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Abstract. With the rapid development of oceans economy, a huge number of shipping 
containers are transported all around the world. To reduce the risk of container damages 
during the transportation, existing solution relies mainly on human beings to observe the 
container appearance before or after it enters a dock, which is time-consuming and 
inaccurate. To solve this problem, one intelligent approach is to develop an automatic 
container damage detection framework based on computer vision techniques. But how to 
obtain the panorama images for container damage detection is a challenging issue. In this 
paper, a real-time container panorama producing system is developed based on container 
surveillance videos, which is implemented by container image stitching with texture 
features. When there is no reliable offset, the weighted speed for splicing is used. 
Experimental results indicate that the developed system could achieve approving results in 
a real-time manner. 
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1   Introduction 

In recent years, with the development of ocean economy, an increasing number of goods 
are packed in containers and shipped via freighters to everywhere of the world. The number of 
containers shipped over the world has been increased every day. For the safety of the goods, it 
is necessary to ensure the integrity of the container and avoid damage of the container. To reduce 
the risk of container damage during transportation, existing solution resorts to human beings to 
observe the container before and after it enters a dock, which is very time-consuming and easy 
to miss the damage. To solve this problem, one intelligent solution is to develop an automatic 
container damage detection method based on computer vision techniques.  

One of the most challenging issues is to obtaining the panorama of the container, which 
can be used for subsequent damage detection. Such a technique is called image mosaicking, 
which outputs the panorama of a specific scene given a set of overlapped images. Mosaicing 
could be regarded as a special case of scene reconstruction where the images are related by 
planar homography only[1]. It has been attracted increasing attention in the past few years [2-4]. 
Although existing methods have achieved great performance in real-time applications, obtaining 
the panorama of the container is not easy because the surveillance camera is installed very close 
to the container, which causes the video frame only capture a small part of the whole container. 
For example, some close-up video frames are shown in Figure 1 (a). In addition, a container has 
usually few texture. In particular, there may be no texts on the container as shown in Figure 1(b). 
In such a case, traditional image mosaicing methods cannot obtain a desired performance. There 
are relatively few existing methods for container splicing. Li et al.[5] conducted research on 
container image stitching. In the matching stage, the feature matching process is divided into 
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three rounds to eliminate the image mismatch. Although this method can obtain relatively 
reliable matching points, it is still difficult to match almost the same two frames of images. 
Moreover, their equipment was able to photograph most of the container, and only a small 
amount of images were stitched together during the experiment. 

After analyzing the videos of the container captured by the camera installed at the scene, 
we found that the texture features of the container are discriminative cues for the image 
mosaicing. Inspired by this observation, we propose an effective mosaicing method based on 
texture features. First, we pre-process the input images. Then, we seek the starting frame and 
remove the static frames using template matching. After that, SURF[6] is used to detect keypoints 
and FLANN[7] is used to match those keypoints. RANSAC[8] is subsequently used to compute 
transformation between two frames and compute their offset and the offset speed. When there 
are no good keypoints or the computed offsets are not reliable, we use the weighted speed to 
stitch two frames.  

 

 
(a) Typical close-up video frames 

 
(b) Container pictures without text 

Fig. 1. Video frame samples of the containers. 
 

The contributions of this paper are two-fold: 1) A complete container mosaicing method is 
proposed, which achieves desired even if when the container has few obvious features. 2) The 
proposed mosaicing method is computationally efficient, which can be used in real-time 
applications. 

2   Methods 

Based on the uniform sampling of the video frames, we use texture features for image 
stitching. The entire method is shown in Algorithm 1. We first scan and get the number of 
images 𝑁". If the number is too small, no stitching is performed. If the number is too large, the 
images are selected at equal interval. The first image I is opened and pre-processed while 
obtaining a small size image 𝐼$ for template matching. Then the following steps are performed, 
including preprocessing, template matching and image stitching. If the number of matching 
points after the filtering is greater than the threshold 𝑇& , the perspective transformation is 
performed and the offset is calculated. If the offset is within a reasonable range, we calculate 
and update the offset speed, and then perform image stitching. If the offset is not in a reasonable 
range and the hard stitching condition is satisfied, we use the weighted speed for stitching. If 



 
 
 
 

the number of matching points after the screening is not greater than the threshold 𝑇& and the 
hard splicing condition is satisfied, the splicing is also performed using the weighting speed. At 
the last step, if there are some remainder images that are not stitched, and the tail stitching 
conditions are met, the weighting speed is also used for stitching. Finally, we save the images 
𝐼' and 𝐼(. 
 

