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Abstract

Air pollution exposure during daily transportation is becoming a critical issue worldwide due to its adverse
effect on human health. Predicting the least air polluted healthier path is the best alternative way to mitigate
personal air pollution exposure risk. Computing the least polluted path for the current time might not be
helpful for real-time applications. Therefore, we develop a routing algorithm based on a neural network-based
CNN-LSTM-EBK (CLE), a temporal-spatial interpolation model. The proposed model predicts pollution levels
at high temporal granularity. This paper introduces a weight function to compute air pollution concentration
at the road network. It also predicts the least air polluted path among all possible paths from a source to
a destination at different time granularity. The results show that the predicted path may be longer than the
shortest route but minimize pollution exposure risk all the time, which proves its effectiveness during daily
transportation.
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1. Introduction
The unpredictable development of urbanization in
recent years has resulted in many undesirable environ-
mental challenges. The unavoidable rising of ambient
air quality level is one of them [1, 2]. In past years, it
is observed that a higher concentration of air pollution
arises near the road network, which affects pedestrians,
drivers, school children, older people, and patients
during their travel. Traffic-related or vehicular-related
air pollution is one of the main reasons behind this
increasing level of outdoor air pollution and the dete-
rioration of public health conditions. PM10 (particulate
matter with diameter 10 micrometers) is considered as
the major harmful pollutant among all the pollutants
due to its severe negative impact on the environment
and human health [3]. It can affect drivers and pedes-
trians, causing many heart diseases, asthma, and respi-
ratory problems [4]. People perform physical activities
such as walking to improve their health condition, but
sometimes it becomes worse due to the road network’s
unhealthy air pollution level.
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In order to get rid of this problem, the ultimate
solution is to predict the air pollution level in the
road network and predict the least air pollution
exposure path amongst all possible paths to provide
an alternative safe route navigation system. Predicting
the least air polluted path during walking, cycling,
and driving can minimize pollution exposure risk
during daily transportation. The first step in predicting
the least air-contaminated path is the continuous
pollutant concentration mapping. In order to get a
proper surface mapping of air quality, meteorological
and road network datasets can be collected and
model a better routing solution. This method can be
developed by performing temporal, spatial analysis of
data. Subsequently, based on those temporal, spatial
prediction models, a pollutant’s continuous surface can
be achieved. Air pollutant value prediction based on
past observations data in the real-world scenario is
challenging. Pollution level prediction at road networks
and rank those paths according to their pollution level
is one of the most difficult tasks for citizens due
to the unavailability of accurate air pollution data
at each geographical point. The limited and sparsely
distributed air pollution monitoring stations are the
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main reason behind this issue. As air quality has a
temporal and spatial dependency with the increasing
air pollution level, it is challenging to analyze both the
dependence and predict the air pollution level at the
road network’s unmeasured locations.

Predicting air pollution level includes several types of
methods e.g., statistical [5–8], deterministic, numerical
[9], geostatistics, machine learning [10], and deep
learning techniques [11]. The existing techniques are
not efficient enough to predict air pollution levels
at the road network at different time granularity.
Therefore, this paper proposes a deep learning-based
interpolation methodology framework to mitigate the
limitation of the existing prediction models and
compute the road network’s air pollution level at
different temporal resolutions. This paper utilized
the PM10 pollutant concentration and open street
map of Odisha to evaluate the proposed methodology
framework’s performance. Besides, the interpolated
PM10 value is treated as a cost function to predict the
shortest path from starting to an endpoint.

Following the introduction, the rest of this paper is
organized as follows: Section 2 formulates the problem
which motivates this research work. Section 3 gives an
idea about the literature survey. Section 4 and 5 explain
the data source and methodology used for the proposed
routing algorithm. Section 6 shows the experimental
results, and Section 7 briefly describes the conclusion
drawn from the experimental results.

