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Abstract. In this study, the abnormal driving detection in the current research hotspot 
wireless sensor network (WSN) is emphatically discussed, and three improved fusion 
models based on Densely Connected Convolutional Network (DenseNet), which is 
named Wide Group Densely Network (WGD), Wide Group Residual Densely Network 1 
(WGRD1), and Wide Group Residual Densely Network 2 (WGRD2) respectively, are 
proposed for the first time. WGD introduces two deep learning network indicators, width 
and cardinality, into DenseNet. WGRD1 and WGRD2, on the basis of WGD, use two 
different methods to introduce the important idea of ResNet into DenseNet, which is 
residual-block output and direct-connected streams are added by elements. These three 
models use end-to-end learning for training. The experimental analysis based on the 
abnormal driving image data set shows that the performance of our improved model for 
abnormal driving detection in the wireless sensor network is better than several excellent 
deep learning models and traditional deep learning models. 

Keywords: Abnormal Driving Detection, Wide Group Densely Network, Wide Group 
Residual Densely Network. 

1   Introduction 

Wireless sensor network (WSN) has become an important field of contemporary 
multimedia research because of its great importance in both academic research and daily lives 
of human beings. Generally speaking, wireless sensor network techniques try to integrate 
diverse types of sensors, wireless communication techniques, computer algorithms, etc. to 
realize specific utilizations from the systematic perspective. In the field of automatic driving, 
multiple sensors are usually equipped both outside and inside the vehicle. These sensors are 
usually build up within a wireless network, thus the communication and collaboration among 
different sensors can be realized.  

For automatic driving, the driving safety issue is often of the first priority. Also, it is 
generally accepted that, the driver’s behavior needs to be well restricted, in order to avoid any 
unnecessary or serious incidents. Therefore, multiple sensors in front of the driver can be 
utilized to monitor the status of the driver in real-time. This network of sensors are of high 
importance, as abnormal driving behaviors are likely to be identified with the help of multiple 
sensors. Generally speaking, visual sensors (i.e., including visible / infrared cameras), audio 

MOBIMEDIA 2019, June 29-30, Weihai, People's Republic of China
Copyright © 2019 EAI
DOI 10.4108/eai.29-6-2019.2282840



 

 
 
 
 

sensors, etc. are vastly employed to construct the network of sensors for monitoring abnormal 
behaviors of drivers [1]. 

According to the definition of the International Organization for Standardization (ISO), 
abnormal driving refers to the phenomenon that attention is directed to activities unrelated to 
normal driving, which leads to the decline of driving ability. From the source analysis of 
drivers' behaviors, abnormal driving behaviors can be divided into three categories. First, 
distracted driving behaviors that meet drivers' physical comfort needs, such as smoking, 
drinking water, eating and adjusting air conditioning. The second is to meet the driver's needs 
for pleasant mood distracted driving behavior, such as makeup, shaving, chatting, also 
including the use of mobile phone to make phone calls, receive and receive information; 
Third, distracted driving behaviors caused by the surrounding environment, such as taking 
care of children and paying attention to emergencies outside a car for a long time. With the 
rapid development of mobile Internet and the prevalence of various mobile phone applications 
and communication software, the use of mobile phones has become the most important form 
of abnormal driving. Scientists have shown in simulations that talking on the phone while 
driving causes drivers to lose 20 percent of their attention and 37 percent if the content of the 
call is important. Drivers who text while driving is 23 times more likely to have an accident 
than those who drive normally. [2] Aiming at this problem, abnormal driving detection 
technology has been paid attention to and popularized, and its purpose is to judge whether 
there is a potential danger in the process of driving a motor vehicle. 

In this paper, the image captured by the single visible light camera in the wireless sensor 
network is used to carry out abnormal driving detection by combining several different 
traditional and classical deep learning models and our own improved models. The traditional 
and classical deep learning models we use include Convolutional Neural Network (CNN), 
Wide Convolutional Neural Network (Wide CNN), Group Convolutional Neural Network 
(Group CNN), Deep Residual Network (ResNet) [3], and Densely Connected Convolutional 
Network (DenseNet) [4]. Our improved model includes Wide Group Densely Network and 
two kinds of Wide Group Residual Densely Network. Therefore, the models are tested on the 
abnormal driving data set to analyze and evaluate their performance. This paper will introduce 
the work related to abnormal driving and deep learning in Section II, discuss the details of the 
traditional model and improved model in Section III, introduce the experiment we conducted 
and theoretical analysis on the experimental conclusion in Section IV, and give the research 
conclusion in Section V. 

