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Abstract. Using Time Difference of Arrival(TDoA) positioning results and the Inertial
measurement unit(IMU) for calculating the motion state of information fusion can
significantly improve the positioning accuracy, due to the carrier in the process of
movement, the state of the system noise and measurement noise are not strictly obey the
normal gaussian distribution, which makes the traditional fusion positioning method
using Kalman Filtering algorithm less accurate. This paper proposes an adaptive filter
fusion localization mechanism with LSTM network correction. Firstly, a data
preprocessing method is designed to convert IMU data from the carrier coordinate
system to the geographical coordinate system. Then, based on kinematics theory, the
state equation and measurement equation of Adaptive Kalman Filter are established and
the system state noise is obtained. Furthermore, the model adaptively to update the
carrier coordinate, system state noise and measurement noise. Finally, the carrier
trajectory coordinates predicted by the coupled LSTM model are used to obtain the final
positioning results and complete the carrier trajectory filtering. Experimental results
show that the proposed fusion localization mechanism can effectively improve the
accuracy of carrier trajectory localization.
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1 Introduction

In recent years, with the continuous developments of location technology, Location-Based
Service (LBS) has received more and more attentions. LBS is an indispensable foundation and
support for many technologies such as mobile terminals, the Internet of Things, and virtual
reality. Intelligent warehousing and intelligent transportation in the Internet of Things,
somatosensory games and human-computer interaction in virtual reality, navigation services
and data statistics in mobile terminals all put the acquisition and perception of LBS in an
indispensable part, which shows broad business prospects and huge market value [1]. As the
development of modern science and technology, information query services such as eating,
drinking and playing, as well as LBS services, such as accidental location service, have urgent
requirements on positioning accuracy. If the positioning deviation is too large, the application
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value will be lost. In the current research, LBS is combined with user demand information to
expand the broader development prospects and application space, such as navigation and
tracking, location data fusion, and sniper marketing, etc.

For substations, a single positioning method is difficult to meet the needs of complex
substation environments, so multiple positioning methods need to be used for joint positioning.
The existing smart phone terminal is equipped with many sensor components, and their IMU
is inexpensive. So, based on TDoA positioning, the use of IMU for joint assisted positioning
has become a new trend. In literature [2], a combined positioning algorithm for indoor TDoA
is proposed to work in the case of normal line of sight signals. In the case of signal
interference, the IMU is used to provide accurate positioning in a short time to assist the
TDoA algorithm in positioning, and the Kalman filter is used for data preprocessing. In
literature [3], the author uses the TDoA system and an IMU consisting of an accelerometer to
estimate the position of the pedestrian, and performs extended Kalman filtering on the
measurement of the IMU to obtain the number of user's step, step size and fast switching of
the user direction. In literature [4], under the influence of non-line of sight (NLOS) error in
TDoA measurement to mobile platform, a precision distance difference selection method
based on IMU measurement was developed, which was combined with iterative extended
kalman filter to effectively reduce NLOS error. Both the Kalman filter and the extended
Kalman filter algorithm used in the existing literature assume that the noise of the positioning
system obeys the Gaussian distribution of the mean of 0[6-9]. But in real life, the system noise
changes constantly due to the up and down jitter of the measurement personnel during the
movement and the noise of the equipment. Therefore, it is necessary to propose a filtering
method that can adapt the complex noise of the system to improve the positioning accuracy.

Aiming at the low prediction accuracy and poor scalability of traditional models, this
paper proposes an adaptive filtering fusion localization mechanism with LSTM network
correction. Firstly, a data preprocessing method is designed to pre-filter the data of the inertial
measurement unit and convert the IMU data from the carrier coordinate to the geographic
coordinate. Then, based on the kinematics theory, the state equation of the system is
constructed and the state noise of the system is obtained. Furthermore, the adaptive Kalman
filter algorithm is used to adaptively update the carrier coordinates, system state noise, and
measurement noise. Finally, the LSTM model is adopted to predict the carrier trajectory
coordinates, the weighted average of the prediction results and the adaptive filtering results are
used to achieve the fusion positioning of the carrier.

2 System structure

Aiming at the low precision and poor flexibility of traditional filtering algorithms, an
adaptive Kalman Filtering algorithm with LSTM correction is proposed to improve the fusion
accuracy of IMU and TDoA data. The coordinate correction system proposed in this paper
consists of IMU unit, TDoA unit, adaptive Kalman Filter and LSTM model, as shown in
Figure 1. The IMU unit is used to collect motion state information of the carrier, including a
gyroscope, a magnetometer, and an accelerometer. The TDoA unit is used to acquire TDoA
positioning data. Adaptive Kalman Filter is used for Filtering. The LSTM model is used for
carrier trajectory correction.