2. Problem Formulation

Let G ∧= (V , E) is the undirected graph, where the graph
G is having N number of nodes V . Vertices (vi , vj) ∈ V
and edge (eij ) ∈ E between two vertices is often used
for spatially modelling the geographical data. Each
air pollution monitoring stations V on G, has time
series pollution data for time t with features f . These
input features can be implemented in G as a feature
matrix Ft ∈ RN×f . The road network feature f can be
any pollutant value. The problem of spatial temporal
analysis for road network is to develop a weight
assignment mapping function w on road network G to
predict f value in the next d days as mentioned below:
(Ft+1,Ft+2,Ft+3,...Ft+d) = w(G, (Ft−n,......Ft−2,Ft−1,Ft)).
Where n is the length of the historical time series
dataset. The spatial relation among air pollution
monitoring stations can be represented as an undirected
graphG ∧= (V , E,w). The next problem is to find the best
alternative path R from source s to any destination h

node on G
∧= (V , E,w) which can be considered as the

healthier path.

3. Literature survey

Many smart initiatives are making citizens’ life much
more comfortable and safer. One of the smart initiatives
of the government is to improve the health conditions
and wellness of people. Deterioration of air pollutants
has become major trouble towards these initiatives.
The government is taking necessary actions like
personalized air pollution management, air quality
monitoring, air quality modeling, and developing a
smart transportation system with the minimum air
pollution exposure risk to manage public health.
Many IoT devices are installed at many locations,
and pollution monitoring stations are established to
perform all these activities. These devices have been
installed to collect air pollution levels across many
geo-locations to identify the pollution level at that
particular location [4]. Still, those sensors are unable
to predict air pollution levels on road networks.
Existing personalized routing solution is based on user’s
preference like traffic condition [12], shortest [13],
fastest [13–15], the least expensive path, lower crime
[16–18] and lower accident-prone path [19] [20] but not
on the air pollution exposure level. Nowadays, one has
to be more concerned about adverse air pollution [21]
and weather [22] condition impact on the road network
for safer travel. Personalized routing solution, part of
personalized pollution management, is a critical aspect
of air pollution management. Exposure to air pollution
for a longer time duration may cause severe health
issues to older people, school children, and pregnant
women [23]. Still, very few research has been conducted
to develop a smart navigation system based on air
pollution exposure risk [24–27].

This section reviews some state-of-the-art methods
on safe route navigation that minimize air pollution
exposure risk. Muller et al. conducted experiments
using PM10 emission data of Berlin [24], as it
is a major indicator of pollution. The proposed
method suggested air quality-adjusted shortest path
for cyclists and pedestrians. Sharker et al. [26]
proposed a framework, which provides a health optimal
routing solution by computing optimal health weight
for various scenarios. The author implemented the
Bayesian modeling and influence diagram technique to
design a weighting model considering individual and
environmental variables and recommended a health-
optimal navigation service for the pedestrian. An IoT-
based novel architecture is proposed in [27] to get
the real-time routing solution. Air quality on the road
network is of great importance to take precautionary
measures for a healthier life, hence to make citizens
aware of this, Ramos et al. [25] promotes pollution free
routes based on the existing air quality sensor network.
The technology-agnostic methodology framework is
based on the air quality index interpolation and helps
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trace the city’s air pollution-free routes. A study was
conducted in Taiwan [28] to compute air pollution
exposure levels during different transportation modes
like walking, motorcycle, and bicycle transportation
mode. Zahmatkesh et al. [29] proposed a geostatistical
interpolation technique, i.e., kriging to generate air
quality index spatial prediction map to prevent the air
pollution zone and its polluted routes.

All the existing work attempted to develop an
intelligent navigation system is based on the spatial
distribution [30] of past air pollution data, which
practically does not significantly improve the quality
of human health. Moreover, the existing work does not
predict the air pollution level at the road network for
the near future.

Therefore, it is better to develop an early warning
navigation system, alerting people by predicting air
pollution levels in the road network in advance. Based
on the above survey, this paper developed an algorithm
based on the temporal-spatial interpolation model
to minimize personal air pollution exposure risk to
improve public health conditions.

