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Abstract. With distributed communication, computation, and storage resources close to 

end users, edge computing has great potentials to support delay-sensitive industrial 

applications involving intelligent edge devices. Cognitive portable ground penetrating 

radars (GPRs) are expected to achieve high-quality sensing performance in a variety of 

industrial environments by operating intelligently and adaptively under varying sensing 

conditions. Although edge computing makes it very promising to develop cognitive 

portable GPRs, both strict performance requirement and trade-offs between 

communication and computation pose significant challenges. This paper presents an edge 

computing framework for cognitive portable GPRs. Specifically, the system architecture 

of an EC-enabled cognitive portable GPR is developed. Based on the identification of 

various involved computation tasks, an offloading policy was proposed to determine 

whether computation tasks should be executed locally or offloaded to the edge server. 

Experimental results show the efficacy of the proposed methods. The framework also 

provides insight into the design of cognitive Internet of things (IoT) supported by edge 

computing. 
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1 Introduction 

Edge computing is a computing paradigm that uses one or more collaborative end-user 

clients or near-user edge IoT devices to carry out a substantial amount of storage, 

communication, control, configuration, measurement and management. With distributed 

communication, computation, and storage resources and services on or close to devices and 

systems in the control of end-users, edge computing may enable real-time autonomous 

configurations and operations of those devices and systems. Compared to cloud computing, 

edge computing emphasizes proximity to end users and client objectives, dense geographical 

distribution and local resource pooling, latency reduction and backbone bandwidth savings to 

achieve better quality of service (QoS) and edge analytics/stream mining, resulting in superior 

user experience and redundancy in case of failure. Due to these benefits, edge computing has 

great potentials to support delay sensitive industrial applications, such as real-time industrial 

data analytics on the edge, mining of industrial streaming data, and industrial control functions 

[1]–[4]. 

  Portable GPRs, such as handheld or drone-borne GPRs, have been extensively used in 

many industrial applications, such as coal mining, structural health monitoring, subsurface 

utilities detection and localization [5], [6]. GPR is a non-destructive evaluation technique for 

effective assessment of subsurface conditions in large dielectric bodies, such as city streets, by 
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launching and receiving electromagnetic (EM) waves from the same side of a structure. 

Location and nature of subsurface objects can be characterized by collecting and analyzing 

reflected and scattered waves [7], [8]. GPR-based subsurface survey is complicate as various 

sensing environment and subsurface targets have dissimilar features. In actual GPR survey, 

GPR sensing quality could be affected by many factors, including environmental factors, such 

as soil dielectric properties, environment noise, clutter, multipath effects, combined near and 

far field effects, and GPR operational system parameters, such as wavelength (or frequency), 

waveform, polarization, wave timing, and transmitter and receiving antennas direct coupling, 

etc. In addition, the subsurface objects have different structural features and electromagnetic 

properties that affect GPR EM wave propagations differently. Hence processing GPR images 

and extracting information of interest are challenging and involve a series of sophisticated 

steps. In nearly all existing GPR systems, the GPR data processing is performed off-line 

where the data are collected on field and stored, and then post-processed on a computer after 

the scanning. Such a processing approach does not adaptively adjust GPR operations in the 

survey. 

To achieve optimum sensing performance, it is desired to design a GPR system that can 

operate adaptively under varying sensing conditions. For instance, to detect a shallowly buried 

object of small size, GPR radiating high frequency EM waves can result in a fine sensing 

resolution; while to detect deep buried object, radiating lower-frequency EM waves have 

better ground penetrating capabilities. Based on such observations, cognitive GPRs have been 

proposed and investigated by dynamically tuning of GPR operational parameters to improve 

sensing performance [9]. 

Edge computing provides ideal support for implementing and operating cognitive 

portable GPRs. The functions of GPR signal processing and intelligence generation require 

significant computation and storage capabilities, which could pose significant challenges to 

portable GPRs that have limited energy, computing, and storage resources. With edge 

computing, a promising solution is to offload some or all the computation and storage tasks to 

an edge server. A cognitive GPR requires contiguous low-latency communications for real-

time transmission of data and control feedback. The proximity of edge servers to end 

users/devices may satisfy such communication requirement. In contrast, traditional remote 

cloud computing services have difficulty providing uninterrupted services to cognitive 

portable GPRs due to the intermittent network connectivity and long communication latency. 