Fig. 1. System model
The fusion localization processes are as follows.
1) Data preprocessing. This process obtains three kinds of data which are gyroscope,

accelerometer and magnetometer of IMU inertial measurement unit. It converts the local
coordinate system of IMU inertial measurement unit into geographic coordinate system, and
get the speed of carrier in geographic coordinate system and the value of the acceleration;

2) Adaptive Kalman Filtering. It combines the IMU and TDoA data by adopting the
adaptive Kalman Filter algorithm to improve the data accuracy;

3) Trajectory processing with LSTM model. The LSTM model is used to smooth the
latitude and longitude data in geographic coordinate to reduce the glitch or abnormal point of
TDOA positioning data.

3 Integration positioning mechanism

3.1 Data preprocessing
Accelerometers, gyroscopes, and magnetometers are included in the IMU. Since the

sensor tag can be installed at different positions on the research object, when it is involved in
the work, the direction of the 3-axis gyroscope is not clear. Therefore, it is necessary to
calculate the rotation angle by using the gyroscope meter to correct the accelerometer data to
realize the above data fusion. The relationship between the coordinate system of the carrier
and the geographic coordinate is shown in Figure 2.

Fig. 2. Carrier coordinate system and geographic coordinate system conversion



gx 、 gy and gz is the representation of the geographic coordinate system, 0x 、 oy and

oz means the carrier coordinate system. The angle between the velocity of the carrier motion
and the north direction is  , and the angle between the carrier coordinate system and the
geographic coordinate system is  , ov is the motion velocity of the carrier in the carrier
coordinate system.

IMU uses the magnetometer to determine the north direction of the carrier coordinate
system, and then use the accelerometer to calculate the carrier speed. Then we take the
gyroscope to calculate the angle  between the carrier speed and the carrier coordinate
system. The above information is used to calculate the velocity and acceleration components
of the carrier in the geographic location coordinate. This paper considers the motion of the
carrier in a planar scene. Therefore, according to the Weinberg expression [4], it is assumed
that the step size is proportional to the acceleration change of the traveling process, and the
carrier step is as in equation (1).

4
max mind A A  (1)

maxA and minA respectively means the maximum and minimum of the acceleration
within the step, while  is a scaling factor to handle different walking behaviors and step
lengths. The speed of the carrier is then calculated from the single-step duration of the carrier,
as in equation (2).

2 1( )v d t t  (2)

Since the inertial measurement unit can be freely mounted on the carrier, it is not clear
when the intervention is in the direction of the carrier. Therefore, the rotation angle must be
calculated by the accelerometer to correct the rotation angle of the gyroscope. The direction of
the instantaneous velocity is ov and the angle between the ox -axis of the carrier coordinate
system. Due to the instantaneous angular velocity measured by the gyroscope is discrete, the
current instantaneous velocity is the cumulative sum from the initial moment to the current
moment, as shown in equation (3).

0
( )T w t dt  (3)

Given the angles  and  , the velocity gv of the carrier relative to the geographic
coordinate system can be obtained, as defined in equation (4).
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According to the acceleration measured by the accelerometer, the acceleration ga of the
carrier relative to the geographic coordinate system can be obtained, as shown in equation (5).
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Therefore, after data preprocessing of the IMU inertial measurement unit, the velocity
and acceleration components of the carrier relative to the geographic coordinate system can be
obtained, and the TDoA measurement results can be corrected for fusion localization.
3.2 Adaptive Kalman Filter

The Kalman Filter algorithm uses the linear system state equation to estimate the state of
the system via the input and output of the system. The main process is represented by the
equation of state and the observation equation, such as equations (6) and (7).

, 1 1 ~ (0, )k k k k k kX A X w w N Q   (6)

~ (0, )k k k kZ HX v v N R  (7)

Where X is the state vector, , 1k kA  represents the transition matrix from the 1k  time
state to the k time state, and kw is the state noise matrix, obeying a Gaussian distribution
with the mean of 0 and the variance of Q . Z is the observation vector, H is the mapping
relationship between the state vector and the observation vector at time k , and kv is the
observation matrix at time k , following a normal distribution with a mean of 0 and a variance
of R .

Kalman Filter is a recursive solution process. In the case where the measured value of k
time has been measured, the state value update is mainly divided into two stages, namely the
prediction stage and the update stage. In the prediction stage, the demand has the predicted
probability with the mean t of the distribution 1: 1( | Z ) ~ N( , )ttt tP X   and the
variance t . In the update phase, the demand has to update the mean  t and  t variance of
the probability distribution  

1:( | ) ( , )ttt tP X Z N   .
(1) In the prediction phase, the mean t expression is as in equation (8).


11: 1[ | ]t tt tE X Z A    (8)

The variance t expression of the predicted probability is expressed by equation (9).


