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Abstract. Heart rate and respiration, which are physiological indicators closely related to 
cardiopulmonary function, are widely used in clinical diagnosis and daily monitoring. 
This paper proposes a heart rate measurement based on imaging photovoltaic 
plethysmography (iPPG) and a respiratory measurement method of sift algorithm. We 
mark the region of interest by dlib. Signal is obtained by color channels separation of 
ROI and independent component analysis. Next we filter signal with bandpass filter and 
extract heart rate from the blood volume pulse via Fourier transform. Meanwhile, the 
trajectory is decomposed into a set of component motions by calculating the feature 
points at the chest and performing principal component analysis. The composition of the 
respiration that is most suitable for the calculation is then selected based on its time 
spectrum. Finally, the peak of the trajectory corresponding to the respiration is 
determined. This method could be used for contactless sleep monitoring . 
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1   Introduction 

In recent years, with the improvement of computer performance, video image processing 
technology can be used in medical diagnosis, health monitoring and other aspects to provide 
support for the development of modern medicine. Especially, heart rate and respiratory are 
widely used in clinical diagnosis and daily monitoring [1]. 

The traditional detection methods are mostly contact devices. The traditional heart rate 
measurement method is electrocardiogram (ECG) [2]. It requires the testee to stick electrodes 
or wear chest bands on the body, causing certain stimulation and discomfort to the testee. 
Photoplethysmo Graphy (PPG) is a noninvasive method to detect blood volume changes in 
living tissues by photoelectric means [3]. When a certain wavelength of light is irradiated on 
the skin surface of the fingertip, the light beam will be transmitted to the photoelectric receiver 
through transmission or reflection. Although compared with the traditional heart rate 
measurement method, the comfort is improved. It is still a contact and longterm measurement 
which would make the testee feel uncomfortable. 

The detection methods of respiratory signals include pressure sensor method, temperature 
sensor method and impedance method. Pressure sensor method measure respiratory frequency 
by sensing the periodic deformation of respiratory duct and thorax and abdomen according to 
the periodic change of exhalation and inspiration. Pressure sensors are usually placed in the 
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respiratory tract of adults. Children need to tie the sensors to their abdomen with straps, which 
will bring discomfort to the subjects. The influence of restraint pressure on respiration will 
bring into the measurement results, causing errors. Temperature sensor method can change the 
temperature in nasal cavity when gas is exchanged with external gas through nasal cavity. The 
physical characteristics of some materials or components are related to temperature. The 
change of temperature is transformed into the change of electric quantity, and the change of 
respiration is measured. Temperature sensor method also has the disadvantage that pressure 
sensor method brings discomfort to subjects. 

As people pay more attention to their own health, there is a great demand for a scheme 
that can detect physiological indicators such as heart rate at home without going to the hospital. 
Therefore, the research of noncontact physiological signal measurement equipment has 
gradually attracted attention. The ability to monitor a patient's physiological signals by a 
noncontact mean has a tantalizing prospect that would enhance the delivery of primary health 
care. 

2   Literature review  

2.1   Heart rate 
 

T Wu et al. proposed a noncontact imaging photovoltaic plethysmography (iPPG) [4] 
based on the traditional photovoltaic plethysmography (PPG) technique requiring contact 
measurement. With the beating of the heart, the amount of blood in the blood vessels is 
constantly changing. When the heart pumps blood, the amount of blood in the blood vessels 
increases, so does the absorption of light by the blood vessels on the skin surface. And the 
absorption of light by other tissues remains unchanged. When the blood flows back to the 
heart, the amount of blood in the blood vessels decreases, and the absorption of light by the 
blood vessels on the skin surface decreases, while the absorption of light by other tissues also 
decreases. That is to say, the changes of the reflected light of skin can reflect the condition of 
cardiovascular activity. By processing the waveform of the reflected light of skin in a period 
of time, physiological signals such as heart rate can be obtained. This is the basic principle of 
iPPG. They irradiate skin surface with 870 nm infrared light as light source, receive reflected 
light through a black and white camera with filter, and select the same position as the ROI in 
each frame. Calculating the waveform of the gray mean value in ROI, we obtain the PPG 
signal which reflects the change of blood flow in the skin region. 

