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Abstract. In this study, aiming at the problem of gaze estimation in the wireless sensor 
network in the car, we use image-based method to estimate gaze based on the single camera 
sensor. We use the deep learning model and propose the improved model from three 
aspects based on the original capsule network. The first is to increase the convolution layer, 
the second is to increase the capsule layer, and the third is to widen the capsule layer in the 
network. Through many contrast experiments, it is proved that the appropriate use of the 
first or second improved method can achieve performance over other comparison models, 
and the prediction results of gaze estimation are almost no different from the real gaze 
direction. 
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1   Introduction 

With the continuous development of wireless sensor techniques, wireless sensor network 
(WSN) has been widely applied in diverse fields, and it has become a frontier hot-spot research 
domain of interdisciplinary studies. Wireless sensor network integrates a variety of 
technologies. Through the cooperation of many integrated sensors, it conducts environmental 
perception, monitors object information collection, and transmits collected information to the 
user interface through wireless transmission, in order to achieve convenient interconnection 
without data line restrictions. It is widely acknowledged that, wireless sensor networks are of 
great importance in many research fields, including environmental monitoring, traffic 
management, auxiliary driving, etc. Specifically, in the field of auxiliary driving, multiple 
wireless sensors can be used outside the vehicle to identify vehicles and pedestrians as well as 
the state of the road. Moreover, within the car, a single wireless sensor or multiple wireless 
sensors can be utilized to monitor the driver's status in real-time. Therefore, essential driving 
safety issues, including whether the driver is tired or she / he has abnormal driving behaviors, 
can be evaluated. It can be easily perceived that, multiple wireless sensors inside and outside 
the vehicle actually form a wireless sensor network, improving driving experiences for auxiliary 
driving. In terms of fatigue driving detection, the driver's face can be captured by visual sensors, 
including visible or infrared cameras in front of the driver. Therefore, the fixation direction of 
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eyes of the driver can be automatically analyzed, and whether the driver is in the state of fatigue 
driving can be identified. The above process is often called as gaze estimation. 

Gaze estimation can use various detection methods to obtain the current gaze direction of 
the detected object. Detection methods are mainly divided into image-based and non-image-
based methods. The image-based method obtains the gaze direction by image processing or deep 
learning technology based on the visible shape and texture information, while the non-image-
based method calculates the gaze direction by means of light reflection and eye structure model. 
Gaze estimation plays an important role in fatigue driving detection. According to the gaze 
direction by the gaze estimation, if the gaze direction is not on the road in front of the car for a 
long time (i.e., a few seconds) and moves down to the steering wheel area, the driver can be 
considered to be in a dangerous state of fatigue driving, and the wireless sensor network should 
be given an early warning to alert the driver. 

In this study, based on the image of the eye area obtained by the single camera in the car, 
we combined the deep learning technology to gaze estimation. The use of deep learning for gaze 
estimation saves the process of manually extracting image features. At the same time, deep 
learning has strong recognition and classification ability and can obtain extremely high gaze 
estimation accuracy. We used a variety of classic and excellent deep learning models, including 
traditional convolutional neural network (CNN), deep residual network (ResNet), squeeze 
network (SqueezeNet), capsule network (CapsNet), and multi-layer capsule network that we 
innovatively proposed based on the original capsule network. We evaluated and analyzed these 
models on appropriate data sets, and verified through experiments that one of our improved 
models could achieve the best performance. The estimation of gaze direction can achieve a result 
with almost no error with the real direction, which indicates that our work has better practical 
significance. The structure of this paper is as follows: Section II introduces the concepts of gaze 
estimation and deep learning; Section III introduces the details of our improved models. In 
Section IV, the improved models are compared with other deep models to evaluate the 
performance of different models and analyze the results in the data set. Section V summarizes 
the conclusion of this research and looks forward to the future. 

2   Related work 

2.1   Gaze estimation 
 

Combining with the research results of other disciplines, the existing gaze estimation 
methods are mainly divided into two categories. One is feature-based, which includes pupil 
center cornea reflection method [1], cross-ratio invariant method [2] and three-dimensional 
geometric model method [3]. The other is the appearance-based approach, such as the shallow 
neural network model method [4]. 

Pupil center cornea reflection method is one of the most commonly used gaze estimation 
techniques. It mainly uses image processing technology to extract the central region of the pupil 
and the reflection point of the infrared light source on the cornea for gaze estimation. Among 
them, the computation about pupil center, use a kind of method of bright and dark pupil 
normally. When the light from the light source is aligned with the light path of the human eye, 
the bright pupil effect will be produced when the light passes through the pupil into the retina 
and then reflects back from the retina. If the light source deviates from the path the eye follows, 
most of the light entering the pupil will no longer be reflected back from the pupil, and the pupil 



 

 
 
 
 

will turn black. In this way, by controlling the angle of incident light, two pupil images with 
different degrees of light and shade can be obtained. By subtracting these two images, the 
position of the pupil can be quickly located. When the position of the central area of the pupil 
and the reflection point of the light source on the cornea is obtained, the vector formed by them 
will change with the change of the gaze direction, and the gaze direction will be calculated based 
on this point. 