4. Data collection
The ambient air quality data of Odisha, India [31, 32]
is used to evaluate the proposed model. The dataset
includes day-wise sampled PM10, PM2.5, SO2, NO2
pollutant information in micrograms (one-millionth of
a gram) per cubic from 2005 to 2015. The dataset
is having 11 years of data for 30 monitoring sites
of Odisha. Due to many missing values, 14 sites’
information is dropped, and 16 monitoring sites’ data
sets are utilized for evaluation purposes. It also contains
station code, sampling date, monitoring station name,
type of location, longitude, and latitude value as
attributes. The study area’s road network graph and
boundary are collected from the Open street map to
evaluate the proposed algorithms. From the descriptive
analysis of past observations, it is found that PM10 is
the major contributing air pollutant in Odisha [33–35],
so utilized for experimental purposes to determine air
pollution exposure risk in the study area.

5. Predicting the least PM10 exposure risk path
In this section, the step-by-step proposed methodology
is explained to predict the path with a minimum of
PM10 exposure. First, we integrate PM10 concentration
with its spatial feature and road network of Odisha. The
proposed methodology combines both time and space
dimensions simultaneously to perform both spatial and
temporal analysis and generate a prediction map of the
study area at each time instance. The temporal-spatial
interpolation is required to assign an average PM10
concentration value on the road network, which will

be treated as a weight function to compute the shortest
path from a source to a destination.

5.1. Temporal-Spatial air quality modeling
A person may take one or two days to travel from
a source to a destination. Hence, we first require
identifying how PM10 concentration changes over time
throughout the journey. To complete this task, we have
to perform PM10 prediction in the road network for
the next day or next week. The proposed architecture,
which is developed to achieve this objective, is
presented in Figure 1.

Experiments and discussions of each part of the
proposed architecture are explained in the following
subsection.

Data normalization. Before completing the data analysis
steps, it is required to normalize the data and remove
the dataset’s existing outliers. The existing outliers
may affect the model’s performance; hence Z-Score
normalization is conducted in the preprocessing step,
followed by the removal of the outlier. The equation for
Z-Score normalization [36] is given below,

Z − Scorei =

n∑
i=1
pi −

_
x

S
(1)

where pi is the pollutant value, _
x represents

mean and S represents the standard deviation. After
performing the preprocessing step, outputs are utilized
to perform temporal air quality modeling to get
prediction value for the next few days.

Feature extraction. A convolutional neural network
(CNN) [37] is used to extract the features from
preprocessed normalized historical pollution dataset
and identify the relationship between the features
that might influence the increasing air pollution level.
Weight sharing and sparse connectivity features enable
CNN to handle multiple layers and nonlinearity.
It updates the weights, which contributes to the
prediction results. Thus, it reduces the number of
parameters and improves performance. Then, the max-
pooling operation of stride two is conducted in input
to decrease the convolution size and hence, increases
the computational complexity. The schematic diagram
of the convolutional neural network is represented in
Figure 2.

Temporal modelling. Extracted features from the CNN
layer fed into the long short-term memory (LSTM)
[11] network to capture the long-term and short-term
dependency of air quality for sequential modeling. A
selective write, read and forget strategy followed in
the LSTM model to deal with longer sequences to
perform air pollution prediction at low and high time
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Figure 1. The proposed LSTM based temporal-spatial interpolation model architecture.

Figure 2. Schematic diagram of Convolutional neural network.

granularity. The basic schematic diagram of the LSTM
model is represented in Figure 3.

The goal of this LSTM basic unit is to compute st . It
can be mathematically formulated as,

st = f (st−1, xt) (2)

while computing st , it will take past information st−1
and current input information xt , in order to keep only
relevant information. Instead of writing all parts of st−1,
it can use a few parts of it for the next step, called
selective write. ot is used to decide how much of the
information should be retained and pass to the next
step. As the output from selective write, it may not be
interested in reading all this information, so it will be
calculated with an input gate it to perform a selective
read operation. Then ft is used to forget the unnecessary
input information. After computing the selective write,
read, and forget gate, it will compute some states, and
all these operations will be guided by the write, read,

and forget operation. The computation of gates at time
t can be represented mathematically as,

ot = σ (woht−1 + uoxt + bo) (3)

it = σ (wiht−1 + uixt + bi) (4)

ft = σ (wf ht−1 + uf xt + bf ) (5)

where, (ot , it , ft) are the output gate, input gate and
forget gate respectively. σ is the sigmoid activation
function, (wo, wi , wf ) are the hidden state parameters,
(uo, ui , uf ) are the current state parameters and (bo, bi ,
bf ) are the bias parameters. The computation of states
can be formulated as belows,