Ming Zher Poh of MIT and others published a series of articles and proposed a 
noncontact physiological measurement scheme based on cameras [5]. They collect video 
signals with ordinary network cameras under natural light conditions by imaging photovoltaic 
plethysmography (iPPG) technology. After processing and analysis, they can get blood 
volume pulse wave. Further processing can get heart rate, which is low cost and high accuracy. 

YuSun et al. of the National University of Singapore use iPPG technology to measure the 
pulse variation signal in a noncontact way [6]. They use 880 nm infrared light source and 
highspeed CMOS camera to collect video signals. After comparing the results obtained by the 
method and the traditional contact measurement method, they find that the results obtained by 
the two methods are identical. 

The studies of T Wu, Yu Sun and Ming Zher Poh provide support for the measurement of 
some physiological parameters under noncontact conditions using simple equipment. 



 
 
 
 

 
2.2   Respiratory rate 
 

As for the research of respiratory rate(RR) detection, the noncontact respiratory rate 
detection is the main research focus in the world. S. Min and others proposed a simplified 
structural textile capacitive respiration sensor (TCRS) for respiration monitoring system [7], 
which is based on capacitive pressure sensing method.  

Fatih Erden and A. Enis Çetin used infrared sensors to detect Respiratory rate [8]. The 
system, which consists of two pyro-electric infrared (PIR) sensors, is capable of estimating the 
respiratory rate and detecting the sleep apnea. Mohammod Abdul Motin and others proposed 
an EEMD-PCA approach to extract heart rate and respiratory rate from PPG signal [9]. They 
used an algorithm based on ensemble empirical mode decomposition with principal 
component analysis (EEMD-PCA) as a novel approach to estimate HR, RR and RA 
simultaneously from PPG signal 

Linovi and others proposed detecting respiratory rate based on EVM. Rate detection 
method [9]. Shourjya Sanyal and Koushik Kumar Nundy use smartphone cameras to measure 
heart rate (HR) and Respiratory Rate(RR) [11]. They introduced a novel iPPG method where 
by measuring variations in color of reflected light and can therefore measure both HR and RR 
from the video of a subject's face. David Lowe of University of British Columbia proposed the 
SIFT algorithm and improved it in 2004 [11][13]. This description has scale invariance and 
can detect key points in images. It is a local feature descriptor. Hao Yuwu of MIT and others 
proposed a method called Eulerian Video Mag nification (EVM) [14], which processes video 
images in both spatial and temporal domains and makes subtle changes that are not easily 
observed by the naked eye.  

We propose a heart rate measurement based on imaging photovoltaic plethysmography 
(iPPG) and a respiratory measurement method of sift algorithm, which could be used for sleep 
monitoring. The method is first described, and then multiple sets of experiments are performed 
to verify its accuracy with the pulse oximeter measurement results. 

3   Heart rate measurements 

This design is divided into four parts: face detection and the mark of two regions of 
interest (ROI), signal separation, signal processing, and heart rate extraction from the blood 
volume pulse (BVP). Extracting frames from video, we mark the ROI if face is detected from 
frame. Signal is obtained by color channels separation of ROI and independent component 
analysis. We smooth the signal by detrending and demeaning and filter signal with bandpass 
filter. At last, we extract heart rate from the BVP via Fourier transform. 

 
3.1   Location of ROI 
 

We utilized dlib to detect faces within the video frames and mark two regions of interest 
[15]. Dlib implements the algorithm described in the paper One Millisecond Face Alignment 
with an Ensemble of Regression Trees, by Vahid Kazemi and Josephine Sullivan [16]. Using 
opencv for face detection, some faces can not be detected, and accuracy is low when detecting 
the side face. Compared with opencv, dlib is more accurate, and it could detect 68 feature 



 
 
 
 

points or even more on the face. We locate the ROI by the position of the feature points, as 
shown in the Figure 1. 

 

 

Fig.1. The position of the feature points 

The feature extractor (predictor) requires a rough bounding box as input to the algorithm. 
This is provided by a traditional face detector. Detector returns a list of rectangles, each of 
which corresponds with a face in the image. In the method of Ming Zher Poh [5], they selected 
the center 60% width and full height of the box as the ROI for subsequent calculations. 
However, there would be some interference due to the movement of the eyes. Compared with 
marking region of full face, combination of forehead and nose performs better. For each face 
detected, we localize the region of interest. Nose, partial cheeks and forehead area between 
eyebrows are selected as ROI. We draw two rectangular frames and extract the ROI as the 
signal extraction area, as shown in the Figure 2. 