Based on the method of cross-ratio invariance, two cameras, one tracking human face and 
one tracking human eyes were used. In addition, five near-infrared auxiliary light sources were 
used, four of which were placed around the screen and one on the optical axis of the camera. 
This method introduces the invariant property of intersection ratio in projective geometry into 
the mapping space model. Only by obtaining the information such as the center of the pupil and 
the spot reflected by the light source. The intersection point between the human eye line of sight 
and the screen can be calculated according to the same intersection ratio, and the gaze direction 
can be estimated by spatial mapping. In practice, this method is less robust to different eyes, and 
different characteristic parameters need to be extracted. In addition, this method ignores the 
angle between the axis of vision and the axis of light and the incongruity between the center of 
the pupil and the spot reflected by the light source, so there is a certain error. 

Three-dimensional eyeball geometric model method to modeling of the physical structure 
of the human eye, according to the light source, the three-dimensional position of the known 
parameters and positions, both inside and outside, video camera, screen size and position, and 
the parameters of the eyes (such as radius of eyeball, radius of cornea, corneal refractive index, 
etc.), in combination with cameras for eyes image information, calculate the center of the cornea 
and pupil center of three-dimensional coordinates, and the analytic equation of the optical axis 
is calculated gaze direction. This method requires high precision and is very complex to calibrate 
different human eye parameters. However, due to the real-time calculation of three-dimensional 
coordinates, it is less affected by head movement. 

The shallow neural network method does not extract the features of the pupil of the eye 
image and the corneal reflex point of the light source, but processes the overall image of the eye 
and estimates the direction of vision. After a large number of eye images are acquired by the 
camera, shallow neural networks are used to learn the features of these eye images (such as 
texture details, light and dark changes, etc.) and predict the gaze direction of eyes in a given eye 
image that is not learned. The advantage of this method is that it does not need to set many 
complex parameters according to experience, and a large number of eye images are easy to 
obtain, the disadvantage is that the shallow neural network capacity is small, the generalization 
ability is not strong. 
 
2.2   Deep Learning 
 

Deep learning is a hot branch of machine learning because it has achieved unprecedented 
good results in image segmentation, semantic recognition, time series prediction, and other 
challenging problems. The concept of deep learning originates from the research on artificial 
neural networks, which was proposed by Hinton et al. in 2006. Hinton et al. proposed a layer 
by layer training algorithm for unsupervised greed based on the deep belief network (DBN) [5], 
which brought hope to solve the optimization problems related to the deep structure, and then 
proposed the deep structure of multi-layer automatic encoder. In addition, the convolution 
neural network [6] proposed by Lecun et al. is the first real multi-layer structure learning 
algorithm, which uses spatial relative relations to reduce the number of parameters to improve 
training performance. 



 

 
 
 
 

Deep learning is relative to shallow learning. At present, most classification, regression, 
and other learning algorithms are shallow learning. Their limitations lie in their limited ability 
to express complex functions in the case of limited samples and computing units. Deep learning 
realizes complex function approximation by learning a deep non-linear network structure, 
represents the distributed representation of input data, and shows the powerful ability to learn 
the essential features of data sets from a few sample sets. Multi-layer perceptron with multiple 
hidden layers is a kind of deep learning structure. Deep learning simulates the more neural 
activity of neural layers, and forms more abstract high-level representation attribute categories 
or features by combining low-level features, to discover the distributed representation of data 
features. The schematic diagram of deep learning is shown in Figure 1. 

 

Fig. 1. The schematic diagram of deep learning. 

The core idea of deep learning is to find another way to represent data. Specifically, suppose 
there is a 𝑛-layer data processing system 𝑆, and the n-layer is 𝑆#	(𝑖 = 1,2, . . . , 𝑁), the input is 𝐼 
and the output is 𝑂. If the input 𝑂 is equal to the input 𝐼, that is, the input 𝐼 changes through the 
system without any loss of information and remains unchanged, this means that the input 𝐼 
passes through each layer of 𝑆# without any loss of information, that is, at any level of 𝑆#, it is 
another representation of the original information (i.e., input 𝐼). By adjusting the parameters in 
the system, deep learning achieves that input 𝑂 equals input 𝐼 in the above mentioned, so that 
we can obtain the features of different levels of input 𝐼 (i.e. 𝑆#, 𝑖 = 1,2, . . . , 𝑁). For a specific 
example, input 𝐼 can be an image, text, language, or other information medium. 

