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Abstract. Point set registration is the key in many scientific disciplines. Target at
several challenges in registration (e.g. initial registration, outliers, missing data,
and local trap), we propose a robust registration method for two point sets using a
hierarchical Bayesian model, which is combined with Markov chain Monte Carlo
inference. Our approach is based on the introduction of a template of hidden
locations underlying the observed configuration points. A Poisson process prior
is assigned to these locations, resulting in a simplified formulation of the model.
We make use of a structure containing the relevant information on the matches.
We conduct several experiments to demonstrate that our algorithm is accurate and
robust.

Keywords: Hierarchical model - Markov chain Monte Carlo - Matching - Regis-
tration.

1 Introduction

In many scientific disciplines, one is confronted with the problem of comparing ob-
jects for object recognition, especially in the scenario of medical image analysis [1-3].
The aim of object recognition is to correctly identify objects in a scene and estimate
their pose (location and orientation). The object recognition usually involves compar-
ing point sets (configurations), where the points in different configurations are often
unlabeled in the sense that there is no natural correspondence between the points in
each configuration. Numerous techniques [4-9] have been studied over years for the
geometrical comparison of objects, where the configurations are labeled, or partly la-
beled, that is, when the point correspondences between the objects under study have
been established. Here, we concern about the configurations unlabeled, as the the cor-
respondences between the points of each configuration are unknown. Therefore, the
problem becomes pair matching: identifying and labeling corresponding points in dif-
ferent configurations, so called point set registration.

The Iterative Closest Point (ICP) algorithm, proposed by Besl and McKay [10], and
Chen and Medioni [11], is an accurate and efficient approach which is first proposed to
solve this problem. The ICP algorithm defines an energy function, which can indicate
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the summation of squared distances for point pairs in two sets. Then by minimizing
this energy function, ICP finds the optimal transformation. However, ICP could only
solve rigid registration problem since it requires a rough initial registration, which is
applicable to only rigid registration, and is sensitive to outliers and missing data.

To overcome these challenges, many researchers have extended the original ICP
algorithm to deal with non-rigid registration. One approach is to provide initial trans-
formations close to the optimal solution, such as principal component analysis and inde-
pendent component analysis [12-14]. However, these methods could not be extended to
solve the affine registration problem. Addressing this challenge, Zha et al. [15] extend-
ed the rigid registration problem to isotropic scale deformation. Du et al. [16, 17] also
proposed an affine registration method based on the ICP algorithm; Ying et al. [12,12]
proposed the so-called Scale-ICP algorithm targeting at scale problem. Liu [18, 19]
added geometric constraints and weights to the ICP algorithm. Although many effort-
s have also been made to improve the accuracy for the point pairs, all the algorithms
mentioned above no longer work when two point sets exist a large number of outliers
or missing data.

Target at outliers and missing data issue, Chetverikov et al. [20] proposed the Trimmed
ICP (TrICP ) algorithm, which can tackle the low overlapping problem partially. The
TrICP algorithm picks out outliers and then conducts ICP by minimizing the Trimmed
Squared Distance (TSD). Based on the TSD, Phillips ef al. [21] extended the ICP to a
fast automatic overlap rate estimation method, which can can identify and discard out-
liers. Du et al. [22,23] tried to solve the low overlapping problem by introducing an
overlapping percentage and a scale factor into a least-square function, which is based
on bidirectional distance in the isotropic scaling registration. However, these algorithm-

s could not deal with affine registration problem. They may fail due to the anisotropic
scale transformation.

Addressing the anisotropic scale transformation problem, recently several improved
algorithms of ICP by adopting Lie groups have been reported in the literature [16,29].
These algorithms have the advantage over the anisotropic scale transformation problem
partially by converging monotonically to a local minimum. Although these modified
ICP algorithms improve the convergence issue of local minima and sensitivity to out-
liers and disturbances, they still suffer from slow convergence or even divergence, if
proper initial pose estimate is not available [25].

Addressing the challenges of unlabeled configurations, outliers, and missing data,
this paper presents a hierarchical Bayesian model from getting alignment trapped in
local modes, and proposes a Markov chain Monte Carlo (MCMC) algorithm for making
inference on this model. We organize the paper as follows. In Section 2, we introduce
the hierarchical Bayesian model. Section 3 describes the inference of MCMC algorithm
on the model. Experiments and analysis are shown in Section 4. And finally Section 5
concludes the paper.