2   Related work 

2.1   Abnormal Driving Detection 
 

Currently, the commonly used schemes to detect abnormal driving state of drivers include 
detection based on human physiological signals (i.e., encephalogram, electro-oculogram, 
blood flow and respiratory changes, respiratory airflow detection methods based on a variety 
of sensors), detection based on facial details (i.e., eye movement changes, mouth movement 
changes, head movement changes, hand features and other detection methods) and steering 
wheel motion characteristics. The detection of human physiological signals based on good 
real-time performance and high accuracy, but the disadvantage is that it will affect the normal 
driving of drivers, and human physiological signals vary greatly due to individual and 



 

 
 
 
 

environmental differences, it is difficult to give a unified quantitative standard. Percentage of 
eyelid closure over the pupil over time (PERCLOS) [5] monitoring method is one of the more 
famous methods for face detection-based detection. The percentage of eye closure time in unit 
time monitored by this method can be expressed as equation (1). 
 

       
(1) 

 
Abnormal driving is considered to occur when the percentage of closing time reaches 70 

percent or 80 percent. PERCLOS detection method has been widely recognized as the most 
effective method to evaluate abnormal driving in real time. Although the PERCLOS principle 
can be used to monitor driver status well, there are many problems in practical application. For 
example, drivers with different physical conditions and living habits have very different eye 
states and some people don't close their eyes when they sleep, so the misjudgment rate is 
relatively high. PERCLOS is a multiplicity of non-rigorous object tracking. Changes in 
interior lighting conditions and head movements can lead to inaccurate or even unsuccessful 
predictions. When the driver's head is not facing the camera or his hair covers part of his eyes, 
he cannot identify eye features. These problems make it difficult to use the PERCLOS 
method. [6] 
 
2.2   Deep Learning 
 

Deep learning is developed from the artificial neural network in machine learning. For 
neural networks, depth refers to the number of non-linear operation combination levels in the 
functions obtained by network learning. The learning algorithms of traditional neural networks 
are mostly aimed at the lower level network structure, which is called as the shallow neural 
network, such as an input layer, a hidden layer and an output layer of neural network, as 
shown on the left side of Figure 1. On the contrary, the network with a higher level of non-
linear operation combination is called deep neural network, such as one input layer, three 
hidden layers, and one output layer, as shown on the right side of Figure 1. Deep learning has 
many advantages over shallow learning, which indicates the necessity of introducing deep 
learning. 

In terms of the ability of the network to express the complex objective function. 
Sometimes, the shallow neural network is unable to implement the representation of complex 
high-dimensional functions such as high-variable functions, while the deep neural network can 
better represent it. 

In terms of the computational complexity of network structure. When a network structure 
with a depth of k can be used to express a function compactly, if a network structure with a 
depth less than k is used to express the function, it may need to increase the computational 
factors of exponential scale and number, which greatly increases the computational 
complexity. In addition, it is necessary to use training samples to adjust the parameter values 
of calculated factors. When the number of training samples of a network structure is limited 
and the number of calculated factors increases, its generalization ability will become very 
poor. 

In terms of bionics, the deep learning network structure is the best simulation of the 
human cerebral cortex. Like the cerebral cortex, deep learning processes input data in a 



 

 
 
 
 

hierarchical manner, using each layer of the neural network to extract different levels of 
characteristics of the original data. 

In terms of information sharing, the multi-level extracted features obtained by deep 
learning can be reused in similar different tasks, which is equivalent to providing some 
unsupervised data for task solving and obtaining more useful information.  

 

Fig. 1. Shallow neural network (left) and deep neural network (right). 