Since AlexNet [7], proposed by Hinton research group in 2012, won the champion of 
ImageNet large-scale visual recognition challenge competition [8] that year, people have 
recognized its ability of deep learning. After that, a large number of excellent models (such as 
VGG [9], GoogleNet [10] and ResNet [11], etc.) emerged in deep learning and achieved 
increasingly good results in image recognition, segmentation, and other fields. The rapid 



 

 
 
 
 

development of deep learning makes it widely concerned. In recent years, there are many new 
methods and models of deep learning, which can achieve better results in certain fields. For 
example, in 2014, Srivastava proposed a simple method (Dropout) [12] to prevent overfitting 
of the neural network model, and Goodfellow proposed a generated confrontation network 
(GAN) [13] to evaluate the generated model through confrontation process. In 2015, Long 
proposed a new convolution structure, full convolution network (FCN) [14], and Loffe proposed 
a batch standardization method (BN) [15] to accelerate deep network training by reducing 
internal covariate transformation. In 2017, Hinton proposed a new neuron structure, called 
capsule [16], which has many advantages over traditional neurons. These methods and models 
have been widely studied and applied. In this study, we propose a multi-layer capsule network 
based on the original capsule network and apply it to the gaze estimation of the wireless sensor 
network. 

3   Methodology 

In this study, the data we get is eye images, and the data we need to predict is gaze direction 
vectors. Images and vectors are two completely different data types, which is a challenge. So 
we want to design models that have the ability to transform high-level semantic information. 
Aiming at the challenge of gaze estimation, we propose new models from three aspects based 
on the original capsule network. The first is to increase the number of convolution layers in the 
capsule network so that the features of input capsule layer are high-level semantic features. The 
second is to increase the number of capsule layers in the capsule network so that the whole 
network can learn more complex object characteristics. The third is to increase the number of 
capsules in the capsule layer, which is equivalent to increasing the width of the network so that 
the network has a larger capacity. According to the above three points, we proposed 
CNN6+CapsNet2, CNN9+CapsNet2, CNN1+CapsNet3, CNN1+CapsNet4, CNN1+CapsNet5, 
CNN1+Wide CapsNet2 and CNN1+Wide CapsNet3. Note that the original capsule network is 
CNN1+CapsNet2. 

 
3.1   Original capsule network 
 

Capsule network based on capsule neuron structure is a new concept proposed by Hinton 
in 2017, which is inspired by the columnar structure formed by a group of neurons in the cerebral 
cortex. Cortical minicolumn is common among most mammals, especially primates. It has 
hundreds of neurons inside, and it has layers inside. The capsule is the structure that Hinton uses 
to correspond to this columnar structure, which in the neural network is a subnet structure. In 
terms of cognition, the brain has some prior knowledge, such as looking at the face in the 
forward direction, which is easy to recognize, while the reverse is much worse. For example, 
the illusion is the preexisting knowledge in the human brain that affects visual recognition. 
According to Hinton, this knowledge corresponds to some frames, such as coordinate frames, 
that can be trained and can act as specialized structures (capsules) in identification. 

Capsule network aims to solve the inherent problems of traditional convolutional neural 
network and provide a new optimization algorithm different from the backpropagation 
algorithm to further solve the problems of dynamic vision, 3D, unsupervised learning and other 
deep learning problems. The traditional convolutional neural network is not sensitive to the 
position relationship between objects in the image so that the eye and mouth positions in the 



 

 
 
 
 

face image are exchanged, and the convolutional neural network is still predicted to be a face. 
Unlike traditional convolution neurons, whose input and output are scalars, the input and output 
of capsule neurons are vectors, representing the instantiation parameters of specific entity types 
in the image. Specifically, the length of the vector represents the probability of the existence of 
the entity, and the direction of the vector represents the instantiation parameters of the entity 
(e.g., position, size, direction, and even the degree of deformation, etc.). 
 

 

Fig. 2. The network structure of gaze estimation based on the original capsule network. W, H, and C 
represent the width, height, and channel of the input image, respectively. W′(W′′), H′(H′′), and C′(C′′) 
represent the width, height, and channel of the feature maps, respectively. N(N′) represents the number 

of capsules. D(D′) represents the dimensions of the capsule. 

 
The calculation process of the capsule is as follows. Let the entity vector generated by the 

capsule in the lower layer be 𝑢# , and the predicted vector 𝑢#7  obtained by the affine 
transformation of 𝑢# is expressed as equation 1. 
 

𝑢#7 = 𝑊#7𝑢#       (1) 
 

Where 𝑊#7  is the coefficient of affine variation. The meaning of the prediction vector is to 
predict the probability of occurrence of high-level entities based on the location of low-level 
entities. (e.g., if you want to identify a cart, then a layer of low-level entity is the horse and car, 
then according to the horse can determine the overall position of the carriage, can also according 
to car to judge the position of the carriage, if these two lower-level entities to judge the position 
of the carriage are identical, can think this is the cart appears the probability is high, the opposite 
is low.) And then you need to pass each of the prediction vectors 𝑢#7 to the higher level capsules. 
For each of the predicted vectors 𝑢#7, the transfer is not going to be equal, but it's going to be 
multiplied by a coupling coefficient 𝑐#7  and then sum over all of the vectors, as shown in 
equation 2. 
 