Although edge computing makes it very promising to develop a cognitive portable GPR, 

there are still several significant research challenges that need to be addressed. Some major 

research questions to be asked are: which modules of a cognitive portable GPR should be 

implemented at edge servers? Which computation tasks should be offloaded to the edge 

servers? Which computation tasks should be locally executed at the front end (i.e., the 

transceiver side) of the GPR? Online intelligence generation requires continuous and real-time 

transmission and analysis of vast volumes of GPR data. A roadway GPR inspection can 

produce 100 or more gigabytes of data per hour. To reduce the amount of data to be 

transmitted from the GPR to the edge servers, some local data-processing functions could be 

performed at the transceiver side. However, the local computation time will increase the 

overall latency of the feedback loop. Therefore, the trade-off between communication and 

computation of the perception-action cycle needs to be studied by considering resource 

constraints and performance requirement. As the GPR moves, wireless communication 

channels are time varying, resulting in different data transmission rate and latency 

performance. Thus, computation task scheduling also needs to consider the conditions of the 

wireless channels. 

There has been some research conducted on computation offloading for edge computing 

[10]–[12]. In [10], a Lyapunov optimization-based dynamic computation offloading algorithm 

was proposed to jointly decide the offloading decision, the CPU-cycle frequencies for mobile 



 

 

 

 

execution, and the transmit power for computation offloading with energy harvesting devices. 

In [12], a joint offloading and resource allocation scheme was developed for a multi-user 

system to minimize the overall cost of energy, computation, and delay for all users. In most of 

existing research on offloading, delay performance is evaluated either by using delay bound 

values or average delay values based on statistical information of the involved stochastic 

processes, such as the computation task arrival and the wireless channels, which may make 

them inapplicable in practical applications. 

This paper is focused on the development of an edge computing framework that enables 

cognitive portable GPRs. First, an edge computing architecture for cognitive portable GPRs is 

developed and the functions of different modules are explained. Then, different computation 

tasks in a cognitive GPR are identified. A computation task offloading policy is designed to 

determine whether a computation task should be executed at the local GPR computer or at a 

remote edge server. To the best of our knowledge, this is the first work on edge computing for 

the development of cognitive portable GPRs. 

 

 

Fig. 1. The workflows of a traditional GPR (a) and a cognitive GPR (b). 

2   The proposed system architecture 

A conventional mode of GPR operation is that an expert sets the operational parameters 



 

 

 

 

into a proper configuration based on previous experience, which is an iterative time-

consuming process, as shown in Figure 1(a). An alternative is to use a cognitive GPR where 

intelligence is generated on the fly to adaptively adjust the operational parameters based on 

data analysis and feedback control [9]. 

As shown in Figure 1(b), a cognitive GPR consists of an adaptive GPR transceiver, a 

perceptor module, a memory module, and a cognitive analyzer. The operation of the cognitive 

GPR follows a perception-action cycle: first, the GPR transceiver collects the reflected wave 

data about subsurface objects and sends them to the preceptor. Then, the preceptor processes 

and analyzes the data to extract signature patterns and format a perception of subsurface 

conditions. The memory module has a GIS database containing urban subsurface condition 

attributes and spatial locations. The cognitive analyzer carries out machine learning based on 

both the processing results from the perceptor and the prior knowledge about GPR 

measurement from the memory module to produce intelligent response for the control of radar 

transceiver reconfigurations. Once receiving the intelligent feedback from the cognitive 

analyzer, the adaptive GPR transceiver changes its operational parameters. During this 

process, collected GPR data can also be integrated with other data acquired by IoT devices 

such as positioning sensors. 
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Fig. 2. The architecture of the proposed EC-enabled cognitive portable GPR. 