Deep learning is more expressive than shallow learning and is able to learn potentially 
higher-level abstract features from data. In 2006, Hinton et al. proposed an unsupervised 
learning algorithm for Deep Belief Network (DBN) [7], which solves the problem of difficult 
optimization of the deep learning model. In 2012, Hinton research group used the designed 
deep convolutional neural network model AlexNet [8] to win the championship in the 
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) competition [9], which made 
the deep convolutional neural network attract attention. Since then, deep learning has entered 
an explosive period. Various deep learning models (e.g., VGG [10], GoogleNet [11], ResNet, 
and DenseNet, etc.) have achieved better and better results in ImageNet competitions, which 
makes deep learning widely concerned. Deep learning model can achieve excellent results in 
image classification[12], object detection [13], and other fields. 

3   Methodology 

In this study, for abnormal driving detection, we introduced and analyzed five traditional 
and classical deep learning models in detail, including Convolutional Neural Network (CNN), 
Wide Convolutional Neural Network (Wide CNN), Group Convolutional Neural Network 
(Group CNN), Deep Residual Network (ResNet), and Densely Connected Convolutional 
Network (DenseNet). We designed three fusion deep models which are named Wide Group 
Densely Network (WGD), Wide Group Residual Densely Network 1 (WGRD1), and Wide 



 

 
 
 
 

Group Residual Densely Network 2 (WGRD2) respectively. These three models were 
designed based on DenseNet with excellent characteristics of other models. Generally 
speaking, the main objective of abnormal driving detection is to detect the driver's driving 
state and judge whether the state is normal or not. That is to take an image as the input of the 
model and judge whether the state of the driver is normal according to the output label.  

 
3.1   Deep learning models 

 

Fig. 2. Convolutional Neural Network (left) and Wide Convolutional Neural Network (right). 

Convolutional Neural Network (CNN). The most original convolutional neural network 
LeNet-5 [14] was born in 1998, proposed by Yan LeCun, one of the three giants of deep 
learning, who is also known as the father of convolutional neural network. LeNet-5 is mainly 
used for recognition and classification of handwritten characters, with an accuracy of 98%. 
Lenet-5 has been put into use in American Banks and used to read about 10% of North 
American cheques. LeNet-5 has laid the foundation of the modern convolutional neural 
network, whose structure consists of the convolutional layer, pooling layer, and full 
convolutional layer. Convolutional layer and pooling layer are combined to form multiple 
convolution groups to extract features layer by layer, and finally, classification is completed 
through a number of fully connected layers. The AlexNet model proposed in 2012 is another 
breakthrough of the convolutional neural network. AlexNet won the championship in 
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) competition in that year, 
which proved the effectiveness of convolutional layer under the complex model. The deep 
convolutional network was able to learn the potential high-level characteristics of data, which 
made the convolutional neural network attracted attention.  
 
Wide Convolutional Neural Network (Wide CNN). The idea of wide convolution neural 
network comes from Wide Residual Network (WRN) [15]. Wide residual network is on the 
basis of the Deep Residual Network (ResNet) to increase the number of layer convolution 
kernels. Figure 2 shows the difference between the traditional convolution network and the 
wide convolution network. As the depth of the model deepens, the weight of each residual 
module cannot be guaranteed to flow through when the gradient is propagated backward, so it 



 

 
 
 
 

is difficult for it to learn something. Therefore, in the whole training process, only a few 
residual modules can learn useful expressions, and most of the residual modules play a small 
role. The wide residual network hopes to use a shallow model with wider width (i.e. more 
convolution cores) to improve the performance of the model more effectively. Relevant 
experiments have also proved that the performance of the shallow but wide residual network is 
comparable to that of the deep but narrow residual network. On this basis, we directly focus 
on the feature of the wide convolution layer as the wide convolution neural network. 

 

Fig. 3. Traditional convolutional layer (left) and group convolutional layer (right) with the group is 2. 