Algorithm 1: Image stitching. 
Input:  D: Image set. 

𝑇&: Threshold of good match point. 
Output: 𝐼': Small size result image. 

𝐼(: Big size result image. 
1 Get the number of images  𝑁"; 
2 Open and preprocess the first image 𝐼; 
3 Get small size image 𝐼$; 
4 for  i=1 to  𝑁" do 
5 Open and  preprocess image 𝐼"; 
6 Templates match and update small size image 𝐼$; 
7 Perform image matching to obtain matching points; 
8 Get good matching points 𝑀"; 
9       if  Size(𝑀") >𝑇& then  
10           Perform perspective transformation； 
11 Calculate and update the offset 𝑅"; 
12 if  𝑅" is within reasonable range 	then 
13 Calculate and update the offset speed; 
14 Perform image mosaic; 
15 else   
16     if  meet hard stitching conditions then 
17 Calculate the offset 𝑅"; 
18           Perform image mosaic; 
19       else  
20       if  meet hard stitching conditions then 
21 Calculate the offset 𝑅"; 
22 Perform image mosaic; 
23 if  meet the tail stitching conditions then: 
24 Calculate the offset 𝑅"; 
25 Perform image mosaic; 
26 Generate image 𝐼' and 𝐼(; 

 
 
2.1   Image preprocessing 

We first preprocess the images to facilitate matching. We splicing from left to right in a 
unified manner, thus the left image part and the upper image part need to be flipped. At the same 
time, we crop the image to remove unnecessary image areas or blurred areas, and only use the  
middle areas of the images for splicing. The size of image	𝐼" is resized to 𝑊" × 𝐻". 
 



 
 
 
 

2.2   Template matching 
We perform template matching to seek the starting frame and remove the static frames. In 

order to speed up the matching step, we reduce the image 𝐼" and crop it to get the image 𝐼$ for 
template matching. We only focus on the container region in the image, so we cut the upper and 
lower parts of the image. When the splicing is not started, if the current image is highly similar 
to the previous one, skip it directly; otherwise, the current image is considered to be the starting 
image. In the splicing process, if the current image is very similar to the previous one, the current 
vehicle is considered to be stationary and the current image is skipped directly. During 
processing, we will record the number of skips 𝑁12$$. 
2.3   Image matching 

We need to calculate the matching points of the current image and the stitched images to 
calculate the offset 𝑅". In order to obtain good matching points, we only use the middle part of 
the image for matching. Firstly, the current image 𝐼" and the intermediate result image 𝐼' are 
respectively set to the region of interest 𝑟𝑜𝑖" and 𝑟𝑜𝑖' to obtain the image 𝐼6 and the image 𝐼7. 
The image 𝐼6 and image 𝐼7 are converted to grayscale images, and then histogram equalization 
is performed to get good texture features. 

We use SURF[6] to calculate the characterization matrix and use FLANN[7] to find the 
optimal matching points and the sub-optimal matching points. As shown in Figure 2(a), we 
show the top 20 best matching points and connect them. It is usually unreliable to use the optimal 

 

Algorithm 2: Get good matches. 
Input:  𝐼6: Current image. 

𝐼7: Intermediate result image. 
𝑁$8: Number of speeds. 
𝑁98: Number of images since the last stitching. 
𝑇::Threshold for finding good matching points. 
𝑇;:Vertical threshold. 
𝑇<:Horizontal threshold. 
𝑁$:Threshold of the number of speeds. 
𝑉$8:Speed set. 

Output: 𝑉&:Good match point set. 
𝑆2:Average speed. 

