cluster graph is 

called a cluster graph calibrated, that is, for each edge 

(𝑖 − 𝑗) between connected clusters 𝐶𝑖 and 𝐶𝑗 in the cluster

graph, there is 

𝜇𝑖,𝑗(S𝑖,𝑗) = ∑ 𝛽𝑖(𝐶𝑖)𝐶𝑖−S𝑖,𝑗
= ∑ 𝛽𝑗(𝐶𝑗)𝐶𝑗−S𝑖,𝑗

    (11)

Therefore, the confidence set 𝒬 =
{𝛽𝑖：𝑖 𝜖 𝑣𝑒𝑟𝑡𝑒𝑥 𝑠𝑒𝑡} ∪ {𝜇𝑖,𝑗：𝑖 − 𝑗 𝜖 𝑒𝑑𝑔𝑒 𝑠𝑒𝑡}  is a 

distribution similar to datasets. Where 𝛽𝑖  denotes the

confidence on 𝐶𝑖 and 𝜇𝑖,𝑗 represents the confidence on S𝑖,𝑗.

We present the process of approximate inference in 

Algorithm 2: 

Algorithm 2 Approximate Inference 

Input: Markov network 𝓗 

Input: Factor set 𝚽 

Output: Confidence set 𝓠 

1: Bethe cluster graph 𝓤 ←Bethe Graph Create 

Algorithm (𝓗)； 

2: confidence set 𝓠 ← CGraph-SP-Calibrate(𝓤，𝚽); 

3: return 𝓠; 

4.4. Generate Noisy Marginal 

In this section, we use the Laplace mechanism to add noise 

to the marginal tables of each cluster to generate the noisy 

marginal tables and consequently realize the differential 

privacy protection for the attributes in the cluster. 

Let the number of clusters be m. For each cluster’s 

marginal table, we add Laplace noise Lap (
𝑚

𝜖2
)  to each 

entry’s count. Therefore, the privacy budget of a single 

cluster for privacy protection is  
𝜖2

𝑚
. According to the

combinatorial property of the differential privacy 

protection algorithm, the differential privacy protection for 

different clusters in the same dataset provides the sum of 

all budgets. Therefore, the noisy marginal tables satisfy 𝜖2-

differential privacy. 

In order to reduce the error caused by adding noise and 

ensure the availability of noise-added data, we will post-

process the noisy marginal tables. We cite the post-

processing technique in [22] to ensure consistency even if 

the noisy marginal tables are of different sizes and 

attributes are not binary. 

Let A = C1 ∩ C2 ∩ ⋯ C𝑚 ≠ ∅ , the public attribute of

cluster group. We use 𝑇𝑐𝑖
 to denote C𝑖 ’s noisy marginal

table, 𝑇𝑐𝑖
[𝐴] to denote A’s marginal constructed from C𝑖

and 𝑇𝑐𝑖
[𝐴] ≡ 𝑇𝑐𝑗

[𝐴] to denote that two marginal tables are

identical. We want to ensure 𝑇𝑐1
[𝐴] ≡ ⋯ ≡ 𝑇𝑐𝑚

[𝐴], that is,

all noisy marginal tables of an attribute are coincident. 

We achieve this goal in two steps. Where a is a possible 

value in A’s domain and 𝑇𝐴(𝑎) is the count of a in A’s

noisy marginal table. 

(i) Generate the approximate value of 𝑇𝐴(𝑎). The best

estimate of 𝑇𝐴(𝑎) is the minimum noise variance.

Therefore, we use inverse-variance weighting to

obtain the variance of the weighted average as

follows:
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𝑇𝐴(𝑎) =
∑

𝑇𝑐𝑖
(𝑎)

𝜎𝑖
2

𝑚
𝑖=1

∑
1

𝜎𝑖
2𝑖

 (12) 

Where 𝜎𝑖
2 = ∏ |Ω𝑗|𝐴𝑗∈(𝑐𝑖\𝐴)  is proportional to the 

variance of 𝑇𝑐𝑖
[𝐴](𝑎).

(ii) Update all 𝑇𝑐𝑖
s to be consistent with 𝑇𝐴.

𝑇𝑐𝑖
(𝑒) ← 𝑇𝑐𝑖

(𝑒) +
𝑇𝐴(𝑎)−𝑇𝑐𝑖

(𝑎)

∏ |Ω𝑗|𝐴𝑗∈(𝑐𝑖\𝐴)

 (13) 

Where e is the a after the update. 

To make all marginal tables consistent, we need to 

perform a series of mutual consistency steps. 

In addition, in order to reduce the bias caused by 

rounding the negative noisy to 0 and assuring the accuracy, 

we turn negative counts into 0 while decreasing the counts 

for its neighbors to maintain overall count unchanged. 

Specifically, we choose a threshold θ that close to 0. The 

sum above the threshold is n and the sum below the 

threshold is k. For each count c above the threshold, we 

subtract |k| ∗
𝑐

𝑛
 as the last value of it, and the value below

the threshold becomes 0. 

