
A fast stitching method for container images using
texture and weighted speed

Quanling Meng, Mengqin Zhang, Weigang Zhang
{mengquanling@gmail.com, mqzhang950710@163.com, wgzhang@hit.edu.cn}

School of Computer Science and Technology, Harbin Institute of Technology, Weihai, China

Abstract. With the rapid development of oceans economy, a huge number of shipping
containers are transported all around the world. To reduce the risk of container damages
during the transportation, existing solution relies mainly on human beings to observe the
container appearance before or after it enters a dock, which is time-consuming and
inaccurate. To solve this problem, one intelligent approach is to develop an automatic
container damage detection framework based on computer vision techniques. But how to
obtain the panorama images for container damage detection is a challenging issue. In this
paper, a real-time container panorama producing system is developed based on container
surveillance videos, which is implemented by container image stitching with texture
features. When there is no reliable offset, the weighted speed for splicing is used.
Experimental results indicate that the developed system could achieve approving results in
a real-time manner.

Keywords: container; computer vision; image stitching; weighted speed

1 Introduction

In recent years, with the development of ocean economy, an increasing number of goods
are packed in containers and shipped via freighters to everywhere of the world. The number of
containers shipped over the world has been increased every day. For the safety of the goods, it
is necessary to ensure the integrity of the container and avoid damage of the container. To reduce
the risk of container damage during transportation, existing solution resorts to human beings to
observe the container before and after it enters a dock, which is very time-consuming and easy
to miss the damage. To solve this problem, one intelligent solution is to develop an automatic
container damage detection method based on computer vision techniques.

One of the most challenging issues is to obtaining the panorama of the container, which
can be used for subsequent damage detection. Such a technique is called image mosaicking,
which outputs the panorama of a specific scene given a set of overlapped images. Mosaicing
could be regarded as a special case of scene reconstruction where the images are related by
planar homography only[1]. It has been attracted increasing attention in the past few years [2-4].
Although existing methods have achieved great performance in real-time applications, obtaining
the panorama of the container is not easy because the surveillance camera is installed very close
to the container, which causes the video frame only capture a small part of the whole container.
For example, some close-up video frames are shown in Figure 1 (a). In addition, a container has
usually few texture. In particular, there may be no texts on the container as shown in Figure 1(b).
In such a case, traditional image mosaicing methods cannot obtain a desired performance. There
are relatively few existing methods for container splicing. Li et al.[5] conducted research on
container image stitching. In the matching stage, the feature matching process is divided into

MOBIMEDIA 2019, June 29-30, Weihai, People's Republic of China
Copyright © 2019 EAI
DOI 10.4108/eai.29-6-2019.2283071

three rounds to eliminate the image mismatch. Although this method can obtain relatively
reliable matching points, it is still difficult to match almost the same two frames of images.
Moreover, their equipment was able to photograph most of the container, and only a small
amount of images were stitched together during the experiment.

After analyzing the videos of the container captured by the camera installed at the scene,
we found that the texture features of the container are discriminative cues for the image
mosaicing. Inspired by this observation, we propose an effective mosaicing method based on
texture features. First, we pre-process the input images. Then, we seek the starting frame and
remove the static frames using template matching. After that, SURF[6] is used to detect keypoints
and FLANN[7] is used to match those keypoints. RANSAC[8] is subsequently used to compute
transformation between two frames and compute their offset and the offset speed. When there
are no good keypoints or the computed offsets are not reliable, we use the weighted speed to
stitch two frames.

(a) Typical close-up video frames

(b) Container pictures without text

Fig. 1. Video frame samples of the containers.

The contributions of this paper are two-fold: 1) A complete container mosaicing method is
proposed, which achieves desired even if when the container has few obvious features. 2) The
proposed mosaicing method is computationally efficient, which can be used in real-time
applications.

2 Methods

Based on the uniform sampling of the video frames, we use texture features for image
stitching. The entire method is shown in Algorithm 1. We first scan and get the number of
images 𝑁". If the number is too small, no stitching is performed. If the number is too large, the
images are selected at equal interval. The first image I is opened and pre-processed while
obtaining a small size image 𝐼$ for template matching. Then the following steps are performed,
including preprocessing, template matching and image stitching. If the number of matching
points after the filtering is greater than the threshold 𝑇& , the perspective transformation is
performed and the offset is calculated. If the offset is within a reasonable range, we calculate
and update the offset speed, and then perform image stitching. If the offset is not in a reasonable
range and the hard stitching condition is satisfied, we use the weighted speed for stitching. If

the number of matching points after the screening is not greater than the threshold 𝑇& and the
hard splicing condition is satisfied, the splicing is also performed using the weighting speed. At
the last step, if there are some remainder images that are not stitched, and the tail stitching
conditions are met, the weighting speed is also used for stitching. Finally, we save the images
𝐼' and 𝐼(.