_
s t = σ (wht−1 + uxt + b) (6)

st = ft � st−1 + it �
_
s t (7)

ht = ot � σ (st) (8)
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Figure 3. The basic schematic diagram of the LSTM. Selective write, read and forget operations are performed for all the time stamps
t to retain some current and past information and get the final output ht

where _
s t is the temporary state, st is the combination

of current temporary value that computed in selective
read and some forgotten part from the selective forget
operation, ht signifies how much of the information
need to write in the next stage, which will be controlled
by output gate ot and the temporary state st . After
performing all the operations, the backpropagation
algorithm will have 12 parameters that will be learned.
Now one can compute the derivative of the loss function
concerning each of those parameters to reduce the loss
function.

Temporal-spatial interpolation prediction. Each road net-
work has different features like different road lengths,
widths, and different road segments. Due to unstruc-
tured monitoring stations, it is challenging to compute
the PM10 level at each road segment. In the past years,
many works have been done to identify the spatial dis-
tribution of air pollution and estimate unknown point
values in a particular study area using spatial interpo-
lation techniques. Although these spatial interpolation
techniques are widely used, many critical problems
remain unsolved as the traditional spatial interpolation
technique considers time and space individually. It may
not be a satisfying method while predicting the spatial
distribution in many practical applications at a different
time granularity. Spatial interpolation for the next few
days may add an advantage to make an efficient method
that can alert people in advance to keep them safe. The
most of the existing interpolation methods e.g. radial
basis function (RBF) [38, 39], ordinary kriging (OK)
[40–43] and inverse distance weighting (IDW) [44, 45]
only predict the spatial distribution of air pollution for
the current time not for the future duration. Thus, it
is required to perform spatial interpolation based on
temporal interpolation to predict interpolation results
at each unsampled point and time instance.

All the spatial modeling techniques are based on
the first law of geography, i.e., nearer points have
similar characteristics having a stronger correlation,
which includes IDW, kriging, and RBF interpolation
techniques. IDW interpolation is a function of distance,
which estimates the unsampled point values using a
linear combination of sampling point values weighted
by the inverse function of the distance from the

interpolation point to the sampling points. While
kriging is the weighted average of the measured
data, which is based on the semivariogram. But
these kriging methods are not so accurate due to
poor standard error value, which also assumes the
intrinsic stationarity, but unfortunately, air pollution
data are not stationary. RBF, a deterministic method
similar to kriging techniques but does not benefit
from spatial analysis using a variogram. This technique
is used to generate continuous surfaces using a
large number of data points [46, 47]. Unlike other
interpolation techniques, the EBK (empirical Bayesian
kriging) method does not require the prior distribution
details. It can handle local and global data stationarity
by providing faster performance with the default
parameter setting [48]. This interpolation method is a
different technique than any other existing traditional
interpolation technique as it accounts for the error
during the use of many semivariogram models instead
of one. The conventional model uses one semivariogram
model to adjust the parameters manually. The EBK
method follows the subsetting and simulation process
to adjust the parameters φk and develop a better model
automatically. It follows three main steps while getting
interpolation results. First, it estimates a semivariogram
model and parameters φk using the observed data.
Secondly, using this semivariogram and φk , new values
can be estimated by doing simulations at each input
location M times. Thirdly, newly simulated inputs can
be used for generating a new semivariogram model.
Bayes’ rule can be used to assign a weight wk to
this newly estimated semivariogram model and new
parameters φk . It can be formulated using the following
formulas:

wk ∝ f (P |φk) (9)

wk =
f (P |φk)