Group Convolutional Neural Network (Group CNN). The difference between group 
convolution and traditional convolution is that in traditional convolution, each filter operates 
on all channels, while each filter in group convolution does not operate on all channels, but 
operate on only one set of channels., as shown on the left side of Figure 3. Group CNN first 
appeared in AlexNet. Due to the limited hardware resources at that time, convolution 
operations could not be all processed in the same GPU when AlexNet was trained. Therefore, 
the author divided feature maps into multiple GPUs for processing respectively and finally 
fused the results of multiple GPUs. The ResNeXt model [16] improved based on the residual 
network also uses the idea of group convolution. ResNeXt adopts the idea of VGG stack and 
Inception's "split-transform-merge" strategy [17]. It has strong scalability, improves the 
accuracy rate without increasing the complexity of parameters, and at the same time reduces 
the number of super parameters. ResNeXt presents the dimension of "cardinality" different 
from depth and width, and shows that increasing cardinality is more effective than increasing 
depth and width. At the same time, the aggregated residual structure of ResNeXt model is 
completely equivalent to group convolution. 
 
Deep Residual Network (ResNet). Deep residual network is the latest technical concept in 
the field of deep learning proposed by Kaiming He from 2015 to 2016. It can be used to solve 
degradation problems and accelerate the convergence speed of the deep network. In the 
contest of ImageNet and COCO2015, 152-layer deep residual network achieved the best 
results in image classification, target detection and semantic segmentation, and related papers 
were awarded the best CVPR paper twice in a row. The residual structure diagram is shown in 
Figure 4. The core idea of this method is to add a parallel identity mapping layer to the 
original network layer to form a residual learning structure. To be specific, assuming that the 
potential mapping that needs to be learned is H(x), then a nonlinear stacked network layer is 
constructed to correspond to another residual mapping F(x):=H(x)-x. In this way, the potential 



 

 
 
 
 

mapping can be written as F(x)+x. However, it is easier to optimize the residual mapping of 
the original network layer than to optimize potential mapping. 

 

Fig. 4. The structure of Deep Residual Network (ResNet). 

Densely Connected Convolutional Network (DenseNet). The DenseNet mainly refers to 
ResNet, Highway Network [18] and GoogleNet. The construction of DenseNet is based on the 
following. If the convolution layer is closer to the input layer or the output layer, then it is 
easier to converge. Therefore, the practice of DenseNet is more violent than ResNet. The 
ResNet only adds the output between the front and rear layers by elements, while the 
DenseNet requires that all layers are related, as shown in Figure 5. That is, if the ResNet has 
L layers, there will be L-1 connection, while the DenseNet has one connection between every 
two layers, that is L*(L+1)/2 connections. When DenseNet changes the traditional network 
reverse transmission, gradient (or information) transmission mode changes from linear to 
treelike reverse, which has the advantage of reducing the possibility of gradient disappearance 
and accelerating training, which is conducive to the training of deeper network. 



 

 
 
 
 

 

Fig. 5. The structure of Densely Connected Convolutional Network (DenseNet). 

 

Fig. 6. The structure of Wide Group Densely Network (WGD). 

 
 
 
 



 

 
 
 
 

3.2   Fusion deep models 
 
Wide Group Densely Network (WGD). On the basis of DenseNet, convolution is replaced 
by the group and wide convolution. Grouping makes convolution contain fewer parameters, 
but the network generalization ability decreases at the same time. Therefore, the network 
generalization ability can be guaranteed by appropriately increasing the number of feature 
graphs, so that the model has fewer parameters and better performance, as shown in Figure 6. 
 

 

Fig. 7. The structure of Wide Group Residual Densely Network 1 (WGRD1). 

Wide Group Residual Densely Network 1 (WGRD1). On the basis of WGD, the operation 
of parallel output is changed. First, the directly connected data streams are divided into 
parallel channels in each parallel connection, and then the divided channels are added as 
elements. Next, the output of the current dense block is added as an element, and the result of 
the addition is parallel to the directly connected data stream, as shown in Figure 7. We know 
that adding the output of the directly connected data stream and the residuals block by 
elements is the most important step of the residuals network. This allows the direct connect 
data stream to add up the output of all the previous residual blocks. This step in DenseNet is as 
follows. First, add the data flow inside the direct connection, then add the output, and finally 
parallel to the direct connection data flow. This is the main idea of WGRD1. The purpose of 
this design is to make each part of the directly connected data stream is the superposition of 
the output of different dense blocks, so as to generate more complex features and strengthen 
the learning ability of the whole network. To be specific, for the input image x0 defines an L-
layer network, its l-layer is a non-linear transformation (e.g., BN, ReLU, Conv, etc.), set as 
Hl(·), and the output is xl, so we generally have xl=Hl(xl-1). DenseNet and WGD can be 
expressed by equation (2).  
 