Algorithm 1: Image stitching.
Input: D: Image set.

𝑇&: Threshold of good match point.
Output: 𝐼': Small size result image.

𝐼(: Big size result image.
1 Get the number of images 𝑁";
2 Open and preprocess the first image 𝐼;
3 Get small size image 𝐼$;
4 for i=1 to 𝑁" do
5 Open and preprocess image 𝐼";
6 Templates match and update small size image 𝐼$;
7 Perform image matching to obtain matching points;
8 Get good matching points 𝑀";
9 if Size(𝑀") >𝑇& then
10 Perform perspective transformation；
11 Calculate and update the offset 𝑅";
12 if 𝑅" is within reasonable range 	then
13 Calculate and update the offset speed;
14 Perform image mosaic;
15 else
16 if meet hard stitching conditions then
17 Calculate the offset 𝑅";
18 Perform image mosaic;
19 else
20 if meet hard stitching conditions then
21 Calculate the offset 𝑅";
22 Perform image mosaic;
23 if meet the tail stitching conditions then:
24 Calculate the offset 𝑅";
25 Perform image mosaic;
26 Generate image 𝐼' and 𝐼(;

2.1 Image preprocessing

We first preprocess the images to facilitate matching. We splicing from left to right in a
unified manner, thus the left image part and the upper image part need to be flipped. At the same
time, we crop the image to remove unnecessary image areas or blurred areas, and only use the
middle areas of the images for splicing. The size of image	𝐼" is resized to 𝑊" × 𝐻".

2.2 Template matching
We perform template matching to seek the starting frame and remove the static frames. In

order to speed up the matching step, we reduce the image 𝐼" and crop it to get the image 𝐼$ for
template matching. We only focus on the container region in the image, so we cut the upper and
lower parts of the image. When the splicing is not started, if the current image is highly similar
to the previous one, skip it directly; otherwise, the current image is considered to be the starting
image. In the splicing process, if the current image is very similar to the previous one, the current
vehicle is considered to be stationary and the current image is skipped directly. During
processing, we will record the number of skips 𝑁12$$.
2.3 Image matching

We need to calculate the matching points of the current image and the stitched images to
calculate the offset 𝑅". In order to obtain good matching points, we only use the middle part of
the image for matching. Firstly, the current image 𝐼" and the intermediate result image 𝐼' are
respectively set to the region of interest 𝑟𝑜𝑖" and 𝑟𝑜𝑖' to obtain the image 𝐼6 and the image 𝐼7.
The image 𝐼6 and image 𝐼7 are converted to grayscale images, and then histogram equalization
is performed to get good texture features.

We use SURF[6] to calculate the characterization matrix and use FLANN[7] to find the
optimal matching points and the sub-optimal matching points. As shown in Figure 2(a), we
show the top 20 best matching points and connect them. It is usually unreliable to use the optimal

Algorithm 2: Get good matches.
Input: 𝐼6: Current image.

𝐼7: Intermediate result image.
𝑁$8: Number of speeds.
𝑁98: Number of images since the last stitching.
𝑇::Threshold for finding good matching points.
𝑇;:Vertical threshold.
𝑇<:Horizontal threshold.
𝑁$:Threshold of the number of speeds.
𝑉$8:Speed set.

Output: 𝑉&:Good match point set.
𝑆2:Average speed.

1 Calculate feature points 𝐾@ and 𝐾A	using SURF.
2 Get matching points 𝑉7 using FLANN.
3 if 𝑁$8> 𝑁$ then
4 𝑆2 ← Median(𝑉$8)
5 𝑅1 ← (𝑁98 + 1) * 𝑆2
6 for i=1 to 𝑉7.Size do
7 if 𝑉7[i][0].distance < 𝑇: * 𝑉7[i][1].distance then
8 if abs(Vertical difference) < 𝑇; :
9 if 𝑁$8 > 𝑁$	then
10 if abs(Horizontal difference+𝑅1)<	𝑇<:
11 𝑉&.pushback(𝑉7[i][0]);
12 continue;
13 else
14 𝑉&.pushback(𝑉7[i][0]);

matching points directly, so we need to filter the optimal matching points. We will select the
median of the nearest 𝑁$ offset speeds as the current offset speed, and predict the current offset
𝑅1 for filtering good matching points. The whole process of filtering matching points is shown
in Algorithm 2. When we look for good matching points, we will consider the distance between
the matching points, the vertical offset size and the horizontal offset size. As shown in Figure
2(b), the matching points become more reliable after filtering.