4.5. Publishing Synthetic Datasets 

Combining with the previously obtained clustering graph 

and the noisy marginal tables, we can calculate the joint 

distribution of attributes. Based on the joint probability 

calculation formula in Markov networks, the confidence 

set, and the noisy marginal tables, we can get the non-

normalized distribution as follows: 

𝒫Φ(ℋ) =
∏ 𝛽𝑖(𝐶𝑖)

∏ 𝜇𝑖,𝑗(S𝑖,𝑗)
 (14) 

The normalization constant is usually obtained by the 

sum of all states, that is, Z =
∑ ∏ 𝛽𝑖(𝐶𝑖)𝐶𝑖

∑ ∏ 𝜇𝑖,𝑗(S𝑖,𝑗)S𝑖,𝑗

. Therefore, the 

joint distribution is calculated as follows: 

𝑃Φ(ℋ) =
1

𝑍
𝒫Φ(ℋ) =

1

𝑍

∏ 𝛽𝑖(𝐶𝑖)

∏ 𝜇𝑖,𝑗(S𝑖,𝑗)
 (15) 

However, directly sampling a synthetic dataset from the 

joint distribution is computationally prohibitive. Therefore, 

we use the clustering graph and the noisy marginal tables 

to generate a synthetic dataset. Specifically, the steps are as 

follows: 1. Randomly select a cluster in the cluster graph 

and sample its attributes from its noisy marginal 

distribution. 2. Continuously sample other attributes in the 

cliques adjacent to the cliques, that is, they share a common 

separator, and repeat the above operation. 3. Terminate this 

process until all the attributes have been sampled. 

After the sampling, we calculate the joint distribution by 

using the joint probability calculation formula given earlier. 

Thus, we obtain the required joint distribution, which 

satisfies the differential privacy protection of the complete 

dataset. 

In the four steps of PrivMN, only the first and third steps 

require access to the original dataset, so we divide the total 

privacy budget 𝜖 into two portions with 𝜖1 being used for

the first step and 𝜖2 for the third step by the composition

property [8][30]. Therefore, the first and third steps are 𝜖1-

and 𝜖2 -differential privacy respectively, and PrivMN

satisfies 𝜖-differential privacy as a whole, where 𝜖 = 𝜖1 +
𝜖2.

5. Evaluation

We make use of three standard real datasets (both binary 

and non-binary) in our experiments. For binary datasets, 

we choose Retail referred from [22]. Retail is a retail 

market basket dataset, where each record consists of the 

distinct items purchased in a shopping visit. We pre-

process Retail to include 50 binary attributes and its 

domain size is 250 . For non-binary datasets, we use the

same datasets used in [20]. Adult contains census data from 

1994 US census. There are 15 non-binary attributes in it 

and its domain size is about  252 . TPC-E contains

information of ‘Trade’, ‘Security’, ‘Security status’ and 

‘Trade type’ tables in the TPC-E benchmark. It consists of 

24 non-binary attributes and its domain size is about 277.

We demonstrate the performance of our solution, 

PrivMN, by comparing with three techniques, namely 

PrivBayes [20], PriView [15] and JTree[22]. PrivBayes 

used the directed graph model to reduce the dimensionality 

of high-dimensional data. PriView used the cover design 

method in combination principle to select the view and 

decompose the high-dimensional data into the low-

dimensional view, which is a better dimensionality 

reduction method. Therefore, we compare the two 

algorithms with our method that uses the undirected graph 

on the performance of dimensionality reduction. Moreover, 

JTree obtained the low-dimensional marginal table by 

using the exact inference algorithm named junction in the 

graph theory after generating a dependency graph. 

Therefore, we compare the exact inference of this 

algorithm with the approximate inference algorithm of 

PrivMN in the experiment. 

We evaluate the PrivMN in two aspects: One is the 

construction of marginal table, which used to measure the 

accuracy of methods. The other is to train multiple SVM 

classifiers on the same dataset to predict attributes. We first 

generate synthetic datasets and then use these datasets to 

build SVM classifiers. The classification evaluation index 

mainly includes accuracy, error rate, precision, recall, 𝐹𝑏 −
𝑠𝑐𝑜𝑟𝑒 , ROC and so on. The correct rate is the most 

common evaluation index, which is the judgment of all 

data. The error rate is opposite to the correct rate, which is 

used to describe the proportion of misclassification by the 

classifier. The accuracy rate is the measure of accuracy. 

The recall rate is the measure of coverage rate. The 𝐹𝑏 −
𝑠𝑐𝑜𝑟𝑒  is the harmonic average of accuracy and recall, 

commonly used is 𝐹1. The ROC is a comprehensive index

that uses curves to reflect the sensitivity and specificity of 

continuous variables. The correct rate or error rate is the 

judgment of all data, which is the overall evaluation of the 

classifier and suitable for the evaluation of the experiment. 