 

 
Fig.2. Extract ROI from frame 

Although reducing the area of the ROI may lead to an increase of noise, the regions we 
selected are in the high-frequency regions, which are easy to filter out and have less influence 
on measuring heart rate. 

 
3.2   Signal separation 



 
 
 
 

 
The regions of interest are used as a signal extraction area, which is separated into three 

RGB channel signals of red, green and blue. We split three primary colors for two regions of 
interest per frame, and select RGB signal formats. The nose (ROI1) area size is 𝑅 ൈ 𝑆, and the 
forehead (ROI2) area size is 𝑃 ൈ 𝑄. The mean �̅�௞ of every channel in ROI1 and the mean 𝑦ത௞ 
of every channel in ROI2 is calculated as follows equations (1) and (2): 

 

�̅�௞ ൌ
∑ ∑ 𝑥௞

ௌ
௝ୀଵ

ோ
௜ୀଵ

𝑅 ൈ 𝑆
   ሺ𝑘 ൌ 1,2,3ሻ ሺ1ሻ 

 

𝑦ത௞ ൌ
∑ ∑ 𝑦௞

ொ
௝ୀଵ

௉
௜ୀଵ

𝑃 ൈ 𝑄
   ሺ𝑘 ൌ 1,2,3ሻ ሺ2ሻ 

 
Get the signals of the three channels of RGB: �̅�ଵሺ𝑡ሻ, �̅�ଶሺ𝑡ሻ, �̅�ଷሺ𝑡ሻ and 𝑦തଵሺ𝑡ሻ, 𝑦തଶሺ𝑡ሻ, 𝑦തଷሺ𝑡ሻ, 

where 𝑡 is the time series of the video frames. Calculate the average intensity, see equation(3): 
 

𝑟௞ሺ𝑡ሻ ൌ ൫�̅�௞ሺ𝑡ሻ ൅ 𝑦ത௞ሺ𝑡ሻ൯ 2⁄    ሺ𝑘 ൌ 1,2,3ሻ ሺ3ሻ 
 
Next, we use the blind signal separation to separate the RGB three color channel and find 

the frequency from three independent components. Blind signal separation (BSS) is the 
separation of a set of source signals from a set of mixed signals, without the aid of information 
about the source signals or the mixing process. Independent component analysis (ICA), a 
special case of blind source separation, is a computational method for separating a 
multivariate signal into additive subcomponents [17]. In this experiment, we assume that there 
are three independent source signals: 𝑠ሺ𝑡ሻ ൌ ሾ𝑠ଵሺ𝑡ሻ, 𝑠ଶሺ𝑡ሻ, 𝑠ଷሺ𝑡ሻሿ், and the observed signals 
are three color channel signals 𝑟ሺ𝑡ሻ ൌ ሾ𝑟ଵሺ𝑡ሻ, 𝑟ଶሺ𝑡ሻ, 𝑟ଷሺ𝑡ሻሿ். The linear mixed model of ICA 
can be expressed as follows equation (4): 

 
𝑟ሺ𝑡ሻ ൌ 𝐴𝑠ሺ𝑡ሻ ሺ4ሻ 

 
where 𝐴 ∈ 𝑅ଷൈଷ is an unknown mixed matrix. Three source signals 𝑠ሺ𝑡ሻ are mixed to obtain 
the observed signals 𝑟ሺ𝑡ሻ . Determining the separation matrix 𝑊  based on 𝑟ሺ𝑡ሻ  as follows 
equation (5): 

 
𝑣ሺ𝑡ሻ ൌ 𝐴ିଵ𝑟ሺ𝑡ሻ ൌ 𝑊𝑟ሺ𝑡ሻ ሺ5ሻ 

 
where 𝑣ሺ𝑡ሻ ൌ ሾ𝑣ଵሺ𝑡ሻ, 𝑣ଶሺ𝑡ሻ, 𝑣ଷሺ𝑡ሻሿ்  is an estimate of the 𝑠ሺ𝑡ሻ . FastICA is an efficient 
algorithm for independent component analysis. The specific steps are as follows:  

(1) Prewhiten and center the data, and get 𝑍 ← 𝑟ሺ𝑡ሻ 
(2) Randomize the initial weight vector 𝑊 
(3) Iterative update:  

𝑤௜ ← 𝐸ሼ𝑍𝑔ሺ𝑤௜
்𝑍ሻሽ െ𝐸ሼ𝑔ᇱሺ𝑤௜

்𝑍ሻሽ𝑤, where 𝐸ሼ… ሽ means averaging over all column 
vectors of matrix 𝑍. And let 𝑊 ← ሺ𝑊𝑊்ሻିଵ ଶ⁄ 𝑊. 