Next, a system architecture for the proposed EC-enabled cognitive portable GPR is 

presented. As shown in Figure 2, the GPR mainly includes two parts: the front end and the 

back end. The front end is portable and includes a GPR transceiver for launching and 

receiving electromagnetic waves, a microcomputer for local computation, and a wireless 

access point for communicating with the edge server. Within the microcomputer runs a task 

scheduler to whether a computation task should be offloaded to the edge server. If the task is 

not offloaded, it will be executed by the microcomputer. The back end of the cognitive GPR, 

including the perceptor module, the memory module, and the cognitive analyzer, resides at the 

edge server. 

In the context of edge computing, the perception-action cycle of the cognitive GPR can be 

described as follows. The GPR transceiver collects the reflected wave data about subsurface 

objects. Based on the types of computation tasks, the delay performance requirement, and the 

resource constraints, the scheduler decides whether each task should be performed locally or 

offloaded to the edge server. Following the decision, the microcomputer either offloads a task 

or executes the task locally. With the corresponding information from the GPR front end, the 

cognitive analyzer at the edge server generates control command for the GPR transceiver 

reconfigurations. The control command will be wirelessly sent back to the GPR front-end. As 

a result, the operational parameters of the GPR changes in a self-adaptive manner. 



 

 

 

 

As the GPR moves across a field of interest, it may walk out of the coverage of the edge 

server. To ensure continuous sensing, multiple edge servers can be deployed in the field. As 

shown in Figure 3, the GPR approaches to the coverage boundary of two neighbouring edge 

servers, service migration [13] from one edge server to the other edge server can be carried 

out for the GPR. The service migration process can be coordinated by a controller. Due to 

space limitation, further discussion on service migration is beyond the scope of this paper. In 

the following, the discussion is focused on the interaction between the GPR and one edge 

server. 

 

Fig. 3. Service migration from one edge/fog server to  

another for continuous operation of a cognitive portable GPR. 

 

3 Identification of computation tasks of cognitive portable GPRs 
 

3.1 GPR Data pre-processing 

 

In real time cognitive sensing, the first type of computation task is background removal, 

noise filtering and clutter mitigation. It has been widely demonstrated that averaging and 

subtraction is effective in noise reduction [14]–[16]. The averaging operation is performed by 

stacking every number of adjacent A-scan waveforms [8], which can reduce random noise and 



 

 

 

 

improve radargram signal-to-noise-ratio (SNR). For the subtraction calculation, an A-scan 

waveform obtained from the averaging calculation is selected as the reference and subtracted 

from all other averaging A-scan waveforms. Such calculations can effectively eliminate 

stationary background signals, antenna direct couplings, and mitigate the clutter resulting from 

ground surface reflection.  

The averaging and subtraction is a simple process and does not require intensive 

computing resource. Therefore, in our proposed EC-enabled cognitive portable GPR system, 

this type of computation task can either be executed by the local computer at the GPR front 

end, or offloaded to the edge server, depending on the applied task scheduling policy. 

 

3.2 Regions-Of-Interest (ROI) Detection 
 

The main goal of ROI detection is to search for sporadically distributed subsurface 

features under test in big data set. In radargram, the ROI data have dissimilar features from the 

background. By performing statistical analysis to evaluate data singularity, ROI data segments 

can be identified. Then by checking corresponding coordinates, the location and burying depth 

of ROI can be determined. In this study, Renyi entropy analysis [14], [17] is implemented to 

search for ROI. 