2 Hierarchical Bayesian Model

2.1 Hierarchical Model with Poisson Process Assumption

We consider two configurations, M and N, whose points are recorded in d-dimensional
space. These two point sets can be wrote as M = {x;, i = 1,2,...,m}and N = {y;, j =
1,2, ....,n}, where m and n are the numbers of points in the configurations M and N,
respectively. The labeling here is assumed to be arbitrary, which provides no initial in-
formation on the correspondences between points of M and N. Addressing the outliers
and missing data challenges, we construct a template, u = {;, i = 1,2,...,w} € RY,
to delineate the correspondence between the two configurations, where w is unknown.
This template p can be considered as a hidden point set including the missing data of
the two configurations, which can be interpreted as the true locations of the two config-
urations. On the other hand, the configuration points with outliers in M and N can be
considered as noisy observations of the template y.

In order to specify this template clearly, we define two sets of labeling arrays,
E=1{& i =L12,.,wand n = {n;, j = L,2,..,w}, which link the indexes of the
configuration points to that of their corresponding template points, where &; and n; are
the indexes of the template  underlying the configuration points. Then we can asso-
ciate the two configurations by associating the two index sets &; and 7; within the same
template. For one configuration, we assume that a template point can be observed at
most once, which means the rest points of the template y remain unobserved.

Here, we assume that each configuration goes through some transformations before
being observed. Let A = {A, A,} be the transformations, which bring the points of the
two configurations back to the template points. Under this assumption, our alignment
model can be written as

Aq CXi = Mg T E;

Az yj =y, + &
where x; and y; are the points of configurations M and N, respectively. &; and &; are
the random errors, which are assumed to have density f and to be independent of the
template points and of all the other errors.

Since u is the template interpret the true locations of the configurations, there can
be many options for y, including the following multiple estimates:

(€Y

(a) u may include the two configurations M and N.

(b) u may include one of the two configurations, say M.
(c) p may include one configuration N.

(d) u may include none of the two configurations.

Suppose that the number of template points in case (a) is L, then we can estimate
the configuration M has m — L points in case (b), the configuration N has n — L points in
case (c), and the template u has w—m—n+ L points remain in case (d). Furthermore, we
note the probabilities of points included in these cases as p,, pp. pc, and py, respectively.
The estimation of x is a random distribution, which subjects to Poisson distribution. The
correspondence of these three probabilities can be expressed as p, =y - pp * p., Where
v is the previous information about the configurations M and N. Based on the Poisson
process assumption on the template y, the count L is an independent Poisson variable



with mean yAvp,p., where A and v are the Poisson parameters. The prior distribution
for the estimation counts can be expressed as
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where A and v are Poisson parameters, Avp;, and Avp. are the mean counts for cases (b)
and (c).
From Equation 2, we can rewrite the estimation probabilities for cases (b) and (c)
as
p(m) = py;
3
p(n) = p @

Using Equation 2 and 3, the form of the prior distribution for the estimation counts
(Equation 2) can be rewrote as
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P e W = DL

“)
where symbol ”«” indicates proportionality with respect to the variables to the left of
the conditioning sign.

In order to specify the correspondence between the configurations(M and N) and
the template u, we use a match matrix A, which is a m X n matrix of 1s and Os. This
match matrix A is defined as

Aij = { N ®)

0, others

where &; and n; are the indexes of the template x4 underlying the observations (configu-
ration points). With this match matrix, we can specify the correspondence between the
two configurations M and N. If A; ; = 1, then template u has the true location of the two
configurations, as described in case (a). Otherwise A;; = 0, then template x4 does not
have a point to interpret the locations for the two configurations, which is described in
cases (b), (c), and (d). Based on the definition of match matrix A, every row or column
of this matrix sums to 1 or 0. And we can have }}; ; A; ; = L. Based on Equation 4, we
can have the likelihood of this match matrix as following
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2.2 Joint Bayesian Model

After constructing template ¢ and defining match matrix A, now we seek for the
joint likelihood of y and the transformation A = {A;, A,}. We start from the estimate of



Fig. 1. Directed acyclic graph of the hierarchical model.

the template u. For the points of configuration M in case (b), we find their distribution
has the following form

A A) = -lfAh i — 14, 7
paid A= [ v | il - oda @)

i:A; j=0,Yj

where {i : A;; = 0,V j} is the description of case (b), x is the point belongs to configu-
ration M subjecting to this condition, A, is the transformation matrix, |A| denotes the
absolute value of the determinant of the matrix Ay, /; is the error density of &;.