M∑
k=1

f (P |φk)
(10)

M∑
k=1

wk = 1 (11)
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where weight is presented as wk , φk is the simulated
parameters, P is the observed pollutant value and
f (P |φk) is the conditional probability of the observed
pollutant value P given the model parameter φk . It
signifies how likely the observed PM10 value can be
generated from the estimated model. The second and
third steps are repeated to estimate the semivariogram
model in step one, which can be used to simulate a new
set of values at each input point. These simulated data
can be used to estimate the new semivariogram model
and its weights. These weights (wk) are used to generate
predictions and prediction errors at each unsampled
point. So, this interpolation can be an effective spatial
interpolation technique for the road network. Hence,
this research work experimented with the EBK model’s
effectiveness by adding it to the top of the CNN-LSTM
model to get the prediction result for t + d days at
the road networks. The prediction results of multiple
nodes are used as input to the spatial interpolation layer
to predict the spatial distribution of PM10, where the
nodes’ coordinates are treated as the boundary of the
study implementation area. Thus, adding time series
prediction results as input to this EBK interpolation
layer yields better prediction results. Finally, the output
of the proposed model generates a temporal-spatial
interpolation prediction map of the study area. The
Pseudocode of the proposed algorithm described above
is represented in the Algorithm 1, where the first part
of the algorithm performs temporal modeling and the
second part perform the spatial modeling.

The temporal modeling is the most crucial step of
PM10 prediction because a journey may take more
than one day. Sometimes, it requires predicting the
PM10 value for the next week or the next month
to make the right move. The second part of the
algorithm is responsible for spatial interpolation. As the
air pollution monitoring stations are in unstructured
locations like some might close to each other or far
away. Therefore, EBK interpolation is used to assign the
average PM10 value as the weight on the road segment
to predict each road segment’s pollution level for the
t + d days, depending upon the arrival time on the
destination.

5.2. Application of the proposed model for safe
navigation
The proposed CNN-LSTM-EBK (CLE) model predicts
the PM10 level at each location over the t + d days in the
study area effectively. So, the proposed model is utilized
for the application of the transportation system in a
smart city to predict the healthiest safest path to the
citizens. The temporal-spatial interpolation prediction
map generated by the CLE model is used as input
to propose a routing algorithm, which reduces PM10
pollutant exposure risk. It may suggest a comparatively

Algorithm 1 LSTM based temporal-spatial interpola-
tion prediction method for road network

Input: Air pollution historical data P =
[p1, p2, p3, p4, p5.....pT ], road network graph
G
∧= (V , E), latitude i, longitude j.

Output: Pollutant prediction surface G ∧= (V , E,w)
Initialization: Manually trained model (K) with
parameters θ

1: for 1 ≤ i, j ≤ N do
2: for t = 1 to T do
3: if P has null value for time t then
4: do linear interpolation
5: else
6: p̂

i,j
t+d ← (i, j) Generate time series prediction

result for V by K .
7: return p̂i,jt+d
8: end if
9: end for

10: end for
11: Generate prediction surface:
12: for each point (m, n) < (i, j) do

13: Compute p̂m,nt+d ← wk
N∑
i,j=1
∗p̂i,jt+d

14: end for
15: return pollution prediction surface on road

network

longer path than the shortest path but optimize
both distance and pollution levels for safe travel.
The existing navigation system usually uses time and
distance as the weight to compute the shortest path.
Few of the existing models compute the least air
polluted path based on the polluted area [25–29, 49]
for the current time only, not for the different temporal
resolution. Hence, to overcome this limitation, the
proposed framework uses a deep learning approach to
predict the safest path over the t + d days, which will be
the least exposure to air pollution. The pseudo-code of
the proposed routing solution is presented in Algorithm
2.