(a) Images before filter matching points (b) Images after filter matching points

Fig. 2. Image matching.

2.4 Image stitching
Using the matching points calculated in the previous step, we can calculate the offset 𝑅"

for image stitching. If the number of good matching points is greater than the threshold 𝑇&, we
calculate the offset 𝑅". Otherwise, we use the weighted speed to calculate the offset 𝑅".

When the number of matching points after filtering is bigger than the threshold 𝑇&, we
perform a perspective transformation to convert the current image and the stitched images to the
same coordinate system. First, RANSAC[8] algorithm is used to eliminate false matches as well
as to calculate the transformation matrix. Then the two points of the upper left corner and the
lower left corner of the image 𝐼6 are transformed, and the average value of the transformed
abscissa is used as the offset 𝑅". We use the two thresholds 𝑇&"C and 𝑇&2< to determine whether
the offset 𝑅" is within a reasonable range, and use 𝐿1 to control the fusion ratio. If the above
conditions are met, we calculated and update the speed and then perform image stitching.
Otherwise, if the hard splicing condition is satisfied, the product of the offset speed 𝑆9$ and the
number of images 𝑁98 is taken as the offset 𝑅". If the number of matching points is not greater
than the threshold 𝑇&, it is also determined whether the hard splicing condition is satisfied, and
if so, splicing is performed in the same manner. Where the hard stitching condition refers to the
number of images 𝑁98 skipped since the last splicing is equal to the threshold 𝑇&E< or the
predicted offset of the next frame will exceed the distance 𝐿1.

The process of calculating and updating the offset speed is as shown in Algorithm 3. We
first calculate the current offset speed. If the recorded speed is less than the threshold 𝑁$, the
speed is directly added; if not less than 𝑁$, the median of all the statistics is selected as the
average speed; if it is greater than 𝑁$, we use the thresholds 𝑇C@ , 𝑇CA and 𝑇2 to determine
whether the offset has a mutation. If so,the current offset is unreliable, and then the offset speed
is calculated proportionally. If the offset does not change much, then record the current speed
and delete the first speed.

𝐶' = 	𝐶" ∗ ((𝑊" − 𝑠)/𝐿1) + 𝐶' ∗ ((𝑠 −𝑊")/𝐿1) (1)

In order to obtain a good stitching effect and remove the seam, we first stitch the left 𝑅"

column of the image 𝐼" to the right of the image 𝐼'. Then, the intermediate result image 𝐼' is

weighted and fused in units of columns according to the threshold 𝐿1 . As shown in the
Formula(1) , s indicates the current number of columns, 𝐶' and 𝐶" represent the current column
of image 𝐼' and image 𝐼", respectively.

Algorithm 3: Calculate and update speed.
Input: 𝑅": The Offset.

𝑁98:Number of images.
𝑁$8:Number of speeds.
𝑉$8:Speed set.
𝑆9$:Frame rate.
𝑇C@:Speed change threshold.
𝑇2: Speed change threshold.
𝑇CA: Speed change threshold
a : Speed weighted ratio.

Output: 𝑅": The Offset.
𝑉$8:Speed set.
𝑆98:Frame rate.
𝑆2:Average speed.

1 𝑆98 ←int(𝑅"/𝑁98);
2 if 𝑁$8 < 𝑁$ then
3 𝑉$8.pushback(𝑆98);
4 if 𝑁$8 ≥ 𝑁$ then
5 𝑆2 ←MEDIAN (𝑉$8)
6 if 𝑁$8 > 𝑁$ then
7 if((𝑆2-𝑆9$)>	𝑆2*𝑇C@) or (abs(𝑆2-𝑆9$)> 𝑇2) or ((𝑆9$-𝑆2)>	𝑆2*𝑇CA):
8 𝑆9$ ← 𝑉$8.last * a +	𝑆2 * (1-a)
9 else
10 𝑉$8.pushback(𝑆98);
11 delete 𝑉$8.first

2.5 Image generating
Considering that some images are still not stitched after the stitching is over, in order to

achieve a good visual effect, if the tail stitching condition is satisfied, then stitch the current
image. After the stitching is finished, we save the result image 𝐼'. In addition, we also recorded
the offsets in the stitching process, and then stitched the high quality images based on these
offsets. Where the tail stitching condition refers to the number of images skipped 𝑁98 since the
last stitching is smaller than the threshold 𝑇98 and total number of images skipped 𝑁12$$ is
smaller than the threshold 𝑇12$$.