The same to case (c), the distribution of the points included in case (c) has the form

poiray = [ vt | il - e ®)
Rd

i =0

where {j : A;; = 0,Vi} is the description of case (c), y is the point belongs to configu-
ration N subjecting to this condition, |A;| denotes the absolute value of the determinant
of the matrix A, h, is the error density of &;.

After discovering the distribution forms for cases (b) and (c), we can have the dis-
tribution for case (a) as following

pulA,A) =

_ 9
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where {i, j : A;;j = 1} is the description of case (a), 7 is the parameter of shift transfor-
mation.
From Equation 7, 8, and 9, the posterior distribution has the form

p(x,y|A,A) o 10)
VEEIIA AN T e, =1 A1k = Aoy = 7)
where « is the error density of &; — &;.

So far, we have the hierarchical model, including the construction of the template
. And we display this model in the directed acyclic graph (Fig. 1).



Combine Equation 6 and 10, we finally get the joint posterior distribution corre-
sponding with the match matrix A,

p(A, M, NIA) an
A" |Aol" [T jia, =1 @¥(Arxi — Agy; — 1)/ 4

There is an assumption about the error density in Poisson process, proposed by
Green and Mardia et. al [26], that the error densities are centered Gaussian densities
with covariance matrices all equal to o, where o is the standard deviation. Based
on this assumption, we consider @, h; and h, subject to Gaussian distribution. From
Equation 1 and 11, we find the following form for our joint posterior model with the
Gaussian assumption for the errors,

p(AA, M, N)
YXP((A1xi—A2y; =)/ V2) (12)
[A11"A2]" p(A () p(0) T ja, =1 M—ﬁ;z
where ”®” denotes Gaussian function with standard deviation o, which is the error
variance.

3 Markov Chain Monte Carlo Inference

Here we want to make inference on the parameters of the joint Bayesian model we
get (Equation 12). In this equation, the parameters we concern are the match matrix A,
the translations A, and the error variance o~. This model is a joint distribution, whose
unwieldy aspect makes it difficult to progress in inference, using conventional analytic
or numerical estimation methods. Thus, we simulate a Markov chain by using MCMC
[27] simulation, which updates the parameters in sweeps. In the sweeps, the underlying
transition kernel of the Markov chain verifies detailed balance. Based on this simulation,
our model shown in Equation 12 can be considered to be stationary, constraint, and
distribution.

3.1 Updating the Translation A

For the transformation parameter A, conditionally conjugate priors can be found,
which result in full conditional distributions of the same form. This character can make
the updating of these parameters straightforward relatively. We can assume the trans-
lations A are rotation matrices. Then the conjugate priors can be found for the rotation
matrices: p(A) « exp(tr(FT - A)), where F is some d X d matrix, ¢r(-) the trace operator.
Based on this conjugate assumption, we have |A| = 1. And the involved calculation
yields the conditional distribution of rotation matrices A = {A;, A»} as following

p(AIA, M, N, o, 7)
o< A1 A" p(A) [T jia, =1 PUAIX; — Adyj — D)o V2)

A1 xi—Azy =]

o p(A)exp | Xijia, =1 =552
Dy =1 (A15i=D)A2y;

o« p(Aexp| ——7——

[ Zijiay =1 A1xi=1)A2y; ]}

202

(13)
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Rather than updating the rotation matrices themselves, we will work on the corre-
sponding rotation angles. We concentrate on the d = 3 dimensional case here. Ford = 3
case, we have three generalized Euler angles 6, 6,3, and 6,3. We assume that the rota-
tion matrices are with conjugate matrix Fisher prior. Since the relative rotation AIT -Ap
is uniform and mutually independent, it is reasonable for us to make such assumption.
Based on this assumption, we can simplify the rotation matrices as A = AIT - A;. Then
the model (Equation 13) can be rewrote as

Zijin=1Axi = T)y; ]}

p(AlIA, M, N, o, 7) o< p(A)exp {tr [ 5 (14)
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where A can be represented as A = R.(012)Ry(613)R(623), R, Ry, and R; are rotation
matrices. These rotation matrices have the descriptions as following