(4) If not converged, go back to (3) 
 

It is considered that the G channel almost always features a much stronger HR signal as 
compared to the R and B channels. And it is also a strong evidence that the signals are filtered 



 
 
 
 

by variations in blood volume (due to the absorption bands for oxy and deoxy hemoglobin for 
yellow and green light) [18][19]. Correlation between the three independent signals 𝑣ሺ𝑡ሻ and 
the green channel signal 𝑟ଶሺ𝑡ሻ was analyzed to obtain the signal with the best correlation. The 
calculation results show that the best correlation with the green channel is the component 
𝑣ଶሺ𝑡ሻ. 

Based on this, we studied the effect of noise on the color channel. Heart rate and noise 
resistance were tested with individual color channels. Each color channel was used for 
contrast test with 15 videos of the same frame rate. Next, we performed the noise comparison 
test by adding gaussian noise to videos, and calculated the average error. Record the test 
results, as shown in Table 1. 

      Table 1. The number of wave crest 

Color channel The mean error 
(no noise) 

The mean error 
(add noise) 

R 3.05 3.54 

G 0.26 1.23 
B 3.57 4.31 

RGB 2.44 3.07 

 
From the test, the green channel does have a better performance for heart rate detection, 

while also reducing noise. 
 

3.3   Signal processing 
 
We consider the 𝑣ଶሺ𝑡ሻ  as a continuous function of time, and filter the signal with a 

bandpass filter for the time series of 𝑣ଶሺ𝑡ሻ. In this paper, we extract the heart rate signal, so the 
time domain filtering uses a bandpass filter of 0.83-3.33 Hz (heart rate 50-200 times/min).  

We plot the mean value �̅�ଶሺ𝑡ሻ  as a function of time, which is the blood volume 
pulse(BVP), as shown in the Figure 3. 

 

 
 

Fig.3. The blood volume pulse 

 
3.4   Heart rate extraction from BVP 
 



 
 
 
 

The BVP signal is converted into a frequency domain signal via fourier transformed. 
Analytical power spectrum, and the peak of the power spectrum is the heart rate 𝑓. The heart 
rate could be calculated, as follows equation (6):  

 
𝐻𝑅 ൌ 𝑓 ൈ 60 ሺ6ሻ 

 
Since the heart rate change between samples does not exceed 10%, a weighted average is 

used to smooth the BPM with the last BPM, see equation(7): 
 

𝑥1 ൌ 𝑥2 ൈ 0.9 ൅ 𝑥1 ൈ 0.1 ሺ7ሻ 
 

where 𝑥1 means the BPM, and 𝑥2 means the last BPM. Taking bpm as the abscissa and power 
as the ordinate, the abscissa value corresponding to the power peak is 65 times/min, as shown 
in the Figure 4. 

 

 

Fig.4. The power spectrum of BVP 

4   Respiratory rate measurements 

The detection of respiratory frequency consists of five parts. First, we use Eulerian Video 
Magnification to amplify the subtle movement we interested. Then, using sift algorithm to find 
feature points. Next step is Temporal Filtering. Finally, we use PCA to decompose this mixed 
motion and finish peak detection. 
 
4.1   Use Eulerian Video Magnification to amplify movement 
 

Sometimes respiration movements is very subtle, we need to use Eulerian Video 
Magnification to amplify the movement we interested. Hao Yuwu of MIT and others proposed 
a method called Eulerian Video Mag nification (EVM) [14], which processes video images in 
both spatial and temporal domains and makes subtle changes that are not easily observed by 
the naked eye.  