In information theory, entropy is a measure of the uncertainty associated with a random 

variable. It quantifies the expected value of the information contained in a message. For our 

GPR data processing, Renyi entropy characterization is developed to identify the singular 

region. In particular, a high Renyi entropy value indicates high degree of data similarity while 

a low entropy value highlights high degree of data singularity. Assume the received GPR 

reflection signal is 𝑌 (𝑡), it can be described as 

 

𝑌 (𝑡)  =  𝐷(𝑡)  +  𝑆(𝑡).      (1) 

 

where 𝐷(𝑡) represents the reflection signal from the object of interest; 𝑆(𝑡) models remaining 

interference and noise upon pre-processing. In calculation, power normalization is first 

performed with the summation of the power of the same time index data points on different 

traces. The normalization equation is expressed as 

 

||𝑌𝑖(𝑡)|| =
|𝑌𝑖(𝑡)|2

∑ |𝑌𝑖(𝑡)|2𝑚
𝑖=1

    (2) 

 

where ||𝑌𝑖(𝑡)|| is the normalized signal, 𝑖 denotes the trace index and m is the total number of 

traces included; 𝑡 specifies the time index of pulse data on each reflection trace waveform. 

Upon power normalization, a generalized Renyi’s entropy is calculated to assess data 

singularity: 

𝐸𝑎(𝑡) =
1

1−𝑎
𝑙𝑜𝑔𝑒 ∑ ||𝑌𝑖(𝑡)||

2𝑚
𝑖=1     (3) 

 

where 𝐸𝛼(𝑡)  is the entropy quantification, and a denotes the entropy order. Eq. (3) is 

equivalent to the basic Shannon entropy when 𝑎 equals 1. 

The entropy analysis is an intensive computation process that highly demands for 

computing power and CPU time. To leverage the calculation efficiency, in our EC-enabled 

cognitive GPR system, the entropy analysis is most likely implemented on the edge server 

instead of on the local computer. 

 



 

 

 

 

 

Fig. 4. DBNN processing GPR B-scan at multiple scales to detect subsurface infrastructure conditions. 

Each layer of feature detectors maps more complex relationships within the streaming GPR data. 

3.3 DBNN Processing of GPR B-Scan Images 
 

The cognitive analyzer combines the inspection data and prior knowledge about GPR 

measurement of structural features to produce intelligent responses to control radar transceiver 

reconfigurations. The cognitive analyzer can be implemented by applying machine learning to 

GPR B-scan images [8]. Deep Belief Neural Networks (DBNNs) [18] are a state-of-the-art 

machine learning approach that meets the speed and complex signal cognitive abilities 

required for the proposed cognitive GPR. As shown in Figure 4, A DBNN processes GPR B-

scan images at multiple scales to detect subsurface infrastructure conditions. Each layer of 

feature detectors maps more complex relationships within the streaming GPR data. The output 

from the DBNN is used in the feedback loop embodying perception and action mechanisms to 

equip the GPR with intelligence to maximize the inspection information gain. Different 

deterioration stages can be classified and confidence values for the classifications can be 

provided in real time. 

4 Dynamic computation task scheduling 
 

4.1  The communication models of the GPR front end 

As discussed previously, GPR data pre-processing, analysis, and intelligence generation 

involves different computation tasks. A computation task could either be executed by the local 

microcomputer equipped at the GPR front end or be offloaded to the edge server. Let 𝐷𝑖
𝑖𝑛  and 

𝐿𝑖
𝑖𝑛 denote the input data and data size of computation task 𝑖, respectively. If computation task 

𝑖 is executed by the local microcomputer, output data 𝐷𝑖
𝑜𝑢𝑡  with size 𝐿𝑖𝑛

𝑜𝑢𝑡 will be produced. 

Let Ci be the CPU processing cycles of computation task 𝑖. Assume that the CPU at the local 

microcomputer is operating at frequency 𝑓𝑙  with power consumption 𝑃𝑙 . Then, the 

computation time needed to execute computation task 𝑖 at the GPR front end 𝑇𝑖
𝑙_𝑐𝑝

=  C𝑖/𝑓𝑙 

and the local energy consumption on computation is 𝐸𝑖
𝑙_𝑐𝑝

= 𝑇𝑖
𝑙_𝑐𝑝

. 𝑃𝑙 . 