 

 
 
 
 

        
(2) 

 
while WGRD1 can be expressed by equation (3). 
 

       
(3) 

 
where  means xi(i=0,1,...,l−1) is added to each of the elements and the operator [·] 
represents parallel operations. 
 
Wide Group Residual Densely Network 2 (WGRD2). There is a second way to introduce 
adding by elements which are the important step of ResNet into DenseNet, similar to 
WGRD1, is different to the operation of the dense blocks of output and input. The output of 
the dense block is first parallel to the directly connected data stream, which is the same as 
DenseNet and WGD. When entering the next dense block, the directly connected data stream 
at this time is not taken as the input directly. The directly connected data flow is divided into 
parallel channels in each parallel connection, and the divided channels are added as input 
elements, as shown in Figure 8. WGRD2 can be expressed by equation 4.  
 

         
(4) 

 
This is similar to ResNet, if the ReLU after each residual block in ResNet is removed, it will 
be the same. It is worth noting that this is very different from WGRD1, where the directly 
connected data stream of WGRD1 is the output of different dense blocks in parallel after the 
addition of elements, while the directly connected data stream of WGRD2 is the output of 
multiple dense blocks in parallel.  

 

Fig. 8. The structure of Wide Group Residual Densely Network 2 (WGRD2). 

 



 

 
 
 
 

3.3   Loss function 
 

Since it is a classification problem, cross entropy loss is used to evaluate the performance 
of different models. It is given that the driver's image data set is defined as the ith driver image 
in the image data set, and yi is defined as the corresponding one-hot label of xi (i.e., yi is a c-
dimensional row vector with a total of c categories). Given that the prediction function of the 
model is P(·), yi'=P(xi) is the probability that the model predicts that xi belongs to each 
category (i.e., yi' is also a c-dimensional row vector). Therefore, the cross-entropy loss can be 
expressed as equation 5.  
 

       
(5) 

 
where m represents the number of driver images. It is easy to see that the purpose of this 

loss function is to minimize the difference between the predicted probability distribution (i.e., 
yi') and the real probability distribution (i.e., yi). Make the predicted probability distribution 
close to the real probability distribution and improve the classification accuracy. We use 
stochastic gradient descent algorithm to optimize cross entropy loss. 

4   Experiments 

4.1   Database and Experimental Settings 
 

To verify the effect of deep learning model and fusion depth model on abnormal driving 
detection, Kaggle competition platform was used to obtain relevant competition data sets. The 
data set consists of 22,424 RGB driver images of 640*480 in 10 different categories. These 10 
categories include safe driving, texting (right), talking on the phone (right), texting (left), 
talking on the phone (left), operating the radio, drinking, reaching behind, hair and makeup, 
and talking to passenger, as shown in Figure 9. 

On this dataset, we compare the deep learning model with the fusion deep model. The 
deep learning model included Convolutional Neural Network (CNN), Wide Convolutional 
Neural Network (Wide CNN), Group Convolutional Neural Network (Group CNN), Deep 
Residual Network (ResNet) and Densely Connected Convolutional Network (DenseNet). The 
improved fusion deep models included Wide Group Densely Network (WGD), Wide Group 
Residual Densely Network 1 (WGRD1), and Wide Group Residual Densely Network 2 
(WGRD2). 

We preprocessed each image in the dataset, including adding noise, changing the intensity 
of light, changing color, rotating the image, and scaling the image numerically from 0 to 1. 
The purpose of such preprocessing is to make the data distribution more random and 
diversified, to strengthen the learning ability of each model and improve the generalization 
ability. After preprocessing, we randomly divide images into a training set and test set in each 
category of data set. The training set and the test set respectively contain a considerable 
number of images for each category. After the partition, we trained the model on the training 
set. After the training, the category of each image was predicted on the test set and compared 
with the real category. The performance of each model is evaluated by this method. 