3 Experiments

We experimented with the CPU i7-8700K and 32G memory, using C/C++ to implement
the algorithm, and image processing relies on OpenCV[9]. It is important to note that we get the

video frame images at a 100 milliseconds interval. In the process of collecting images, when the
container accounts for about 80% of the entire picture, we start or end the collecting. The size
of original image is 640×480. During the pre-processing, we did not crop the original image.
We set 𝑇& to 30，𝑁$ to 3，𝑇: to 0.8，𝑇; to 35，𝑇< to 50，𝑇&"C to 0，𝑇&2< to 90，𝐿1 to 25，
𝑇&E< to 1，𝑇C@ to 0.5，𝑇CA to 0.5，𝑇2 to 20，a to 0.33，𝑇98 to 2，𝑇12$$ to 6，𝑊" to 320，
𝐻" to 200. We use 30 to 200 lines of 𝐼" and 𝐼', and 20 to 320 columns of 𝐼" for image matching.

(a) Candidate images (b) Result image

(c) Candidate images (d) Result image

(e) Candidate images (f) Result image

(g) Candidate images (h) Result image

(i) Candidate images (j) Result image

Fig. 3. Some results of the proposed image stitching method.
Figure 3(a), 3(c) and 3(e) are ideal candidate image set, which are relatively uniform in

illumination and have enough texts on the containers. They are very advantageous for image
stitching and good results are achieved, as shown in Figure 3(b) ,3(d) and 3(f). Pictures taken
during the daytime are usually very clear, but there are also occasions when the lighting
conditions are poor. As shown in Figure 3(g) , the illumination is poor, and there is no obvious

text on the container. Even in the case, our method still achieved good result, as shown in Figure
3(h). In the case of the current parameters, from opening the image to generating the resulting
image, our method runs for about 2 seconds each round.

As shown in Figure 3(i), the night image has a phenomenon of blurring and light
interference, so it is more difficult to splicing images. The middle glare area is caused by a fixed
electric light, which makes the image brighter, but because the light is uneven, it causes great
difficulty in image matching. And because of the strong light, some texture information lost.
We use the same parameters for the experiment, the effect is shown in Figure 3(j), the detail
loss is more serious and the accuracy is reduced.

4 Conclusions

This paper presents an effective method for splicing container images using texture features.
We flexibly use the template matching method to seek the starting frame and remove the static
frames. Our method effectively filters matching points to obtain reliable offsets. Especially
when there is no good matching points or the offset is unreliable, we splicing according to the
offset calculated by the weighting speed. By recording the offset, our method can restore the
entire stitching process to produce high quality images. Through experiments, our method has
shown good results and can run at a faster speed. However, our method performs poorly in non-
uniform sampling situations and in poorly lit environments. We will improve this method to
solve the above-mentioned problem in the future.

Acknowledgments
This work was supported in part by Shandong Provincial Natural Science Foundation,

China: ZR2017MF001, and the Scientific Research Innovation Foundation of HIT(Weihai).

References
[1] Ghosh, Debabrata, et al. "Quantitative evaluation of image mosaicing in multiple scene categories."
Electro/Information Technology (EIT), 2012 IEEE International Conference on. IEEE, 2012.
[2] Ghannam, Sherin, and A. Lynn Abbott. "Cross correlation versus mutual information for image
mosaicing." International Journal of Advanced Computer Science and Applications (IJACSA) 4 (2013).
[3] Okumura, Ken-ichi, et al. "Real-time feature-based video mosaicing at 500 fps." Intelligent Robots
and Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE, 2013.
[4] Adel, Ebtsam, Mohammed Elmogy, and Hazem Elbakry. "Real time image mosaicing system based
on feature extraction techniques." Computer Engineering & Systems (ICCES), 2014 9th International
Conference on. IEEE, 2014.
[5] Li, Xueqi et al. "Research on Container Panorama Image Stitching Method." 2018 Chinese
Automation Congress (CAC) (2018): 661-664.
[6] Bay, Herbert, Tinne Tuytelaars, and Luc Van Gool. "Surf: Speeded up robust features." European
conference on computer vision. Springer, Berlin, Heidelberg, 2006.
[7] Muja, Marius, and David G. Lowe. "Fast approximate nearest neighbors with automatic algorithm
configuration." VISAPP (1) 2.331-340 (2009): 2.
[8] Fischler, Martin A., and Robert C. Bolles. "Random sample consensus: a paradigm for model fitting
with applications to image analysis and automated cartography." Communications of the ACM 24.6
(1981): 381-395.
[9] https://opencv.org/