1 Calculate feature points 𝐾@  and 𝐾A	using SURF. 
2 Get matching points 𝑉7 using FLANN. 
3 if  𝑁$8> 𝑁$ then 
4 𝑆2 ← Median(𝑉$8) 
5  𝑅1 ← (𝑁98 + 1) * 𝑆2 
6 for i=1 to 𝑉7.Size do 
7     if 𝑉7[i][0].distance < 𝑇: * 𝑉7[i][1].distance then 
8   if abs(Vertical difference) < 𝑇; : 
9       if 𝑁$8 > 𝑁$	then 
10                 if abs(Horizontal difference+𝑅1)<	𝑇<: 
11                     𝑉&.pushback(𝑉7[i][0]); 
12 continue; 
13 else  
14           𝑉&.pushback(𝑉7[i][0]); 



 
 
 
 

matching points directly, so we need to filter the optimal matching points. We will select the 
median of the nearest 𝑁$ offset speeds as the current offset speed, and predict the current offset 
𝑅1 for filtering good matching points. The whole process of filtering matching points is shown 
in Algorithm 2. When we look for good matching points, we will consider the distance between 
the matching points, the vertical offset size and the horizontal offset size. As shown in Figure 
2(b), the matching points become more reliable after filtering. 

 

  
(a) Images before filter matching points          (b) Images after filter matching points   

Fig. 2. Image matching. 
 

2.4   Image stitching 
Using the matching points calculated in the previous step, we can calculate the offset 𝑅" 

for image stitching. If the number of good matching points is greater than the threshold 𝑇&, we 
calculate the offset 𝑅". Otherwise, we use the weighted speed to calculate the offset 𝑅". 

When the number of matching points after filtering is bigger than the threshold 𝑇&, we 
perform a perspective transformation to convert the current image and the stitched images to the 
same coordinate system. First, RANSAC[8] algorithm is used to eliminate false matches as well 
as to calculate the transformation matrix. Then the two points of the upper left corner and the 
lower left corner of the image 𝐼6  are transformed, and the average value of the transformed 
abscissa is used as the offset 𝑅". We use the two thresholds 𝑇&"C and 𝑇&2< to determine whether 
the offset 𝑅" is within a reasonable range, and use 𝐿1 to control the fusion ratio. If the above 
conditions are met, we calculated and update the speed and then perform image stitching. 
Otherwise, if the hard splicing condition is satisfied, the product of the offset speed 𝑆9$ and the 
number of images 𝑁98 is taken as the offset 𝑅". If the number of matching points is not greater 
than the threshold 𝑇&, it is also determined whether the hard splicing condition is satisfied, and 
if so, splicing is performed in the same manner. Where the hard stitching condition refers to the 
number of images 𝑁98  skipped since the last splicing is equal to the threshold 𝑇&E<  or the 
predicted offset of the next frame will exceed the distance 𝐿1. 

The process of calculating and updating the offset speed is as shown in Algorithm 3. We 
first calculate the current offset speed. If the recorded speed is less than the threshold 𝑁$, the 
speed is directly added; if not less than 𝑁$, the median of all the statistics is selected as the 
average speed; if it is greater than 𝑁$ , we use the thresholds 𝑇C@ , 𝑇CA  and 𝑇2  to determine 
whether the offset has a mutation. If so,the current offset is unreliable, and then the offset speed 
is calculated proportionally. If the offset does not change much, then record the current speed 
and delete the first speed. 

 
𝐶' = 	𝐶" ∗ ((𝑊" − 𝑠)/𝐿1) + 𝐶' ∗ ((𝑠 −𝑊")/𝐿1)                 (1) 

 
In order to obtain a good stitching effect and remove the seam, we first stitch the left 𝑅" 

column of the image 𝐼" to the right of the image 𝐼'. Then, the intermediate result image 𝐼' is 



 
 
 
 

weighted and fused in units of columns according to the threshold 𝐿1 . As shown in the 
Formula(1) , s indicates the current number of columns, 𝐶' and 𝐶" represent the current column 
of image 𝐼' and image 𝐼", respectively. 

 

Algorithm 3: Calculate and update speed. 
Input:  𝑅": The Offset. 

𝑁98:Number of images. 
𝑁$8:Number of speeds. 
𝑉$8:Speed set. 
𝑆9$:Frame rate. 
𝑇C@:Speed change threshold. 
𝑇2: Speed change threshold. 
𝑇CA: Speed change threshold 
a : Speed weighted ratio. 

Output: 𝑅": The Offset. 
𝑉$8:Speed set. 
𝑆98:Frame rate. 
𝑆2:Average speed. 