1 0 0

R.(623) =| 0 costh; sinba;
0 —sinby3 cosbys
cos0i3 0 sinfy3
R)Y(GIS) = 0 1 0 (15)
—sinf3 0 cosbz
cos01» sinfy, 0
R.(012) = | —sinby3 cos; 0
0 0 1

where 0y, € [-n,7), 613 € [-n/2,7n/2], and 0,3 € [-n, 7). We take a Metropolis-
Hastings jump to update these Euler angles. The acceptance probability of a jump can
be calculated from Equation 14 as following

o 1(Ax; — .
Zit,=1 A 7 OV T)y’]}elg} (16)

Djump = min{l, exp {tr[ 597

3.2 Updating Continuous Parameters

Now we are going to update the continuous parameters 7 (the shift transformation)
and o (the standard deviation of Gaussian density). As we mentioned, we assign an
inverse gamma prior distribution to o%: o2 ~ I'(a,b), where I'(a,b) is the inverse
gamma prior distribution, @ and b are the shape and rate parameters of the gamma
distribution, respectively. From Equation 12, 13, and 14, the full conditional distribution
of o2 is

p(c2|A, A, T, M,N) ~

T+ Li4b+ (1/4) 5,1 Il = Ay; = IP) {7

With this full conditional distribution, the error variance can be updated by using a
Gibbs sampler step, which can be simulated from the full conditional inverse gamma
distribution.

Since the Gaussian priors are assigned to the translation matrices, we also suppose
a Gaussian priori to the parameter of shift transformation 7 as 7 ~ Ny(uy, 0'12\,), where



uy and oy are the mean and the standard deviation of the Gaussian distribution. Then
we can obtain the full conditional distribution of 7 as
p(TlA A, 0, M,N) ~
N HN/O'%V'FZ:./.A«W:l(-’CI_AYI')/2U_2 1 (18)
d /o3 +L1207 > T +L202

3.3 Updating the Match Matrix

The match matrix will be updated with a Metropolis-Hastings jump. We initiate
configurations M and N to be in case (d) for matching. To update the match matrix A,
we move the points in case (d) into case (a), (b), and (c). A point in case (d) can be
selected randomly, the match will be assigned to a point in case (d) with the largest
probability, then this pair of points can be moved to case (a). If a point is in case (a), the
probability of removing it into case (b) or (¢) iS pr.jec;. Then the probability of matching
it to another point in case (d) is (1 = prejec:)/(n" — 2), where n* is the number of points
in N remain in case (d). We accept the new jump proposal (updated match matrix), A*,
with probability

* M,N) -
pr =min]1, QAT MN) g (19)
¢(Alr,o, M,N) - ¢*
where g and ¢* are the parameters corresponding to A and A*, respectively. They have
the following relationship,
Preject - 1" if making an unmatched point
matched,
1 ect - 1), if making a matched point
dld ~ [(Prejeci - 1), if g. P 20)
unmatched,
1, if making a matched point match to a

dif ferent point.

By using Equation 20, we can focus the update process on p,. . as following,

¥ X &((x; = Ay; — 1)/ V2)
Ao V2)?

(21

Preject =

4 Experiments

In order to show the accuracy of our algorithm, we compare it with the Iterative
Closest Point (ICP) algorithm, which is a representative method for point set registra-
tion, by using the Stanford Repository !, Parasaurolophus and T-Rex meshes datasets
from the UWA 3-D Modeling Dataset [28] and Skeleton Hand and Dragon from the
Large Geometric Models Archive at Georgia Tech 2. During our experiments, parame-
ters were set as follows: @ = 8,7 =0.7,1 = 6,0 = 107, uy = 0.5, and oy = 1076 The
proposed algorithms were implemented in Matlab 2015a, using Intel(R) CPU i7-8550U
@1.8 GHz with 8§ GB RAM. All experiments were performed on the same computer.

! The stanford 3D scanning repository. http://graphics.stanford.edu/data/3Dscanrep).
2 The Large Geometric Models Archive. http://www.cc.gatech.edu/projects/large_models.
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Fig. 2. The simulated point set of Stanford Bunny dataset. (a) The original shape of Stanford
Bunny, (b) The simulated point sets in 2-D, (c) The simulated point sets in 3-D.