Assume that if the computation task 𝑖 is executed locally at the GPR front end, output 

data 𝐷𝑖
𝑜𝑢𝑡  needs to be transmitted to the edge server. Let 𝑃𝑡𝑥  be the transmit power of the 

wireless transmitter at the GPR front end to communicate with the edge server and B the 

system bandwidth. The achievable throughput for transmitting 𝐷𝑖
𝑜𝑢𝑡 is 𝑟𝑖 = 𝐵𝑙𝑜𝑔2 (1 +

𝛾𝑖.𝑃𝑡𝑥

𝑁0.𝐵
) 

where 𝛾𝑖 is the channel power gain which is assumed to be constant during transmitting the 

data of computation task 𝑖; and 𝑁0 is the noise power spectral density at the receiver of edge 

server. The communication delay and energy consumption of transmitting 𝐷𝑖
𝑜𝑢𝑡  can be 



 

 

 

 

calculated as 𝑇𝑖
𝑙_𝑐m  =  𝐿𝑖

𝑜𝑢𝑡/ r𝑖  and 𝐸𝑖
𝑙_𝑐𝑚 = 𝑃𝑡𝑥 ⋅ 𝑇𝑖

out  respectively. Since the computation 

delay on input data 𝐷𝑖
𝑖𝑛 and the transmission delay on output data 𝐷𝑖

𝑜𝑢𝑡of task 𝑖 could overlap 

in time, the overall delay of processing task 𝑖 at the GPR front end, 𝑡𝑖
𝑙_𝑝𝑟

, satisfies 

 

𝑚𝑎𝑥{ 𝑇𝑖
𝑙_𝑐𝑝

, 𝑇𝑖
𝑙_𝑐𝑚} ≤ 𝑡𝑖

𝑙_𝑝𝑟
≤ 𝑇𝑖

𝑙_𝑐𝑝
+ 𝑇𝑖

𝑙_𝑐𝑚
    (4) 

 

where max{ 𝑇𝑖
𝑙_𝑐𝑝

, 𝑇𝑖
𝑙_𝑐𝑚} corresponds to the case where the maximum time overlap between 

computation and transmission takes place; 𝑇𝑖
𝑙_𝑐𝑝

+ 𝑇𝑖
𝑙_𝑐𝑚

  is the case where the transmission of 

𝐷𝑖
𝑜𝑢𝑡  starts right after the computation on input data 𝐷𝑖

𝑖𝑛  ends without time overlap.  

The total energy consumption of processing computation task 𝑖 locally, defined as the 

sum of energy consumption on both computation and communication, is  

 

𝐸𝑖
𝑙 = 𝐸𝑖

𝑙_𝑐𝑝
+ 𝐸𝑖

𝑙_𝑐𝑚
                 (5) 

4.2 The Communication models of the GPR back end 

Assume that if the computation task 𝑖 is offloaded to the edge server, input data 𝐷𝑖
in needs 

to be transmitted to the edge server for task execution. With the throughput 𝑟𝑖, the delay of 

transmitting input data 𝐷𝑖
in to the edge server is 𝑇𝑖

𝑓_𝑐𝑚
= 𝐿𝑖

in/𝑟𝑖 . The corresponding energy 

consumption on data transmission is 𝐸𝑖
𝑓_𝑐𝑚

= 𝑃𝑡𝑥 ⋅ 𝑇𝑖
𝑓_𝑐𝑚

. We assume that the edge server has 

powerful computation capability through parallel computing. Thus, the delay of executing a 

computation task at the edge server is negligible. 

 

 

4.3 The proposed offloading policy 

Computation offloading policies play critical roles in maximizing the inspection 

information gain of the cognitive GPR. Next, an offloading policy will be presented for the 

scheduler at the GPR front end to dynamically determine whether a computation task should 

be executed locally or offloaded to the edge server. 

The scheduler maintains a computation task buffer. We assume that different tasks in the 



 

 

 

 

buffer are scheduled on a first-come, first-served basis. Let 𝐵 = {1,2,···, 𝑖 −  1, 𝑖} denote the 

task buffer having 𝑖  tasks at the present time with the ith task being the latest one to be 

processed. It is also assumed that both the local computation resources and channel side 

information for the already scheduled tasks are available to the scheduler so that based on this 

information the scheduler could estimate a timeline of the completion of the scheduled tasks. 