1[( )( ) ]T T
t tt tE X X A A Q       (9)

Where tX is the amount of change in the state of the carrier in a single step.
(2) In the update phase, the intermediate variable Kalman gain K is first calculated, as in

equation (10).
1( )T T

t t tK H H H R     (10)

The expression of the mean  t of the update probability is expressed by equation (11).
 ( )t t ttK Z H     (11)

The expression of the variance  t of the update probability is expressed by the equation
(12).

 ( )t tI KH    (12)
The updated probability mean  t is the updated state.



The traditional Kalman Filter algorithm is just applicable to linear control systems with a
priori statistical properties of known noise. However, in the process of carrier motion, due to
the complexity of the actual system, it is very difficult to obtain the system noise Q and the
measurement noise R of the motion model system. Due to the time-varying and random
nature of the actual situation, the statistical properties of the noise may be unknown and time-
varying, and the prior data is often lost due to changes in the situation. The Sage-Husa
Adaptive Kalman Filter algorithm can solve this kind of problem [10-12]. When using the
observation data for update filtering, the filter itself determines whether the system dynamics
model changes. That is, the system noise Q or the measurement noise R is estimated online
according to the measured value and the updated value of the system, the change of the noise
is tracked in real time, and the parameters of the filter are corrected to improve the filtering
precision.

During the motion of the carrier, the observation vector of the TDoA positioning output
is 1 [ , ]TZ x y , and the observation vector after the data preprocessing by the IMU system is

2 [ , , , ]Tx y x yZ v v a a . By integrating the IMU and TDoA data, the TDoA data is modified
and the observation vector 1 2[Z , ]TZ Z of the system is obtained and state vector

, , , ,[ , , , , , ]k k k x k y k x k y kX x y v v a a . When the carrier single-step motion time is t , it is
obtained by a kinematic formula, and the state transition matrix is as shown in equation (13).
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In the motion of the carrier, both velocity and acceleration are variables, meaning that the
value obeys the Gaussian distribution, and the variance Q of the state noise matrix is as
shown in equation (14).
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Where , 1vx k  , , 1vy k  , ax, 1k  and , 1ay k  respectively represents the velocity and
acceleration noise variance of the carrier in the geographic coordinate axis. In equation (8), the
observation matrix H I , R is the measurement noise covariance matrix, and its value is
correlated with the measurement and measured by experimental means. After setting the initial
values of Q and R , they are substituted into the Adaptive Kalman Filter algorithm, and are
continuously updated to improve the overall trajectory correction accuracy.
3.3 Track correcting with LSTM model

The LSTM network is a time recurrent neural network that is an enhancement to the
RNN neural network and is suitable for processing and predicting time series[13-16]. In this
paper, the LSTM network model is used to modify the carrier trajectory.
1) Recurrent Neural Network RNN

The difference between the structure of RNN and standard neuron networks is that it has
a recursive structure that can transmit information from the last state to the current state, as
shown in Figure 3. When the input is time series, it can be extended to a series of
interconnected standard neuron networks.

Fig. 3. Cyclic Neural Network Structure
As shown in Figure 3, each node represents a single layer neural network at a single point

in time. The weight from the input layer to the hidden layer is labeled U , the hidden layer to
its own weight is labeled W , and the hidden layer to output layer is labeled as V . These



weights will be reused in each sequence. However, for traditional RNNs, some of the
information will be lost during each feedback process. When the time reaches a certain point,
the initial information will be degraded and the gradient disappears, so the RNN loses its
ability to remember for a long time.
2) Long Short-Term Memory LSTM

The difference between the LSTM network and the standard RNN is that the structure of
the hidden unit of the RNN is replaced by the memory module, avoiding the disappearance of
the gradient of the regular RNN. The memory unit is a Cell structure, and three doors are
placed in one Cell, which are an input gate, a forgetting gate, and an output gate. A message
enters the LSTM network through the input gate, which can be judged according to the rules.
Only information that conforms to the algorithm's authentication will be left and output via the
output gate. The mismatched information is forgotten through the Forgotten Gate. It can be
described as Figure 4.

Fig. 4. LSTM network Cell structure
In the process of updating in the Cell, first though updating the output of the forgetting

gate, the part of the historical motion trajectory of the carrier is forgotten, and the time period
long from the current time is less correlated with the current path prediction. However, the
carrier motion trajectory in the time period close to the current time is highly correlated with
the trajectory of the carrier at the next time, and thus the partial information remains. The
forgetting gate output expression is as shown in equation (15).

1( )t f t f t ff W h U x b     (15)
After that, the output of the input gate is updated. This part determines the information

learned by the system. When the new coordinate track point of the carrier is input, the Cell
analyzes the current trajectory and learns the trend of the recent historical trajectory, so as to
correct the carrier trajectory value later. The expression of the input gate is as shown in
equation (16).
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The results of both the forgetting gate and the input gate will act on the cell state tC , as
in equation (17).