 



 

 
 
 
 

 

Fig. 9. Abnormal driving image dataset. The images show safe driving, texting (right), talking on the 
phone (right), texting (left), talking on the phone (left), operating the radio, drinking, reaching behind, 

hair and makeup, and talking to passenger from top to bottom and left to right. 

 
Repeat the process to reduce the uncertainty caused by randomness. Experimental results 

are based on an average estimate of all experimental results. The batch size of all models is set 
to 32, the number of training epochs is set to 10, and the learning rate is set to 0.0001. In order 
to obtain the optimal comprehensive performance of each model, the errors of these super-
parameters must be compared. It is worth pointing out that WGD has a total of 1.54m 
parameters, WGRD1 has a total of 1.58m parameters, and WGRD2 has a total of 1.42m 
parameters. For other comparison models, CNN, Wide CNN, Group CNN, ResNet, and 
DenseNet have parameters of 9.953m, 19.356m, 5.252m, 11.181m and 0.41m respectively. 
Therefore, WGD, WGRD1, WGRD2, and DenseNet have less training time. All 
implementations are implemented through CentOS 7 operating system, based on PyTorch 
1.0.0, using workstations equipped with Intel Xeon Silver 4110 CPU, 128G RAM, and Nvidia 
Titan V GPU card. 



 

 
 
 
 

 
4.2   Experimental Results and Statistical Analysis 

 

 

Fig. 10. The accuracy curve of all models. 

 
Figure 10 shows the variation curve of classification accuracy of all models in the test set 

with the increase of training epochs. As can be seen from the Figure 10, the accuracy of 
classification prediction of all 8 models increases with the increase of training epochs and 
tends to be stable at a higher accuracy, which is good evidence of convergence of all models. 
Specifically, WGD and WGRD2 achieved high accuracy in the first epoch of training, and 
then the accuracy growth rate was at the average level of all models, and finally reached 
nearly 100% accuracy. ResNet, DenseNet, and WGRD1 achieved low accuracy in the first 
round of training, but after that, the growth rate of accuracy was at a fast speed, and finally 
reached nearly 100% accuracy. Finally, CNN, Wide CNN, and Group CNN had low accuracy 
at the beginning, and then their accuracy grew at a relatively steady rate, and the accuracy was 
between 80% and 90% at the end. 

We used the Precision-Recall (P-R) curve to qualitatively describe the 8 models involved 
in the comparison. Since the abnormal driving image data set is a multi-classification dataset, 
we use the following method to calculate the P-R curve values. Suppose the number of test 
samples is m and the number of categories is n (i.e., suppose the category labels are 0,2..., n-
1). After the training is completed, the probability or confidence of each test sample in each 
category is calculated, and an [m, n] shaped matrix P is obtained. Each row represents the 
probability value of a test sample in each category (sorted by category label). Accordingly, the 
tags of each test sample are converted into a binary one-hot form, and each position is used to 
mark whether it belongs to the corresponding category (also sorted by tags, to correspond to 
the probability matrix P), so that an [m, n] tag matrix L can be obtained. For a test sample, the 
label consists only of 0 and 1, the position of 1 indicates its category (which can correspond to 



 

 
 
 
 

positive examples in the dichotomous problem), and 0 indicates other categories (which 
correspond to negative examples in the dichotomous problem). If the classifier classifies the 
test sample correctly, the probability value of the position corresponding to 1 in the sample 
label in the probability matrix P is greater than the probability value of the position 
corresponding to 0. Based on these two points, the label matrix L and the probability matrix P 
are expanded by row respectively, and the transpose results in two columns, which results in a 
binary classification result. Therefore, the final P-R curve values can be obtained after 
calculation.  

 

Fig. 11. The Precision-Recall (P-R) curve of all models. 