4.1 Datasets

The point sets were generated to simulate large number of outliers and missing data,
by deleting 40% points in the original dataset randomly and adding 20% outliers. Two
point sets for each registration were generated by the following procedures: (1) Copying
two point sets from the original dataset, deleting 40% points of them randomly, adding
20% points to the point sets; (2) Rotating and shifting one copy randomly, the shift
transformation range falls into [500, 20000] voxels. Therefore, we have two different
point sets for each experiment. For each dataset in the three databases, we generated 50
pairs of simulated point sets. Here we take one pair of them generated from the Stanford
Bunny for example (Fig. 2).

The iteration of match matrix update was set to 1000. Also take one pair of point
sets generated from Stanford Bunny for example, the computation time of our method is
around 3700 seconds, while that of ICP is around 5300 seconds. And the rotation matrix
A and the parameter of shift transformation 7 we obtained are shown as following

—-0.12571 0.73605 —0.66515
—-0.30679 —0.66644 0.67951

7 = (0.08035,0.03880,0.06607)

We also obtained the rotation matrix R and the parameter of shift transformation T’
for ICP,

[ 0.94344 -0.11864 0.30960 J
A=

—0.98913 0.14269 -0.03549
0.030100 —0.03356 —0.99900

T =(0.14501, 0.13656,0.09361)

(—0.14373 —-0.98920 0.02878 ]
R =

4.2 Evaluation Metrics and Statistical Tests

In order to evaluate the proposed methods, registration error and overlap rate for
each pair of simulated point sets are calculated. The registration error is borrowed from
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Fig. 3. The comparison results for Bunny. (a) The matching result of ICP in 2-D, (b) The matching
result of ICP in 3-D, (c) The registration result of ICP in 3-D, (d) The matching result of our
method in 2-D, (e) The matching result of our method in 3-D, and (f) The registration result of
our method in 3-D.

Dong’s paper [29], which can represent the matching rate and the transformation error.
And we use a fast automatic overlap rate estimation technique [22] to calculate the
overlap rate, which can represent the transformation error between the two simulated
point sets. For registration error (overlap rate), the smaller (larger) the value is, the better
the performance result.

In all the comparison experiments between our algorithm and ICP, the paired T-
test is conducted to assess whether the difference in registration accuracy between the
two proposed algorithms was statistically significant, with a significance level set at
p <0.05.

5 Result

The comparison results for the Stanford Bunny are shown in Fig. 3, including the
matching results and registration results. The quantitative analysis of registration error
and overlap rate are provided in Fig. 4 and Fig. 5, respectively. Observe from Fig. 3
and Fig. 4, our method performs much better than ICP, an average registration error
of 0.004 = 0.0004, 0.073 + 0.029, 0.076 + 0.037, 0.086 + 0.05, and 0.075 + 0.05 is
obtained by ICP, while these values are changed to 0.001 + 0.0003, 0.001 + 0.0004,
0.002 + 0.0015, 0.006 + 0.0062, and 0.004 + 0.0036 by our method. Fig. 3 shows that
the matching rate of ICP is high in some cases, however, the registration error is still
high due to the large number of outliers and missing data. In the opposite, our method
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Fig. 4. Summary of registration evaluation on the 5 datasets for ICP and our methods. For each
dataset, we generate 50 pairs of simulated point sets. Registration errors are calculated from each
pair of point set. In the table, = indicates the statistically significant differences between ICP and
our method at a significance level of 0.05.

achieves satisfactory results in most cases. The results shown in Fig. 4 demonstrate
that our method is more resistant to outliers and missing data comparing to ICP, and
the performance differences between our method and ICP are statistically significant
(p < 0.05). We find that our method obtain reasonable overlap result, but ICP fail to do
so. Fig. 5 also shows the capability of our method in facing outliers and missing data
in another way. The overlap rates of our method are more reasonable than those of ICP.
On the 5 datasets, the average overlap rates of ICP are 33.22 + 6.92%, 23.94 + 8.00%,
47.04 + 10.77%, 35.56 + 75.2%, and 33.54 + 8.49%. The average overlap rates of our
method are much higher, 72.16 +5.20%, 60.34 £4.61%, 80.60 + 6.45%, 62.60 + 8.20%,
and 64.56 + 10.27%.