Assuming that the whole image is constantly changing, but these signals have different 
amplitude and frequency characteristics. The signal of change is hidden in it. In this way, the 
magnification of these weak changes which is essentially to select and enhance the frequency 
bands to be studied. In 2012, Wu et al. proposed a method called Eulerian Video 
Magnification from this perspective. The process is as follows: 

1.Spatial filtering. Pyramid multi-resolution decomposition of video sequence is 
performed.The generation of the Gauss pyramid can be expressed as follows equation (8): 

 
GaussI௜ ൌ ሾ𝜔＊GaussI௜ ൅ 1ሿ ↓ ሺ8ሻ 



 
 
 
 

 
where GaussI௜  is layer 𝑖 of the Gauss Pyramid, ↓means down sampling, ＊as convolution 
operator, ω as gaussian kernel.Laplacian pyramid is obtained by the difference between two 
layers of images in the Gauss pyramid. If 𝑖 represent Laplacian Pyramid's Layer I, then see 
equation (9): 

 
Lapli ൌ GaussI௜ െ 𝑃𝑦𝑟𝑈𝑝ሺGaussI௜ ൅ 1ሻ ሺ9ሻ 

 
where Lapli is the Up-sampling of Gauss pyramid, GaussI௜ is layer 𝑖 of the Gauss Pyramid, 
𝑃𝑦𝑟𝑈𝑝 is layer I of the Laplacian Pyramid. 

2.Time domain filtering. Time domain bandpass filtering is applied to each scale image to 
obtain several frequency bands of interest. 

3.Amplify the filtering results. For each frequency band, the results of differential 
approximation and linear amplification approximation are obtained by Taylor series. 

4.Composite image. Synthesize the enlarged image. 
 
4.2   Tracking and find feature points 

 
We use sift algorithm from OPENCV 3.4 to find the feature points. Lowe proposed a 

method called Scale-invariant feature transform [12][13], Scale-invariant feature transform is 
a computer vision algorithm used to detect and describe local features in images. 

Lowe decomposes the SIFT algorithm into the following four steps: 
1. Scale Space Extremum Detection: Search for image positions on all scales. Gauss 

differential function is used to identify potential points of interest for scale and rotation 
invariance. 

2. Key Point Location: At each candidate position, the position and scale are determined 
by a well-fitted model. The selection of key points depends on their stability. 

3. Direction determination: Based on the local gradient direction of the image, one or 
more directions are assigned to each key point position. All subsequent operations on image 
data are transformed relative to the direction, scale and location of key points, thus providing 
invariance for these transformations. 

4. Key Point Description: In the neighborhood around each key point, the local gradient 
of the image is measured on the selected scale. These gradients are transformed into a 
representation that allows for larger local shape deformations and light changes. 

Through the above steps, SIFT feature point location, scale and direction information has 
been found. Next, we need to use a set of vectors to describe the key point, which is also to 
generate feature point descriptors. This descriptor contains not only feature points, but also the 
pixels around the feature points that contribute to it. The descriptor should be independent to 
ensure the matching rate. 

In order to enhance the robustness of matching, it is proposed to use 4x4 seed points to 
describe each key point. Such a key point can generate 128-dimensional SIFT feature vectors. 

We then use BFMatcher method to find the best match and only take the first 10 points 
with the greatest change in the axis of the best matching as the feature points of the calculation, 
as shown in the Figure 5. Between frame 1 and each frame t=2 to T, we get the location 
{𝑥୬ሺ𝑡ሻ, 𝑦୬ሺ𝑡ሻ} for each feature point n. And we only analyze the vertical component 𝑦୬. 
 



 
 
 
 

 

Fig.5. Use sift to do feature points matching 

 
4.3   Temporal Filtering 
 

Not all frequencies of the trajectories are required or useful for respiratory rate detection. 
A normal baby’s respiratory rate falls within [0.25, 2] Hz, or [15, 60] times/min. On the one 
hand, the movements’ frequencies lower than 0.25 Hz usually like changes in posture, which 
negatively affect our respiratory rate detection. On the other hand, the frequencies higher than 
2 Hz provide useful precision needed for peak detection. Taking these elements into 
consideration, we filter each feature point vertical component 𝑦୬ to a passband of [0.25, 5] Hz. 
We use a 5th order Butterworth filter. 