6. Results and discussions
6.1. Parameter optimization
To demonstrate the proposed model and algorithm
efficiency, four groups of models were experimented
with using PM10 concentration data, which consists
of a series of day-wise sampling values. After the
preprocessing step, the model was trained where 80%
of data was utilized as the training set (January 2005-
October 2015), 10% (November 2015) as the validation
remaining 10%, i.e., last month data of 2015 as a test
set. We used two-layer of CNN, two-layer of LSTM
with 1078 iterations, and one layer of the, having 343
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Algorithm 2 Predicting the least air polluted route

Input: Road network graph G
∧= (V , E,w), source s,

destination h, starting time.
Output: Optimized route, directions, distance, dura-

tion
Initialization: Take d(s)=0 and d(h)=infinity

1: Generate interpolation prediction map:
2: Interpolation map with class level c← Call

Algorithm 1
3: for each node h in Graph G do
4: if h , s then
5: d[h]= infinity
6: push h in Queue Q
7: else
8: ch ∗min d(h)← cost(h)
9: pop h node from Q

10: end if
11: end for
12: for each neighborhood point z of h do
13: ch.min d(h) + cz.min d(z)← cos t(h, z)
14: cos t(h, z) + d(h)← final cost
15: return final cost
16: end for

iterations for getting the best prediction value during
temporal air quality modeling at the large temporal
resolution to identify the most polluted location of
Odisha over the next four weeks of December 2015.
Furthermore, the learning rate set to 1e-3 and dropout
is 0.2; Adam is used as an optimizer and Mean Square
Error (MSE) as a loss function to train the model. The
window size set to 50 and n-time steps is 28 to evaluate
the model’s long-term prediction performance.

6.2. Prediction performance comparison at large
temporal resolution
Most of the existing air pollution prediction models
predict air quality concentration levels for the next
few hours for existing air pollution monitoring sites.
Predicting air quality levels for the entire location
can add profit to get optimum air quality prediction
results for a considerable period. Generally, air quality
prediction for an extended period has lower prediction
accuracy than for a short duration. This issue might
occur because of the small sample utilization for the
long-term forecast. Hence, developing an air quality
prediction model is required to perform air pollution
prediction for the entire location and its road network
for an extended period.

The first part of the proposed model has a neural
network layer to perform air pollution prediction for
all available monitoring stations only. Another vital
property of the proposed method is that it has an
EBK interpolation layer. The CLE model’s execution

provides prediction value at each point, where no
monitoring stations are available. This is the most
important feature of the proposed method. It can be
utilized by researchers and policymakers to get the
overall air quality level of a particular location and
its road network at a different time. Though this
approach can give vital information for public safety,
very few models can predict air quality levels at
unmeasured locations. By conducting temporal-spatial
interpolation of PM10 concentrations, it is possible to
get a average PM10 distribution surface at large time
granularity. The cross-validation technique evaluates
the temporal-spatial prediction performance of the CLE
model. During cross-validation, the forecast value is
predicted at an observed location by considering the
other observations and removing the original observed
forecast value. Then the observed and temporal-spatial
prediction value is compared to calculate the prediction
error. The model performance was evaluated using
error metrics like Root Mean Square Error (RMSE) [50].
It can be represented as below, [51, 52].

RMSE =

√√
1
n

n∑
t=1

(yt−ŷt)2 (12)

where yt is the observed pollutant value at time t, ŷt
presents predicted value at t and n is the total number
of samples. The comparison table is shown in Table 1.

Table 1. Prediction comparison at high temporal resolution.

Method type Model RMSE
Deep learning BILSTM [53] 79.53
Deep learning BIGRU [54] 71.19
Deep learning CNN-BILSTM [55] 65.20
Deep learning CNN-BIGRU [50] 64.09
Deep learning CNN-GRU [56] 60.45
Deep learning LSTM [57–59] 47.84
Deep learning GRU [60] [61] 43.06
Geostatistics Exponential kriging [62] 25.60
Geostatistics Universal kriging [62] 25.60
Deterministic Inverse distance weighting [62] 24.07
Geostatistics Spherical kriging [63] 23.67
Machine learning Radial basis function [38] 23.03
Proposed model CLE 18.16