Therefore, we use the error rate to measure the performance 

of the classifier and the property of the algorithm. 
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Since PriView [15] only works for binary datasets and 

cannot generate synthetic datasets for SVM classification, 

for binary datasets we only report the results on marginal 

tables. Due to L2 error and Jensen-Shannon divergence are 

similar, we use the same evaluation scheme used in 

PriView, that is, we plot the average L2 error where privacy 

budget ϵ ∈ {0.1, 1.0}  and generate 200 random k-way 

marginal tables for each k ∈ {4, 6, 8}.
For non-binary datasets, when k is relatively large, a k-

way marginal table is normally very sparse and the 

evaluation scheme used in binary datasets may be 

significantly biased. Therefore, we choose to follow the 

same methodology used in PrivBayes [20]. We generate all 

2-way and 3-way marginal tables and perform the average

total variation distance between the original datasets and

the noisy datasets. In addition, we use the same method

used in PrivBayes to test the classification results with

SVM classifiers. We report the results on Adult, which is

the most widely used benchmark dataset for SVM

classification analysis. We train SVM classifiers on Adult

to predict where an individual (1) is a male, (2) holds a

post-secondary degree, (3) has salary > 50k per year, and

(4) has never married. We evaluate each classification task

with privacy budget ϵ ∈ {0.2, 0.5, 0.8, 1.0}. Each task uses

80% of the datasets as the training set and the remaining

20% for prediction. We employ the misclassification rate

as the performance metric.

5.1. Contrast on Binary Datasets 

In the first part of experiments, we compare the accuracy 

of four algorithms on the binary dataset by assigning 

different privacy budgets. The results are presented in 

Figure 4. 

Fig.4. L2 error of k-way marginal on binary datasets 

It can be seen from the figure 4 that our method, PrivMN, 

is far superior to PrivBayes in most cases and has some 

advantages over PriView. In Figure 4(a), PriView’s L2 

error is higher than PrivBayes when k = 8. It means that 

PriView is not stable and there is a substantial decrease in 

the performance of the property with the amount of 

attributes increase. Although PrivMN is similar to JTree, 

the error of PrivMN is smaller than JTree. Our method still 

maintains certain advantages as attributes increase. In 

general, the advantage of PrivMN is more observable when 

ϵ = 0.1 , that is, when ε is small, it is still the overall 

optimal without excessive volatility. Therefore, we 

consider the synthetic dataset generated by PrivMN can 

meet different analysis needs. In addition, PrivMN can be 

applied to non-binary datasets, which is of great 

significance for practical applications. 

5.2. Contrast on Non-Binary Datasets 

5.3.1. K-way Marginal Tables 
In the second part of the experiment, we compare the 

average total variation distance of three algorithms for 

varying privacy budgets on non-binary datasets and present 

the results in Figure 5. 

Since PriView cannot apply to non-binary datasets, we 

only compare the remaining three methods. It can be seen 

from the figure that the experimental results of PrivMN are 

far superior to PrivBayes. Under the condition of different 

datasets and different k-way marginal tables, the error of 

JTree is large when ϵ = 0.2, and the overall change range 

is wide, especially in Figure 5(c)(d). Although PrivMN 

makes more errors than JTree when ϵ = 0.5  in Figure 

5(a)(b), it is relatively flat as a whole. With the gradual 

increase of the privacy budget, the added noise is less, and 

the average total variation distance is gradually reducing. 

Therefore, PrivMN is suitable for extensive datasets and is 

utility for many real-world applications. 

(a) Adult, 2-way

(b) Adult, 3-way

(a) Retail, ϵ=0.1

(b) Retail, ϵ=1.0
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(c) TPC-E, 2-way

(d) TPC-E, 3-way

Fig.5. Total variation distance of k-way marginal 
tables on non-binary datasets 

5.3.2 SVM Classification 
In the last part of experiments, we compare the 

misclassification rate to measure the performance of 

PrivMN, JTree, and PrivBayes on non-binary datasets. We 

report the results on Adult with different ϵ values in Figure 

6. 
Non-Private is the misclassification rate of the original 

dataset, which is also the best experimental result we can 

achieve. In figure 6, PrivMN is far superior to privbayes in 

all cases. Compared with JTree, PrivMN decreases more 

slowly with different privacy budget, and the overall 

performance is better. In particular, PrivMN performs even 

better in Figure 6(a)(b)(c).  When ϵ = 0.2 in Figure 6(d), 

PrivMN has a slight fluctuation, but still within the 

acceptable range while JTree gets an obvious error. 

Although the property of the dataset generated by PrivMN 

is lower than that of the original dataset, it can satisfy the 

requirement of differential privacy and is superior to 

general methods. Therefore, PrivMN provides a generic 

data publishing solutions and it has certain practical 

significance. 

(a) Adult, Y=education

(b) Adult, Y=marital

(c) Adult, Y=gender

(d) Adult, Y=salary

Fig.6. SVM misclassification rates on non-binary 
datasets 

6. Conclusion

Differentially private high-dimensional data publication is 

one of most challenging research issues and an important 

problem to be solved urgently. In this paper, we propose to 

use the Markov network model to represent the mutual 

relationships between attributes to solve the problem that 

the direction of relationship between variables cannot be 

determined in practical application. Moreover, we take 

advantage of approximate inference to calculate the joint 

distribution of high-dimensional data under differential 

privacy to figure out the computational and spatial 

complexity of accurate reasoning. Experiments on several 

real standard datasets demonstrate that PrivMN is 

significant in practice. 
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