 
Figure 11 shows the P-R curves of 8 different models. It is worth pointing out that the 

actual area under the P-R curve of each model reflects the accuracy of the model in predicting 
classification on the data set. As can be seen from the Figure 11, our improved fusion model 
WGRD2 achieved the best performance, followed by WGRD1, DenseNet, WGD, ResNet, 
Wide CNN, Group CNN, and finally is CNN. There is a clear trend here that compared with 
the CNN series models (i.e., CNN, Wide CNN, and Group CNN), other models involved in 
the comparison have more complex structures but relatively fewer parameters and all have 
higher P-R curves and better performance. The reason for this conclusion can be considered as 
that complex network structure can learn complex and diverse high-level features, which are 
more widely distributed, can strengthen network learning and reduce the degree of overfitting, 
so that the network generalization performance is higher. 

In terms of the CNN series models, after convolution is replaced by group convolution, 
the number of parameters decreases and the performance improves (i.e., the P-R curve of 
Group CNN is above the P-R curve of CNN). This result verifies the validity of the concept of 
cardinality. As the third dimension different from width and depth, increasing the cardinality 
can improve the network performance. Wide CNN has more parameters than CNN and Group 
CNN, so it has a larger capacity and a higher performance.  



 

 
 
 
 

The performance of WGRD2 and WGRD1 in our improved fusion models exceed that of 
DenseNet, which is enough to prove that our improvement is effective. Introducing the idea of 
adding elements of ResNet into DenseNet can improve the performance of DenseNet. At the 
same time, the performance of the improved fusion model WGD is lower than that of 
DenseNet but exceeds ResNet. The possible reason for this result is that the widening of 
convolution in the WGD network structure increases the number of feature maps output by 
each dense blocks, but the number has been greatly reduced after the transition layers. The 
proportion of reduction is much higher than that of the original DenseNet, which makes the 
WGD network structure have a bottleneck and limits the performance of WGD.  

 

Fig. 12. The F-measure boxplot of all models. 

 
Then, we use a statistically significant quantitative comparison method, F-measure 

boxplot, to conduct a quantitative analysis of the 8 models, as shown in Figure 12. F-measure 
is calculated according to the unbiased definition of equation 6.  
 

       
(6) 

 
In Figure 12, the red horizontal line on each box represents the median value of F-

measure, and the upper and lower quartile of F-measure is represented by the blue line above 
and below the median value of each box. Draw a vertical dotted line from the upper quartile 
and the lower quartile to their most extreme data points, which are within the 1.5 quartile 
range (IQR). Each data point over 1.5 IQR is marked with a red plus sign. As can be seen 
from Figure 12, the improved statistical box of WGRD2 model in this paper is higher than 
that of other comparable models, which indicates that the result of F-measure of WGRD2 
model is better than that of other models. Meanwhile, our improved WGRD1 ranked second 
and WGD ranked fourth. This result is exactly the same as that of the P-R curves, which 
supports the conclusion of the P-R curves.  



 

 
 
 
 

Table 1.  Point estimation and interval estimation between WGD and other 5 models. 

Model 1 Model 2 Point estimation Interval estimation 
WGD CNN-12 0.00099 [0, 0.06529] 
WGD Wide CNN-12 0.00012 [0, 0.01491] 
WGD Group CNN-12 0.00052 [0, 0.04313] 
WGD ResNet-18 0.00012 [0, 0.00992] 
WGD DenseNet-29 0.00005 [-0.02922, 0] 

Table 2.  Point estimation and interval estimation between WGRD1 and other 5 models. 

Model 1 Model 2 Point estimation Interval estimation 
WGRD1 CNN-12 0.00099 [0, 0.09960] 
WGRD1 Wide CNN-12 0.00012 [0, 0.04922] 
WGRD1 Group CNN-12 0.00052 [0, 0.07744] 
WGRD1 ResNet-18 0.00012 [0, 0.04423] 
WGRD1 DenseNet-29 0.00005 [0, 0.00509] 

Table 3.  Point estimation and interval estimation between WGRD2 and other 5 models. 