𝑠7 = ∑ 𝑐#7𝑢#7#        (2) 
 



 

 
 
 
 

The coupling coefficient 𝑐#7 can be considered as the prediction degree of low-level entities to 
high-level entities, which is determined by the dynamic routing algorithm. Finally, a non-linear 
activation function is used to compress the length of the summed vector to 0 to 1 as the output 
of the high-level capsule. The calculation process of the non-linear activation function is shown 
in equation 3. 
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       (3) 

 
The network structure of gaze estimation based on the original capsule network is shown 

in Figure 2, which consists of four substructures, the first three of which are the original capsule 
network, which can be called CNN1+CapsNet2 according to the structure. The first substructure 
is a traditional convolution layer used to extract the primary features from the original input 
image and input them into the later substructure. The second substructure is a primary capsule 
layer used to detect some low-level entities. The third substructure is an advanced capsule layer 
used to detect some high-level entities. The dynamic routing algorithm is used to determine the 
coupling coefficient matrix between the primary capsule layer and the advanced capsule layer. 
The fourth substructure is the full connection layer. Since the output of the third substructure is 
some eigenvectors representing high-level entities, and what we need is the gaze direction vector 
ultimately, we learn the gaze direction vector by passing these eigenvectors through the full 
connection layer. 

 
3.2   Improved capsule network 
 
Add convolutional layer. Figure 3 shows two network structures based on capsules. It can be 
seen that these two network structures change the number of convolution layers in the first 
substructure of the original capsule network. The number of convolution layers in the original 
network is 1, and these two improved networks are increased to 6 and 9. After adding 
convolution layer, the network is called CNN6+CapsNet2 and CNN9+CapsNet2 respectively. 
The purpose of adding the convolution layer can be expressed as follows. First, the feature map 
of the input capsule layer in the original capsule network is generated by a convolutional layer 
These features can be considered as low-level image features (for example, texture changes, 
brightness, etc.). The capsule layer finds specific entities from these low-level image features 
and learns the features to predict the gaze direction vector. But as we know, from the eye image 
to the gaze direction vector, these are two completely different kinds of data, this transformation 
can be thought of as requiring the acquisition of high-level semantic features. Therefore, we 
increase the number of convolution layers before the capsule layers. More convolutional layers 
are used to obtain higher-level semantic features, which are provided for the capsule layer to 
learn gaze direction. It is worth mentioning that the pooling layer is not used between 
convolution, because the pooling layer will lose a lot of information, which is very unfavorable 
for the subsequent capsule layers. At the same time, batch normalization layer was used before 
and after convolution layer to avoid overfitting problem. 
 
Add capsule layer. Figure 4 shows the three capsule networks improved by increasing the 
number of capsule layers. The second and third sub-structures of the original capsule network 
contain one capsule layer respectively, so the number of capsule layers in the original capsule 
network is 2. The improved three capsule networks in Figure 4 increase the number of capsule 
layers to 3, 4 and 5, respectively. The improved network is called CNN1+CapsNet3, 



 

 
 
 
 

CNN1+CapsNet4, and CNN1+CapsNet5 respectively. The purpose of increasing the capsule 
layer is similar to that of increasing the convolution layer, both of which are to learn complex 
high-level features and predict the gaze direction better. The difference is that the addition of 
convolution layer makes the input feature of capsule layer become a high-level semantic feature, 
while the input feature of capsule layer is still a low-level image feature by adding the capsule 
layer. The increase in the number of capsule layers enables each capsule to learn a more complex 
entity object attribute than the previous capsule layer, so that the entire capsule network can 
learn complex object information. Then, when the information learned in the capsule layer is 
input into the full connection layer as features, these complex object information can be used as 
high-level semantic features, which can improve the performance of predicting gaze direction 
compared with the original capsule network. 

 

Fig. 3. The structure of improved capsule networks by adding convolutional layer. 

 



 

 
 
 
 

 

Fig. 4. The structure of improved capsule networks by adding capsule layer. 

 
Increase the width of the capsule layer. Figure 5 shows two kinds of capsule networks that 
increase the width of capsule layer. The two improved networks are called CNN1+Wide 
CapsNet2 and CNN1+Wide CapsNet3, respectively. Unlike the previous two methods of 
increasing the number of layers, the width of the capsule layer is increased. It is important to 
note that the width of the capsule layer refers to the number of capsules in the capsule layer. 
Different capsules in the same capsule layer can be considered to represent different entity types 
in this image, so the number of capsules in the same capsule layer can represent the width of the 
capsule layer, similar to the filter in the convolution layer representing different features. 
Increasing the width of the capsule layer also increases the number of parameters of the capsule 
layer. Specifically, for the last capsule layer of CNN1+Wide CapsNet3, the number of input 
capsules is 128 and the output 512 capsules. All the input and output capsules are 16-
dimensional vectors, so the number of parameters of this layer is 128*512*16*16=16,777,216 
(16.78M). For the unwidened CNN1+ CapsNet3, the number of input and output capsules of 
the last capsule layer is 128, and the number of input and output capsules are 16-dimensional 
vectors, so the number of parameters is 128*512*16*16=4,194,304 (4.19M). It can be seen that 



 

 
 
 
 

increasing the width of the capsule layer greatly increases the number of parameters of the 
capsule layer, and the number of parameters represents the capacity. 