The proposed CLE model is compared with baseline
deep learning models to evaluate the model prediction
efficiency for the next four weeks. It shows that the
BILSTM model had the worst performance having the
highest value of error metrics. Error metrics for BIGRU,
CNN-BILSTM, CNN-BIGRU, CNN-GRU, LSTM, and
GRU have reduced relatively. The comparative results
show that the proposed model outperforms the
other deep learning models in the case of long-
term prediction due to the lower error metrics,
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as the lower the error metrics value signifies the
higher prediction performance. The proposed model’s
temporal-spatial prediction performance is compared
with the deterministic model, e.g. (IDW), machine
learning model, e.g., RBF neural network, geostatistical
techniques, e.g., spherical, exponential, and universal
kriging as represented in Table 1. It can be seen
from the comparison table that the CLE model has
lower error metrics values than any other geostatistical,
deterministic, and machine learning-based spatial
prediction model due to its time and space dimension
integration capability. This result proves that it is
necessary to take both space and time dimensions
simultaneously instead of only performing spatial
interpolation to better interpolation results.

Figure 4-5 shows the calculated PM10 prediction map
by CLE model at weekly and two day granularities.
As shown in Figure 4-5, highly polluted areas located
nearer to the eastern ghats and eastern coastal plains
of Odisha. As the east part of Odisha has the most
developed part of the state, we can see a high level
of pollution due to high traffic emissions. So the
government has always taken the necessary steps to
improve these locations’ air quality than any other
province. It also noticed that the average PM10
concentration ranges from 35 µg/m3 to 121 µg/m3,
which shows the unfavorable exposure level of PM10 in
Odisha.

6.3. Web Client to Trace temporal-spatial prediction
of PM10

The interpolated map is overlapped with the Google
map using the ArcGIS [64] Online cloud server
to design a prediction map web application. It is
developed for visualization purposes, represented in
Figure 6; it displays area size with its corresponding
predicted class, minimum, and maximum pollution
level. Web App Builder for ArcGIS service is utilized to
build the web client application, and it has all facilities
to create HTML/JAVA script featured web application.
It also provides facilities to run the application online
on its server.

6.4. Routing service to avoid polluted areas
When the web map layer displaying the prediction
map is published, the computed polluted areas can be
treated as input barriers while accessing a city’s routes.
ArcGIS Online network analysis feature is utilized to
perform this operation. ArcGIS online routing service
models driving and walking transportation modes. It
provides facilities to compute routes based on the
shortest distance and time from source to destination.
It also allows us to consider traffic flow directions and
restrictions. The network service routing layer enables
treating the highly polluted area as input barriers;

it prohibits all the intersecting paths from routing
analysis and predicts the least air pollution exposure
paths.

Previous research was conducted to compute the
pollution-free route by performing network analysis
over IDW [25–28] interpolated map. IDW interpolation
can predict average, maximum, and minimum air
pollution concentration for the current and past time
only, not for the future. It can also be seen that the
prediction performance of IDW (RMSE=24.07) is less as
compared to the CLE model (RMSE=18.16) due to high
prediction error, as shown in Table 1.

This research work performed network analysis
over the temporal-spatial interpolation prediction map
instead of spatial prediction map using ArcGIS online
to minimize air pollution level and travel time
simultaneously. Therefore, it can provide an optimized
routing solution at a different temporal resolution,
unique from any other route navigation system. ArcGIS,
a geographical information system [65], is utilized
to visualize routing solutions. An IoT-based platform
helps to access real-time traffic data with each route
detail and overlaps the air pollution interpolation map
with the street-based map. There may be multiple paths
for a given source and destination, and the user may
select any of them based upon their preferences. User
preference of start and endpoint can be updated with
the help of this IoT-based framework, and routing
solutions can be accessible by the web application.
To identify the proposed model’s effectiveness, we
evaluated its performance in terms of minimum
pollution level and distance. Hence, we simulated the
model by selecting 16 monitoring sites of Odisha
and proposed the routing solution. The designed web
application would help users make decisions more
straightforward, as it can show both the shortest and
the least polluted path and differentiate them.