Model 1 Model 2 Point estimation Interval estimation 
WGRD2 CNN-12 0.00110 [0, 0.12057] 
WGRD2 Wide CNN-12 0.00023 [0, 0.07019] 
WGRD2 Group CNN-12 0.00063 [0, 0.09841] 
WGRD2 ResNet-18 0.00023 [0, 0.06520] 
WGRD2 DenseNet-29 0.00016 [0, 0.02606] 

 
 

In addition, Table 1, 2, and 3 respectively quantitatively describe the pairwise comparison 
details between WGD, WGRD1 and WGRD2 and the other 5 models. Point estimation and 
interval estimation are used in the quantitative description. Among them, point estimation 
refers to the direct difference of F-measure value between the two models, that is the value of 
Model 1 minus the value of Model 2, and interval estimation refers to the interval with 95% 
confidence that the direct difference of F-measure between the two models may fall into. As 
can be seen from Table 2 and 3, when WGRD1 and WGRD2 are compared with the other 5 
models, point estimation is positive, which indicates that from the perspective of point 
estimation, the F-measure of WGRD1 and WGRD2 is higher than that of other methods. From 
the perspective of interval estimation, the upper bound of these intervals is always positive and 
the lower bound is always 0, which indicates that the difference between WGRD1 and 
WGRD2 and the F-measure of the other 5 models is always positive from the perspective of 
interval estimation (i.e., the F-measure of WGRD1 and WGRD2 is higher). This shows that 
WGRD1 and WGRD2 perform better than other models. As can be seen from Table 1, the 
difference estimation of F-measure between WGD and the other 4 models (i.e., except 
DenseNet) is positive, and the interval estimation is positive. This indicates that WGD 
performs better than the other four models (i.e., except DenseNet). These two conclusions are 
consistent with the results of P-R curves and F-measure boxplots. 
 
 
 



 

 
 
 
 

4.3   Discussions 
 
In this section, more details on the use of WGD, WGRD1, and WGRD2 in abnormal 

driving detection are presented. On the dataset of our experiment, WGD, WGRD1, and 
WGRD2 obtained more accurate classification results than ResNet and DenseNet (WGD was 
only more accurate than ResNet classification). From the specific images below, Figure 13-17 
respectively show driver images that WGD, WGRD1, and WGRD2 can correctly classify, but 
ResNet and DenseNet cannot correctly classify (WGD only shows images that are more 
accurate than ResNet classification). As can be seen from these examples, when the light in 
the cab is very dark, even if the driver is driving normally, it is easy to identify as abnormal 
driving. However, for some abnormal driving conditions that are very similar to normal 
driving, for example, the driver's eyes are not looking at the road but slightly inclined to look 
at other places, such abnormal driving conditions are easy to be missed, which is very 
challenging. The above examples can be summarized as follows. WGRD1 and WGRD2 can 
solve the problem of detecting abnormal driving well in extremely challenging situations (e.g., 
the cab is dark and abnormal driving is very similar to normal driving). 

 

 

Fig. 13. The examples where WGD classifies correctly but ResNet does not. 

 

 

Fig. 14. The examples where WGRD1 classifies correctly but ResNet does not. 

 



 

 
 
 
 

 

Fig. 15. The examples where WGRD1 classifies correctly but DenseNet does not. 

 

 

Fig. 16. The examples where WGRD2 classifies correctly but ResNet does not. 

 

 

Fig. 17. The examples where WGRD2 classifies correctly but DenseNet does not. 

5   Conclusion 

In this study, based on the design of DenseNet, we proposed improved fusion models 
WGD, WGRD1 and WGRD2, and applied them to abnormal driving detection in wireless 



 

 
 
 
 

sensor network for the first time. We have two main ideas for improvement. First, the idea of 
width from AlexNet and Wide CNN and the idea of cardinality from ResNeXt are introduced 
into DenseNet. Second, the core operation of adding the output of ResNet's residuals block to 
the directly connected data stream as elements are introduced into DenseNet. The improved 
model was tested and evaluated on an abnormal driving data set along with other classic 
superior models. All experimental results show that all the models can solve the problem of 
abnormal driving detection very well. At the same time, our improved fusion models can 
achieve the highest detection accuracy among all models. In the future, we will consider using 
models with fewer parameters but better results for abnormal driving detection. 
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