 

Fig. 5. The structure of improved capsule networks by widening capsule layer. 

 
3.3   Loss function 
 

Since the prediction of gaze direction by all models and the real gaze direction are real 
vector, we choose the mean square loss (MSE) function to calculate the difference between the 
prediction direction vector and the real direction vector, and then evaluate the performance of 
different models. In particular, defined 𝜏 as the eye image data set, 𝑥# ∈ 𝜏 as the 𝑖-th eye image, 
and 𝑦# is the gaze direction vector corresponding to 𝑥#. Given that the prediction function of the 
model is 𝑃(∙), 𝑦#I = 𝑃(𝑥#) is defined as the gaze direction vector of input eye image 𝑥# predicted 
by the model. Therefore, the mean square loss function can be expressed as equation 4. 
 

𝐿 = A
K
∑ ‖𝑦#I − 𝑦#‖NNK
#OA = A

K
∑ ‖𝑃(𝑥#) − 𝑦#‖NNK
#OA      (4) 

 
Where 𝑚 represents the number of images in the eye image data set, and ‖∙‖N represents the L2 
normalization. Obviously, it can be seen that the optimization objective of this loss function is 



 

 
 
 
 

to minimize the distance between the predicted gaze direction vector 𝑦#I  and the real gaze 
direction vector 𝑦#, so that the predicted gaze direction can be as close as possible to the real 
gaze direction (𝑦#I = 𝑦#). In the experiment, Adam optimization algorithm was used to optimize 
the mean square loss. 

4   Experiments 

4.1   Database 
 

In order to evaluate the performance of the improved capsule network and other comparison 
networks, a suitable experiment was conducted. At the same time, since image-based gaze 
estimation is greatly affected by light transformation and other factors, we need a large number 
of eye image data sets containing gaze direction vectors. and we hope that the range of gaze 
directions in the data set is wide, rather than concentrated in a small area (e.g., this is a problem 
with the MPIIGaze dataset which is widely used, the images in the MPIIGaze dataset [17] are 
collected when people use laptops, so the direction of gaze is limited to the computer screen 
with a small Angle of view). At the same time, considering the time and money it takes to obtain 
real data with the camera, we prefer to use software to generate a large number of eye images 
and gaze direction data that meet the requirements.  

 

Fig. 6. Generated eye images, which are 800*600 RGB images in a total of 50,000. 

 
We used the program UnityEyes provided in [18] to generate datasets. UnityEyes uses an 

approximate eyeball model to model real eyeballs, and the most important one is the modeling 



 

 
 
 
 

of iris refraction. In addition, UnityEyes used methods such as head scanning registration and 
retopology, and Morphable eye region model to build the region around the eyes, and made 
detailed modeling of eye movement and details around the eyes. Figure 6 shows the generated 
eye images, which are 800*600 RGB images in a total of 50,000. As can be seen, these generated 
images are quite real, with fine texture and natural lighting levels. Need to point out that green 
point in the image of Figure 6 is the characteristic points of the eye, two circles surrounded by 
green point, one is the pupil and the other is the iris, yellow line is gaze direction vector, these 
points, lines, and the gray background is added to the image in order to better display the image, 
the image itself does not contain these points, lines, and the gray background. Each generated 
image has a corresponding gaze direction vector. Map all the gaze direction vectors to a plane, 
as shown in Figure 7. It's easy to see that the horizontal distribution of the gaze direction is -70 
degrees to 70 degrees, and the vertical distribution is -45 degrees to 45 degrees. The range 
between them goes far beyond the existing set of real gaze data. 

After generating eye images, we need to preprocess these images, and the specific 
operations are as follows. First, Gaussian white noise is added to simulate the noise generated 
by camera shooting in real situations. Second, since the generated images do not rotate the face, 
and considering that the camera may rotate relative to the face in the real situation, we randomly 
select an angle to rotate the image for each image. Third, change the image size to 55*35, and 
normalize the RGB values to the range of 0 to 1, so that every network training faster. After 
image preprocessing, all generated images are randomly divided into training set and test set, so 
that the training set and test set contain the same number of images. After that, we trained all 
the models on the training set and evaluated them on the test set. 

 

 

Fig. 7. The gaze direction distribution of the generated dataset. 