1 𝑆98 ←int(𝑅"/𝑁98); 
2 if 𝑁$8 < 𝑁$ then 
3 𝑉$8.pushback(𝑆98); 
4 if 𝑁$8 ≥ 𝑁$ then 
5 𝑆2 ←MEDIAN (𝑉$8) 
6 if 𝑁$8 > 𝑁$ then 
7 if((𝑆2-𝑆9$)>	𝑆2*𝑇C@) or (abs(𝑆2-𝑆9$)> 𝑇2) or ((𝑆9$-𝑆2)>	𝑆2*𝑇CA): 
8 𝑆9$ ← 𝑉$8.last * a +	𝑆2 * (1-a) 
9 else 
10 𝑉$8.pushback(𝑆98); 
11 delete 𝑉$8.first 
 

2.5   Image generating 
Considering that some images are still not stitched after the stitching is over, in order to 

achieve a good visual effect, if the tail stitching condition is satisfied, then stitch the current 
image. After the stitching is finished, we save the result image 𝐼'. In addition, we also recorded 
the offsets in the stitching process, and then stitched the high quality images based on these 
offsets. Where the tail stitching condition refers to the number of images skipped 𝑁98 since the 
last stitching is smaller than the threshold 𝑇98  and total number of images skipped 𝑁12$$  is 
smaller than the threshold 𝑇12$$. 

3   Experiments 

We experimented with the CPU i7-8700K and 32G memory, using C/C++ to implement 
the algorithm, and image processing relies on OpenCV[9]. It is important to note that we get the 



 
 
 
 

video frame images at a 100 milliseconds interval. In the process of collecting images, when the 
container accounts for about 80% of the entire picture, we start or end the collecting. The size 
of original image is 640×480. During the pre-processing, we did not crop the original image. 
We set 𝑇& to 30，𝑁$ to 3，𝑇: to 0.8，𝑇; to 35，𝑇< to 50，𝑇&"C to 0，𝑇&2< to 90，𝐿1 to 25，
𝑇&E< to 1，𝑇C@ to 0.5，𝑇CA  to 0.5，𝑇2 to 20，a to 0.33，𝑇98 to 2，𝑇12$$ to 6，𝑊" to 320，
𝐻" to 200. We use 30 to 200 lines of 𝐼" and 𝐼', and 20 to 320 columns of 𝐼" for image matching. 

 

  
(a) Candidate images                                              (b) Result image 

  
(c) Candidate images                                              (d) Result image 

  
(e) Candidate images                                              (f) Result image 

  
(g) Candidate images                                              (h) Result image  

  
(i) Candidate images                                              (j) Result image 

Fig. 3.  Some results of the proposed image stitching method. 
Figure 3(a), 3(c) and 3(e) are ideal candidate image set, which are relatively uniform in 

illumination and have enough texts on the containers. They are very advantageous for image 
stitching and good results are achieved, as shown in Figure 3(b) ,3(d) and 3(f). Pictures taken 
during the daytime are usually very clear, but there are also occasions when the lighting 
conditions are poor. As shown in Figure 3(g) , the illumination is poor, and there is no obvious 



 
 
 
 

text on the container. Even in the case, our method still achieved good result, as shown in Figure 
3(h). In the case of the current parameters, from opening the image to generating the resulting 
image, our method runs for about 2 seconds each round. 

As shown in Figure 3(i), the night image has a phenomenon of blurring and light 
interference, so it is more difficult to splicing images. The middle glare area is caused by a fixed 
electric light, which makes the image brighter, but because the light is uneven, it causes great 
difficulty in image matching. And because of the strong light, some texture information lost. 
We use the same parameters for the experiment, the effect is shown in Figure 3(j), the detail 
loss is more serious and the accuracy is reduced. 

4   Conclusions 

This paper presents an effective method for splicing container images using texture features. 
We flexibly use the template matching method to seek the starting frame and remove the static 
frames. Our method effectively filters matching points to obtain reliable offsets. Especially 
when there is no good matching points or the offset is unreliable, we splicing according to the 
offset calculated by the weighting speed. By recording the offset, our method can restore the 
entire stitching process to produce high quality images. Through experiments, our method has 
shown good results and can run at a faster speed. However, our method performs poorly in non-
uniform sampling situations and in poorly lit environments. We will improve this method to 
solve the above-mentioned problem in the future. 
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