Let 𝑡1:𝑖−1
𝑞

 be the overall time needed to complete the processing of the 𝑖 − 1 tasks existing in 

the buffer when the ith task enters the buffer. 𝑡1:𝑖−1
𝑞

 can be considered as the queuing delay of 

task 𝑖 before it is processed. Note that among these 𝑖 − 1 tasks, some tasks may be locally 

executed at the GPR front end, and others may be offloaded to the edge server. Let 𝑑𝑖
𝑙 , 𝑑𝑖

𝑓
∈

{0,1} denote the offloading decision indicator for computation task 𝑖, i.e., if the task is decided 

to be executed by the local microcomputer at the GPR front end, 𝑑𝑖
𝑙 = 1  and 𝑑𝑖

𝑓
= 0 ; 

otherwise 𝑑𝑖
𝑙 = 0 and 𝑑𝑖

𝑓
= 1. Thus, the overall time needed to complete all of the 𝑖  tasks 

present in the buffer can be estimated as   

 

𝑡1:𝑖
𝑞

= 𝑡1:𝑖−1
𝑞

+ 𝑑𝑖
𝑙 ⋅ 𝑡𝑖

𝑙_𝑝𝑟
+ 𝑑𝑖

𝑓
⋅ 𝑇𝑖

𝑓_𝑐𝑚
    (6) 

 

The proposed computation task offloading policy for scheduling task 𝑖  is shown in 

Algorithm 1. The offloading policy takes into account the energy limitation of the mobile 

GPR front end. Assume that each computation task 𝑖 is associated with a deadline 𝑇𝑖
max. At the 

beginning, the scheduler calculates the estimated delay 𝑇𝑖
𝑓_𝑐𝑚

 of transmitting data 𝐷𝑖
in , the 

estimated overall delay 𝑡𝑖
𝑙_𝑝𝑟

, and the overall time 𝑡1:𝑖−1
𝑞

 needed to complete the 𝑖 − 1 task 

present in the buffer.  If computation task 𝑖 can be executed at the edge server before its 

deadline 𝑇𝑖
max (line 2), and at the same time, the energy consumption 𝐸𝑖

𝑓_𝑐𝑚
 on transmitting 

input data 𝐷𝑖
in is less than the energy consumption 𝐸𝑖

𝑙 on local processing of task 𝑖 (line 3), the 

computation task will be offloaded to the edge server (line 4). If computation task 𝑖 can be 

executed at the edge server before its deadline 𝑇𝑖
max (line 2), and at the same time, the energy 

consumption 𝐸𝑖
𝑓_𝑐𝑚

 on transmitting input data 𝐷𝑖
in is larger than the energy consumption 𝐸𝑖

𝑙 on 

local processing of task 𝑖 (line 5), computation task 𝑖 will be locally executed at the GPR front 

end; after the execution, the resulting output data 𝐷𝑖
out will be sent to the edge server (line 6). 

This way, the energy consumption at the GPR front end can be reduced as much as possible. If 

computation task 𝑖 cannot be executed at the edge server before its deadline 𝑇𝑖
max but it can be 

processed locally before the deadline (line 8), computation task 𝑖 will be locally executed at 

the GPR front end; after the execution, the resulting output data 𝐷𝑖
out will be sent to the edge 

server. If computation task 𝑖 cannot be completed either at the GPR front end or at the edge 

server (line 10), it will be dropped from the buffer (line 11).  

 

5 Performance evaluation 

 
5.1 System setup 

 
For design evaluation, underground pipeline inspection experiment was carried out on a 

street close to an institutional campus. A picture of the test site view is shown in Figure 5. In 

the experiment, the GPR front end is a dual-band system with GSSI SIR-30 control unit which 

contains all radar electronics to control GPR signal generation and receiving signal acquisition 

and transmission. It has two sets of ground coupled ultra-wide bandwidth antennas for 

radiating EM waves and receiving subsurface reflection signals. The GPR front end hardware 

can be configured to be operable in two frequency bands, 400 MHz and 1.6 GHz. By making 

the frequency band selectable, it facilitates to achieve optimum sensing resolution and sensing 



 

 

 

 

depth. The GPR back end resides at an edge server which is located in a building in the 

vicinity of the test site and is connected to the GPR front end through a street Wi-Fi network. 