 
4.2   Experimental Settings 
 



 

 
 
 
 

The improved model based on the original capsule network was compared with some 
excellent deep learning models proposed in recent years. Our improved models included 
CNN6+CapsNet2 and CNN9+CapsNet2 by adding convolutional layers, CNN1+CapsNet3, 
CNN1+CapsNet4, and CNN1+CapsNet5 by adding capsule layers, CNN1+Wide CapsNet2 and 
CNN1+Wide CapsNet3 by widening capsule layers. The deep models used for comparison 
included the original capsule network (i.e., CNN1+CapsNet2), convolutional network (i.e., 
CNN-7 and CNN-12), residual network (i.e., ResNet-18) and squeeze network (i.e., 
SqueezeNet-v10 and SqueezeNet-v11). The structure of CNN-7, CNN-12, and ResNet-18 is 
shown in Figure 8. 

 

Fig. 8. The structure of CNN-7, CNN-12, and ResNet-18. 

 
All models were tested multiple times on the data set to reduce the non-significance caused 

by randomness. On this basis, all experimental results are the average of each experimental 
result. The setting of each super-parameter in the experiment has been tested many times on the 
experimental platform to compare whether the comprehensive performance of all models can 



 

 
 
 
 

reach the optimal under different settings of super-parameter. The specific super parameters are 
set as follows: the training batch size is set to 8, the training epoch is set to 10, and the learning 
rate is set to 0.01. (In particular, the parameters of CNN6+CapsNet2, CNN9+CapsNet2, 
CNN1+CapsNet3, CNN1+CapsNet4, CNN1+CapsNet5, CNN1+Wide CapsNet2 and 
CNN1+Wide CapsNet3 are about 14.35M, 19.15M, 17.39M, 21.59M, 25.78M, 52.77M and 
69.30M, respectively. CNN1+CapsNet2, CNN-7, CNN-12, ResNet-18, SqueezeNet-v10 and 
SqueezeNet-v11 have parameters of about 13.20M, 0.021M, 0.19M, 0.18M, 0.73M and 0.73M 
respectively). Therefore, the experiment was carried out on a CentOS 7 based high-performance 
computer equipped with Intel Xeon Silver 4110 CPU, 128G RAM, and Nvidia Titan V GPU, 
and based on PyTorch 1.0.0 deep learning platform. 
 
4.3   Qualitative Analysis 

 

 

Fig. 9. The proportion of images with RMS error of all models. 

 
We use image proportion and root mean square (RMS) error curves to qualitatively analyze 

the performance of different models. The independent variable of the curve is the root mean 
square, and the dependent variable is the image proportion. The specific numerical calculation 
process is as follows. For each model, each eye image is predicted on the test set, and the 
predicted gaze direction vector was subtracted from the real gaze direction vector of the eye 
image to calculate the root mean square error. The root mean square error corresponding to each 
eye image was formed into a set. Given a threshold, calculate the number of root mean square 
errors less than the threshold in the set (corresponding to the number of images with the error 



 

 
 
 
 

of the prediction and real gaze direction vector less than a certain value), divide by the total 
number of root mean square errors in the set (corresponding to the total number of images), and 
get the image proportion. The threshold value is increased from zero to obtain the image 
proportion and root mean square error curve of the model. An obvious corollary is that the larger 
the area under each image proportion and root mean square error curve is, the better the 
prediction performance of the corresponding curve model will be. Figure 9 shows the image 
proportion and root mean square error curve of all models. As can be seen from the figure, the 
curve of our improved model CNN6+CapsNet2 is the highest, that is, the performance is the 
best. After that, the three models with very similar performance are CNN1+CapsNet3, 
CNN1+CapsNet2 (i.e., the original capsule network) and ResNet-18. After that, it is followed 
by CNN1+Wide CapsNet2, CNN9+CapsNet2, SqueezeNet-v10, CNN1+CapsNet4, 
CNN1+Wide CapsNet3, SqueezeNet-v11, CNN-7, CNN-12, and finally, CNN1+CapsNet5 
without convergence. 