In our experiments, we find that the outliers and missing data do affect the perfor-
mance of our method. We show the performance of our method in the worst cases for a
snapshot, Fig. 6. In some cases, the registration error of our method is high, not to men-
tion the overlap rate, especially for the Skeleton Hand dataset. For the Dragon dataset,
We found that the missing data can lead to large transformation error, even the matching
rate is high, as shown in Fig. 6 Skeleton Hand and Dragon.
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Fig. 5. Summary of overlap evaluation on the 5 datasets for ICP and our methods. Overlap rates
are also calculated from each pair of point set. In the table, * indicates the statistically significant
differences between ICP and our method at a significance level of 0.05.

6 Conclusions and future work

We have proposed a hierarchical Bayesian model for objects alignment, and the cor-
responding inference by using MCMC algorithm. The low registration errors and high
overlap rates of our algorithm on five datasets prove that the Bayesian model we pro-
posed has not been trapped in local modes. The template reference molecule defined
in the Bayesian model is useful in dealing with outliers and missing data. However,
the registration error goes up on Skeleton Hand and Dragon dramatically. Due to the
anisotropic scale transformation caused by the rough shapes and missing data, the M-
CMC combined with Bayesian model converges slowly. In the future, we plan to target
at anisotropic scale transformation for faster convergent rate.

Although we have just considered pairwise matching of two configurations here,
our method has the potential to be extended for matching multiple molecules. And
it would be interesting to consider applications that assume nonrigid or even nonlinear
transformations between the configurations. Our model allows for such transformations,
with suitably adapted implementation.

Acknowledgment

This research was funded by National Natural Science Foundation of China [grant
number 61772159], Natural Science Foundation of Shandong Province [grant number



10 160 -0 10 100 80 80 40 20 0 2

Fig. 6. The matching results and registration results of our method on Parasaurolophus, T-Rex,
Skeleton Hand, and Dragon datasets. The first column shows the matching results of our algo-
rithm, and the second column shows the registration results.

ZR2017MF026], and Knowledge Innovation Fund of Harbin Institute of Technology
[grant number HIT.NSRIF.201703], in the design of the study and collection, analysis,
and interpretation of data and in writing the manuscript.

References

(1]
(2]
(31

(4]
[5]

(6]
(71

(8]
(9]

Zitova, B.; Flusser, J. and Sanroma, G.: Image registration methods: a survey, Image Vis.
Comput. vol. 21, no. 11, pp. 977-1000 (2003)

Du, S.; Guo, Y.; Ganroma, G.; et al.: Building dynamic population graph for accurate corre-
spondence detection, Medical image analysis, vol. 26, no. 1, 2069-2077 (2015)

Ju, J.; Loew, M.; Ku, B.; ef al.: Hybrid retinal image registration using mutual information
and salient features, IEICE TRANSACTIONS on Information and Systems, vol. 99, no. 6,
pp. 1729-1732 (2016)

Shao, X.; Xing, J.;Lv, J.; et al.: Unconstrained Face Alignment without Face Detection,
Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2069-2077 (2017)
Zhao, A.; Fu, K.; Wang, S.; ef al.: Aircraft Recognition Based on Landmark Detection in
Remote Sensing Images, IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 8, pp.
1413-1417 (2016)

Ma, Y.;Guo, Y.; Lei, Y.; et al.: Efficient rotation estimation for 3D registration and global
localization in structured point clouds, Image Vis. Comput. vol. 67, pp. 52-66 (2017)
Zadeh, A.; Baltrusaitis, T. and Morency, L.P.: Convolutional experts constrained local mod-
el for facial landmark detection, Computer Vision and Pattern Recognition Workshops
(CVPRW), pp. 2051-2059 (2017)

Ye, P. and Liu, F.: Multiple Gaussian mixture models for image registration, [EICE TRANS-
ACTIONS on Information and Systems, vol. 97, no. 7, pp. 1927-1929 (2014)

Green, P.J.: MAD-Bayes matching and alignment for labelled and unlabelled configurations,
Geometry Driven Statistics, vol. 121, pp. 377 (2015)

[10] Besl, P.J. and McKay, N.D.: A method for registration of 3D shapes, IEEE Trans. Pattern

Anal. Mach. Intell. vol. 14, no. 2, pp. 239-256 (1992)