1t t t t tC f C i a   (17)

Where  represents the Hadamard product of the matrix.
Next, update the output gate and decide to enter the state of the next stage of the Cell

message, as in formula (18).
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Finally, the index of the current sequence is updated and the predicted value of the carrier
at the next stage position is output, as in equation (19).

( )t tZ Vh c  (19)
When the LSTM model predicts the value of the next coordinate from the historical

trajectory coordinates, it is weighted and averaged with the trajectory coordinate value of the
Adaptive Kalman Filter at the next moment. The weight is obtained by the accuracy ratio of
the model prediction and the accuracy ratio of the Adaptive Kalman Filter algorithm, and then
the smoothing of the carrier trajectory is realized.

4 Result

In order to evaluate the proposed trajectory correction algorithm, different walking tests
were performed in an empty corridor of size 25 m × 8 m. The eight TDoA anchors in the
experiment were placed in a rectangular shape. In order to achieve communication between
different anchor points and the central server, each anchor point is equipped with Ethernet.
And the central server will provide TDoA measurements for the positioning engine[17-19]. To
ensure that the user's different measurement unit positions worked as well as the different
walking behaviors, the three people test with three different measuring unit positions, one
placed in the hand, one attached to the belt, and the last tester places the measuring unit in the
pocket of the shirt. Since the tester moves up and down during the movement, and the
measuring device causes the system noise and measurement noise to disobey the Gaussian
distribution due to factors such as the use time, so the noise constantly changes with time. By
comparing Kalman filter, adaptive Kalman filter and adaptive Kalman filter with LSTM
correction to the filtering accuracy of the motion trajectory, the proposed system is evaluated.
The positioning index is the mean value of the error vector 1 norm obtained by the difference
between the filtered value of the undetermined target position coordinate and the real value of
the undetermined target position coordinate, that is the relative coordinate error.

Figure 5 shows the results of a normal test in which the measuring unit is held in the hand
by the tester. The black curve represents the true path trajectory, while the green, blue, and red
curves represent the trajectory filter values of Kalman filtering, adaptive Kalman filtering, and
adaptive Kalman filtering with LSTM correction, respectively. After calculation, the relative
coordinate error of the measured value of the carrier coordinates relative to the real walking
trajectory is 0.8532m, the relative coordinate error after Kalman filtering is 0.6214m, and the
relative coordinate error after adaptive Kalman filtering is 0.4535m, the relative coordinate
error of the LSTM modified adaptive Kalman filter algorithm is 0.2732m.



Fig. 5. rectangular path route filtering
Figure 6 shows a test case in which the measuring unit is placed in the tester's shirt

pocket. In this test, the proposed model has poor accuracy in estimating the position at the
initial stage, but after a short time, the filter trajectory converges. The longer the tester spends
walking, the better performance will be in the filter. It can be seen from Fig. 6 that the
proposed adaptive Kalman filter algorithm with LSTM correction can achieve convergence
faster than the Kalman filter algorithm. After calculation, the relative coordinate error of the
measured value of the carrier coordinates relative to the real walking trajectory is 0.7562m, the
relative coordinate error after Kalman filtering is 0.5234m, and the relative coordinate error
after adaptive Kalman filtering is 0.4575m, the relative coordinate error of the LSTM
modified adaptive Kalman filter algorithm is 0.3632m.

Fig. 6. cross track path filtering
The cumulative distribution function of the trajectory filter error of all the testers in Fig. 7

shows that the proposed adaptive Kalman filter algorithm with LSTM correction performs
well. In 90% of cases, the error of the adaptive Kalman filter with LSTM correction is 1.45m
or lower, while the error of the adaptive Kalman filter algorithm is 1.72m. The error of the
traditional Kalman filter algorithm is 2.42m.



Fig. 7. Cumulative error distribution function
It can be obtained from experiments that the adaptive Kalman filter algorithm with

LSTM correction can correct the measurement target trajectory well, thus improving the
positioning accuracy.

5 Conclusion

In order to solve the problem that the system state noise and measurement noise are
constantly changing during the motion, this paper proposes an adaptive fusion positioning
mechanism of TDoA and IMU data with LSTM correction. Firstly, the IMU data is
transformed into the geographic coordinate system, then the adaptive Kalman filter algorithm
is used to fuse the inertial measurement unit with the TDoA result, and then the trajectory
prediction result of the LSTM model is combined to correct the trajectory of the carrier. The
simulation results show that the proposed correction mechanism can improve the trajectory
correction accuracy under non-Gaussian noise interference and has good scalability. Therefore,
in the subsequent research, the positioning solution of the carrier in the non-Gaussian
nonlinear motion system will be continuously studied, the complexity of the model will be
reduced to improve the positioning accuracy of the fusion solution and reduce the system
energy consumption.
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