For CNN6+CapsNet2 and CNN9+CapsNet2 improved by adding convolution layer, 
CNN6+CapsNet2 obtained the best performance, but the performance of CNN9+CapsNet2 was 
significantly lower than that of the original capsule network. The reason for this result is that 
proper addition of convolution layer can indeed provide high-level semantic features and then 
improve the performance of capsule network. However, if too many convolution layers are 
added, it is very easy for the input image to lose information after the multi-layer convolution 
transformation including the down-sampling operations (typically involves down-sampling 
operations, such as stride greater than one or pooling layer), which greatly reduces the 
information content of the input capsule layer and ultimately reduces the performance of the 
entire network. For CNN1+CapsNet3, CNN1+CapsNet4 and CNN1+CapsNet5 improved by 
adding capsule layer, the performance of CNN1+CapsNet3 was slightly higher than that of the 
original capsule network, while the performance of CNN1+CapsNet4 was far lower than that of 
the original capsule network, while the performance of CNN1+CapsNet5 did not converge. The 
reason for this is that adding a layer of capsules allows to learn complex object properties as 
features and thus slightly improve performance. When the multi-layer capsule layer is added, 
the final capsule layer learns too complex entities or does not learn any entities (because the 
most complex entities are corresponding to the previous capsule layer). In this case, the network 
degenerates, leading to a sharp decline in performance or even non-convergence. For 
CNN1+Wide CapsNet2 and CNN1+Wide CapsNet3 improved by increasing the width of 
capsule layer, their performance was lower than that of the original capsule network. The reason 
for this result is that they are used for several times the parameters of the original capsule 
network, which makes them enter the overfitting state and thus have low performance in the test 
set. CNN6+CapsNet2 and CNN1+CapsNet3 that exceed the performance of the original capsule 
network indicate that appropriate addition of convolution layer or capsule layer can improve the 
overall performance of the network. The performance of ResNet-18 is close to that of the 
original capsule network. This is because ResNet-18 has many convolutional layers, which is 
consistent with our knowledge that even though each convolutional layer is not so wide (that is, 
the number of feature maps is not large), the performance can be improved by deepening the 
number of network layers. CNN-7 and CNN-12 ranked last in performance, which was due to 
their low learning parameters and simple network structure. 

 
 

4.4   Quantitative Analysis 
 



 

 
 
 
 

We use the box plot of root mean square error between the predicted gaze direction vector 
and the real gaze direction vector to conduct quantitative analysis on all models, as shown in 
Figure 10 (the box plot of CNN1+CapsNet5 is too high, so it is not shown in the figure, that is, 
only the box plot of the convergent model is shown in the figure). Each box in the box plot 
includes lower limit, lower quartile, median, upper quartile and an upper limit from bottom to 
top. Where the range of upper and lower limits is 1.5 times the quartile, the data exceeding the 
upper and lower limits are marked in red and are called outliers. It should be noted that each 
box in the box plot represents the distribution of root mean square error predicted by the 
corresponding model, so the lower the box is, the better the network performance will be. As 
can be seen from the figure, among all convergent networks, CNN6+CapsNet2 has the best 
performance and CNN-12 has the worst performance. This conclusion is exactly the same as 
that obtained by the image proportion and root mean square error curves. In addition, the number 
of outliers in red represents only about 3% of all data. 

 

 

Fig. 10. The box plot of RMS error between the predicted gaze direction vector of different models and 
the real gaze direction vector. 

 
In addition, Table 1 quantitatively describes the details of the comparison between our 

improved capsule model and other comparison models through two general parameter 
estimation methods (i.e., point estimation and interval estimation). Point estimation is estimated 
by subtracting the median root mean square error of the two comparison models (Model 1-



 

 
 
 
 

Model 2). Interval estimation is estimated by subtracting the upper and lower limits of root mean 
square error (Model 1-Model 2) of the two comparison models respectively. Therefore, if the 
point estimation value is negative and the interval estimation range is negative, the performance 
of Model 1 is better than Model 2. As can be seen from Table 1, when CNN6+CapsNet2 and 
CNN1+CapsNet3 are compared with other comparison models, both point estimation and 
interval estimation are negative. This shows that from the perspective of point estimation and 
interval estimation, the root mean square error of CNN6+CapsNet2 and CNN1+CapsNet3 is 
smaller than that of other comparable models, that is, the performance is better. When 
CNN1+CapsNet5 is compared with other comparison models, both point estimation and interval 
estimation are relatively large positive numbers. This shows that from the perspective of point 
estimation and interval estimation, the root mean square error of CNN1+CapsNet5 is much 
higher than that of other comparable models, that is, the performance is far worse than that of 
other comparable models. This is consistent with the conclusions of the image proportion and 
root mean square error curves and box plot. 
 