 
4.4   Use PCA to decompose this mixed motion 
 

The only source signal we're interested in is the movement of belly caused by baby’s 
respiration. Therefore, we need to decompose this mixed motion to isolate the respiratory 
signal. To do this we consider the multidimensional position of the belly at each frame as a 
separate data point and use PCA [20] to extract the main linear components of data by 
transforming the original data into a set of linear independent representations. We then select a 
dimension on which to project the position time series to get the respiratory signal. If there are 
X feature points, the Ndimensional position of the feature points at frame 𝑡  as 𝑛௧  = 
[𝑦ଵሺ𝑡ሻ, 𝑦ଶሺ𝑡ሻ,ꞏꞏꞏ, 𝑦௡ሺ𝑡ሻ]. we can get the covariance matrix: 

 

∑୬ ൌ ෍ሺ𝑛௧ െ 𝑛തሻሺ𝑛௧ െ 𝑛തሻ்

்

௜ୀଵ

ሺ10ሻ 

 
where ∑୬ is the covariance matrix, 𝑛ത is the mean of samples, 𝑇 is the number of frames. And 
we can use PCA to put the principal axes of variation of the position as the eigenvectors of the 
covariance matrix: 

 
∑୬𝛷௡ ൌ 𝛷௡𝑅௡ ሺ11ሻ 

 



 
 
 
 

where 𝑅௡ is a diagonal matrix contains the eigenvalues 𝜆ଵ, 𝜆ଶ,ꞏꞏꞏ, 𝜆௑ corresponding to the 
eigenvectors in the columns of 𝛷௡. The N-dimensional direction and motion amplitude of each 
feature point are shown by eigenvectors.  
 
4.5   Peak detection and calculate respiratory rate 
 

We will choose the most periodic eigenvectors and do fourier transform. We then do the 
peak detection. We perform peak detection on the selected PCA component signal. The peaks 
are close to 1/frate seconds apart with some variability due to the natural variability of 
respiration, variations of the belly motion, and noise. We label each sample in the signal as a 
peak if it is the largest value in a window centered at the sample and use peak value. And the 
respiratory rate is calculated by peak value via fourier transform. 

5   Experimental work 

5.1   Experimental setup 
 

To verify the accuracy of the heart rate and respiration methods, we enrolled 5 healthy 
male college students and 5 healthy female college students to experimentize. We measured 
the reference value of HR and RR using ECG device (HR) and self-reporting (RR). Measure 5 
minutes for each volunteer, and record the heart rate and respiration every 20 seconds. A total 
of 150 sets of data were obtained. The volunteers were lying on their back. 
 
5.2   Work method 
 

The differences between the measured value and the reference value was clarified by 
using Bland-Altman analysis. The abscissa indicates the average of the two measurement 
results in the same experiment, and the ordinate indicates the difference between the two 
methods in the experiment. The middle solid line indicates the mean �̅�  of the difference 
between the multiple experiments, and the two broken lines indicate the upper and lower 
limits of the 95% limits of agreement �̅� േ 1.96𝑆𝐷, where 𝑆𝐷 is the standard deviation of 150 
experimental difference values. The higher degree of agreement between the two measurement 
methods is, the closer the solid line representing the difference mean is to 0, and the less data 
would be outside the limits of agreement. 

Using the heart rate method of this paper, �̅� was -0.2913 with 95% limits of agreement -
2.7502 to 2.1675, reflecting heart rate consistency. 94.00% (141/150) of the points are within 
the 95% limits of agreement, as shown in the Figure 6(a). Using the respiration method of this 
paper, �̅� was -0.5113 with 95% limits of agreement -3.6901 to 2.6674, reflecting respiration 
consistency. 98.67% (148/150) of the points are within the 95% limits of agreement, as shown 
in the Figure 6(b). It can be seen that the heart rate and respiration methods in this paper have 
a high consistency with the traditional method. 

 



 
 
 
 

 
 

(a) the accuracy of the heart rate by Bland-Altman analysis 
 

 
 

(b) the accuracy of the respiration by Bland-Altman analysis 
 

Fig.6. The accuracy of method by Bland-Altman analysis 

6   Conclusion 

In this paper, we realize that measure heart rate and respiration using the common camera 
without contact by recognizing facial feature points and abdominal feature points. It has been 
proved by experiments that the method could get comparatively accurate results. 



 
 
 
 

Considering those characteristics of simplicity and convenience, the method in this paper 
is suitable for daily sleep monitoring, especially for the old men and infants whom need 
special care, and could be well applied. In addition, it also has a good application prospect in 
the detection of lies and other aspects. At the same time, we would study the detection of heart 
rate and respiration by infrared light under dark conditions, which is the direction of our future 
efforts. 
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