In the operation, the GPR front end radiates short pulses toward the ground. The 

reflection signal at each location produces an A-scan waveform whose amplitude and phase 

parameters record the features of subsurface objects that the pulse encounters during its 

propagation. By moving GPR antennas to scan the survey area, numerous A-scan waveforms 

are collected. By assembling all A-scan waves together, B-scan images are obtained to 

produce more comprehensive views of the subsurface objects. One of the B-Scan images 

obtained onsite is also shown in Figure 5. 

 

 
Fig. 5. Picture of the test site. 

 

In the context of edge computing, signal processing and intelligence generation tasks are 

partitioned and processed based on the task scheduling policy. In the experiment, multiple 

GPR scans are run over different spaces. Due to different scanning lengths, different scans 

generate different amounts of GPR raw data (in the format of GZT files). For each scan, the 

GPR raw data are sent from the GPR front end to the edge server. Figure 6 shows the raw data 

size of each GPR scan and the GPR raw data transmission time. The pre-processing time for 

preprocessing the GPR raw data and the B-Scan generation time for assembling the 

corresponding A-Scans into a B-Scan image at the edge server are also shown in the figure. It 

can be observed that the transmission time is not proportionate to the data size due to the time-

varying data rate of the Wi-Fi network. In addition, for some scans, the transmission time is 

much longer than the B-Scan generation time and the pre-processing time. 

 

 
Fig. 6. The data size, the time for transmitting the data to the edge server, the data pre-processing 

time and B-Scan generation time at the edge server of each GPR scan. 



 

 

 

 

Figure 7 shows the Renyi entropy result calculated along Y-axis for a B-scan image. 

Similar result can be obtained along x-axis for the same image. The singular segments along 

each direction can be identified by employing OTSU’s thresholding [19]. Combining these 

results produces the final ROI, as shown in Figure 8. 

 

 
Fig. 7. Entropy analysis along Y-axis B-scan image; b. Entropy curve 

 

 
Fig. 8. The region of interest is identified. 

 

The GPR data processing results direct the cognitive analyzer to select GPR operational 

parameters. In this work, GPR operating frequency and polarization are considered as the 

parameters to be adjusted at the GPR transceiver module. Figure 9 shows B-scan images 

obtained by the dual-band GPR. For comparison, images acquired with both frequency band 

settings are plotted. In the 400-MHz image, the sewer pipe pattern is detected and labelled. 

The pipe’s burying depth is approximately 75 inches. While for the 1.6-GHz configuration, as 

GPR sensing depth cannot surpass 30 inches, the sewer pipe is not detectable. As a result, in 



 

 

 

 

the following scan, the 400-MHz setting was selected by the cognitive analyzer at the edge 

server and sent back to the GPR transceiver.  

 

 
Fig. 9. B-Scan Images of sewer pipe obtained with 400 MHz and 1.6 GHz frequency settings. 

 

 
Fig. 10. GPR measurements of rebars in concrete slab: a) three different scanning angles; b. the 

resulting B-scan images. 

 

 

Figure 10 shows the polarization dependence of a series of scans using different 

polarization angles on a concrete slab with three embedded steel rebars. The 90- and 45-

degree scanning angles produce impressive sensing results. The 0-degree scanning angle was 

avoided by the cognitive analyzer. 
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5 Conclusion 

This work presented an edge computing framework for the development of cognitive 

portable GPRs. The system architecture of the proposed EC-enable cognitive portable GPR 

was developed. Different computation tasks in a typical perception-action cycle of cognitive 

GPRs were identified and explained. A computation task offloading policy was designed to 

determine whether a computation task should be executed at the local GPR computer or at the 

remote edge server. Experiment was conducted to demonstrate the efficacy of the proposed 

system. 
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