Table 1.  Point estimation and interval estimation between improved capsule networks and other models. 
Model 1 Model 2 Point estimation Interval estimation 
CNN6+CapsNet2 CNN1+CapsNet2 -0.000657 [-0.0041, -0.0000542] 
 ResNet-18 -0.0028 [-0.000014, -0.00012125] 
 SqueezeNet-v10 -0.0042 [-0.0158, -0.00007336] 
 SqueezeNet-v11 -0.0178 [-0.0373, -0.0023] 
 CNN-7 -0.0194 [-0.0264, -0.0016] 
 CNN-12 -0.0326 [-0.0639, -0.00057647] 
CNN9+CapsNet2 CNN1+CapsNet2  0.0053 [0.0000904, 0.0047] 
 ResNet-18 0.0031 [-0.00008505, 0.0088] 
 SqueezeNet-v10 0.0017 [-0.007, -0.00003716] 
 SqueezeNet-v11 -0.0119 [-0.0285, -0.0022] 
 CNN-7 -0.0135 [-0.0176, -0.0016] 
 CNN-12 -0.0266 [-0.0551, -0.00054027] 
CNN1+CapsNet3 CNN1+CapsNet2  -0.000052 [-0.0024, -0.00001901] 
 ResNet-18 -0.0015 [-0.00019446, 0.0017] 
 SqueezeNet-v10 -0.0029 [-0.0141, -0.00014657] 
 SqueezeNet-v11 -0.0165 [-0.0356, -0.0023] 
 CNN-7 -0.0181 [-0.0247, -0.0017] 
 CNN-12 -0.0312 [-0.0622, -0.00064968] 
CNN1+CapsNet4 CNN1+CapsNet2  0.0058 [-0.00007055, 0.0168] 
 ResNet-18 0.0037 [-0.0001049, 0.0209] 
 SqueezeNet-v10 0.0023 [-0.0005701, 0.0051] 
 SqueezeNet-v11 -0.0114 [-0.0164, -0.0022] 
 CNN-7 -0.0129 [-0.0055, -0.0016] 
 CNN-12 -0.0261 [-0.0430, -0.00056012] 
CNN1+CapsNet5 CNN1+CapsNet2  0.2786 [0.1025, 0.5016] 
 ResNet-18 0.2764 [0.1023, 0.5057] 
 SqueezeNet-v10 0.2750 [0.1024, 0.4899] 
 SqueezeNet-v11 0.2614 [0.1002, 0.4684] 
 CNN-7 0.2596 [0.1008, 0.4793] 
 CNN-12 0.2467 [0.1019, 0.4418] 
CNN1+Wide CapsNet2 CNN1+CapsNet2 0.0031 [0.00042176, 0.0044] 
 ResNet-18 0.000969 [0.00024631, 0.0085] 
 SqueezeNet-v10 -0.00041 [-0.0073, 0.0002942] 
 SqueezeNet-v11 -0.0141 [-0.0288, -0.0019] 



 

 
 
 
 

 CNN-7 -0.0156 [-0.0179, -0.0012] 
 CNN-12 -0.0288 [-0.0554, -0.00020891] 
CNN1+Wide CapsNet3 CNN1+CapsNet2 0.0096 [-0.00024396, 0.0171] 
 ResNet-18 0.0074 [-0.00006851, 0.0213] 
 SqueezeNet-v10 0.0060 [-0.0001164, 0.0055] 
 SqueezeNet-v11 -0.0076 [-0.016, -0.0021] 
 CNN-7 -0.0092 [-0.0051, -0.0014] 
 CNN-12 -0.0223 [-0.0427, -0.00038671] 

 
4.5   Discussions 

 
In this section, more details on the use of CNN6+CapsNet2 and CNN1+CapsNet3 models 

in the gaze estimation problem are presented. In the generated eye dataset, CNN6+CapsNet2 
and CNN1+CapsNet3 achieved higher performance than other models. Figure 11 and Figure 
12 respectively show the results of gaze direction prediction of CNN6+CapsNet2 and 
CNN1+CapsNet3. As can be seen from the figure, the difference between the predicted and the 
real gaze direction vector is small, usually within a few degrees. These examples also show that 
our improved two models can overcome the extremely challenging difficulties in gaze 
estimation (such as obvious light changes, face rotation or occlusion, etc.), and predict the 
prediction results with almost no error with the real gaze direction. 

 

 

Fig. 11. The examples of gaze direction prediction of CNN6+CapsNet2. The gray segment is the 
predicted gaze direction vector, and the yellow segment is the real gaze direction vector. 

 

Fig. 12. The examples of gaze direction prediction of CNN1+CapsNet3. The gray segment is the 
predicted gaze direction vector, and the yellow segment is the real gaze direction vector. 

 



 

 
 
 
 

5   Conclusion 

In this study, on the basis of the original capsule network, we innovatively consider three 
important factors to improve the model and apply them to the gaze estimation in wireless sensor 
network. First, the number of convolutional layers in the original capsule network is increased, 
so that the convolutional layer can provide high-level semantic features for subsequent capsule 
layers. Secondly, the number of capsule layers in the original capsule network is increased so 
that the capsule layer can learn complex object features based on the low-level image features 
provided by the convolution layer. Third, the width of the capsule layer in the original capsule 
network is increased to increase the capacity of the whole network. Through experiments, we 
can draw the following conclusions. Appropriate improvement of the original capsule network 
from the first and second aspects can improve the performance of the model (e.g., the improved 
CNN6+CapsNet2 and CNN1+CapsNet3), but if the improvement range is too large, the model 
performance will decline or even not converge (e.g., CNN9+CapsNet2, CNN1+CapsNet4 and 
CNN1+CapsNet5). In addition, improvement in the third aspect is likely to result in overfitting 
of the model and decrease the network performance (e.g., CNN1+Wide CapsNet2 and 
CNN1+Wide CapsNet3). The reasons for these conclusions are discussed in detail in the 
experimental analysis section. In the future, we will use more detailed improvement schemes to 
achieve higher performance improvement. 
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