[11] Chen, Y. and Medioni, G.: Object modelling by registration of multiple range images, Image
Vis. Comput. vol. 10, no. 3, pp. 145-155 (1992)

[12] Ying, S.; Peng, J.; Du, S. and Qiao, H.: A scale stretch method based on ICP for 3-D data
registration, IEEE Trans. Autom. Sci. Eng. vol. 6, no. 3, pp. 559-565 (2009)

[13] Du, S.; Zheng, N.; Meng, G.; Yuan, Z. and Li, C.: Affine registration of point sets using ICP
and ICA, IEEE Signal Process. Lett. vol. 15, pp. 689-692 (2008)

[14] Ying, S.; Peng, J.; Zheng, K. and Qiao, H.: Lie group method for data set registration prob-
lem with anisotropic scale deformation, ACTA Autom. Sin. vol. 35, pp. 867-874 (2009)
[15] Zha, H.; Ikuta, M. and Hasegawa, T.: Registration of range images with different scanning
resolutions, in: Proceedings of IEEE International Conference on Systems, Man, and Cyber-

netics, Nashville, TN, USA, pp. 1495-1500 (2000)

[16] Du, S.; Zheng, N.; Ying, S. and Liu, J.: Affine iterative closest point algorithm for point set
registration, Pattern Recognit. Lett. vol. 31, pp. 791-799 (2010)

[17] Du, S.; Zheng, N.; Xiong, L.; Ying, S. and Xue, J.: Scaling iterative closest pointalgorithm
for registration of m-D point sets, J. Vis. Commun. Image Represent. vol. 21, pp. 442-452
(2010)

[18] Liu, Y.: Constraints for closest point finding, Pattern Recognit. Lett. vol. 29, no. 7, pp. 841-
851 (2008)

[19] Liu, Y.: Penalizing closest point sharing for automatic free form shape registration, IEEE
Trans. Pattern Anal. Mach. Intell. vol. 33, no. 5, pp. 1058-1064 (2011)

[20] Chetverikov, D.; Stepanov, D. and Krsek, P.: Robust Euclidean alignment of 3D point set:
the trimmed iterative closet point algorithm, Image Vis. Comput. vol. 23, no. 3, pp. 299-309
(2005)

[21] Phillips, J.; Ran, L. and Tomasi, C.: Outlier robust ICP for minimizing fractional RMSD,
in: Proceedings of Sixth International Conference on 3-D Digital Imaging and Modeling, pp.
427-434 (2007)

[22] Du, S.; Zhu, J.; Zheng, N.; Liu, Y. and Ce, L.: Robust iterative closest point algorithm for
registration of point sets with outliers, Opt. Eng. vol. 50, no. 8, pp. 087001 (2011)

[23] Du, S.; Zhu, J.; Zheng, N.; Zhao, J. and Li, C.: Isotropic scaling iterative closest point
algorithm for partial registration, Electron. Lett. vol. 47, no. 14, pp. 799-800 (2012)

[24] Dong, JI.; Peng, Y.;Ying, S.; et al.: LieTrICP: An improvement of trimmed iterative closest
point algorithm, Neurocomputing, vol. 140, pp. 67-76 (2014)

[25] Li, W.; Yin, Z.; Huang, Y. and Xiong, Y.: Three-dimensional pointbased shape registration
algorithm based on adaptive distance function, Computer Vision, IET, vol. 5, no. 1, pp. 68-76
(2011)

[26] Green, P.J. and Mardia, K.V.: Bayesian Alignment Using Hierarchical Models, With Appli-
cations in Protein Bioinformatics, Biometrika, vol. 93, no. 2, pp. 234-254 (2006)

[27] Dryden, L.L.; Hirst, J.D. and Melville, J.L.: Statistical analysis of unlabeled point sets: com-
paring molecules in cheminformatics, Biometrics, vol. 63, pp. 237-251 (2007)

[28] Mian, A.; Bennamoun, M. and Owens, R.: Three-dimensional modelbased object recogni-
tion and segmentation in cluttered scenes, IEEE Trans. Pattern Anal. Mach. Intell. vol. 28,
no. 10, pp. 1584-1601 (2006)

[29] Dong, J.; Peng, Y.; Ying, S.; et al.: LieTrICP: An improvement of trimmed iterative closest
point algorithm, Neurocomputing, vol. 140, pp. 67-76 (2014)