The result of the optimized routing solution is
compared with google map provided the shortest path,
as shown in Figure 7. Figure 7 (a1) predicts the shortest
path from the source to the destination point but
passes through the highly polluted area, marked in
red. It takes one hour 38 minutes for car drivers to
cover the source to the destination point. At the same
time, Figure 7 (b1) predicts the path for the next day
(1st December 2015) for car drivers; that result is
obtained from the proposed routing solution. It will
take more time, i.e., 2 hours six minutes, to cover the
source to the destination but pass through the least
polluted area and predict a healthier path for traveling.
Figure 8 predicts the shortest route and the least air
polluted path for 2nd December 2015 for pedestrians.
Figure 8 (c1) predicts the shortest path from Sophia
junior college to Kendriya Vidyala, which needs 18
minutes to cross that path. In contrast, Figure 8 (d1)
predicts the least polluted path, which will take four
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Figure 4. Spatial distribution of average PM10 concentration weekly in 2015 December. Figure (a), (b),(c),(d) predict the first, second,
third and fourth week average PM10 concentrations. The color scale shows the pollutant variations over the study area.

minutes more for a pedestrian to cross it. It shows the
positive side of the proposed algorithm. The designed
web application predicts air pollution level and also
recommend pollution-free paths for Odisha. Based on
the user preference, they can choose the path for their
safe journey.

7. Conclusion

For the first time, the present study proposes a
newly designed deep learning-based temporal-spatial
interpolation method to provide an optimized routing
solution for users that minimizes air pollution exposure
risk. The current work demonstrates models that take
PM10 pollutant value into account to predict the
healthier path in advance. The predicted least polluted
path might be longer than the shortest path, but it
avoids the pollution level that varies over space and
time. The proposed method can be implemented in
smart cities to a better quality of life by utilizing
the temporal-spatial interpolation prediction map and
proposed routing solution in advance. A comparative
analysis is conducted, which shows the CLE model’s
effectiveness to recommend a healthier path for the next
coming days.

The main finding of this research paper are briefly
described as follows:

• This paper integrated machine learning, deep
learning, and spatial prediction techniques for
air quality modeling at high temporal-spatial

resolution. This could be essential information for
public safety.

• The proposed model also provides effectively
smaller prediction error at high temporal resolu-
tion than the baseline neural network models. It
has almost 78%, 61% better air quality modeling
performance than the ordinary BILSTM and GRU
model, respectively.

• CLE model has a minimum of 21-29% better pre-
diction performance at high temporal resolution
than the traditional interpolation techniques. It
can also solve the data imputation of geospatial
air pollution data while conducting air quality
prediction.

• This research paper utilizes the output of the
proposed temporal-spatial interpolation model as
input for GIS modeling, which prevents the highly
polluted area as barriers to predict the healthier
path at larger temporal resolution. So users can
get overall air quality information on roads for the
next four weeks.

• To the best of our knowledge, this is the first
research study conducted in Odisha, India to
predict air pollution levels and the safest path for
the entire study area.

Still, this research work can further be improved.
Meteorological factors, climate change, traffic emission,
and rainfall have a direct and indirect impact on the
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Figure 5. Spatial distribution of average PM10 value on every two days interval basis in December 2015.

ambient air pollution level, which should be analyzed
during air quality modeling. We have not considered

the meteorological and traffic impact on air pollution
due to lack of data availability.
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Figure 6. Developed web application to display the air pollution prediction map of Odisha. The application shows the maximum and
minimum pollution levels of a particular area with location area size.

Figure 7. User interface (a1) predicts the highly polluted path, (b1) predicts the least polluted healthier path for the scheduled
interval (01.12.2015) for a car driver.

There is a further scope of using this technology by
implementing this concept on a large area rather than
limiting it to a particular confined space. Along with
that, more parameters can be included, which will be
much more beneficial to the users by considering the
drastic impact of those pollutants on individuals.
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Figure 8. User interface (c1) predicts the highly polluted route, (d1) predicts the least polluted healthier path for the scheduled
interval (02.12.2015) for a pedestrian.
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