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Abstract. With the proliferation of electronic devices, cloud storage has become an 

integral part of synchronizing files between devices. However, data stored on the cloud is 

vulnerable to unauthorized access during the sharing process. The traditional conditional 

proxy broadcast re-encryption solution is suitable for the above application scenarios but 

does not support flexible control of conditions. This article describes the concept of fine-

grained conditional proxy broadcast re-encryption (FGC-BPRE). The scheme utilizes an 

access tree to generate a re-encryption key. If the ciphertext keyword satisfies the 

conditions in the access tree, the proxy can convert the user's ciphertext into a new 

ciphertext for a group of users. In addition, this paper also constructs a fine-grained 

conditional proxy broadcast re-encryption scheme and verifies the security of selective 

ciphertext attacks without oracles. 

Keywords: Conditional proxy re-encryption, Proxy broadcast re-encryption, Cloud 

storage secure. 

1 Introduction 

As digital devices enter our lives, people are getting used to using cloud services to 

synchronize private files on different devices. Cloud service providers usually provide necessary 

security for private files. But this can cause problems, for example, Alice encrypted files cannot 

be directly shared with Bob for decryption. If Alice passes the private key directly to the agent 

for decryption, the agent will have access to all Alice's files. This is unacceptable to Alice and 

can significantly increase the risk of file compromise or unauthorized access, and encryption 

will lose its meaning. From another perspective, all encryption and decryption operations are 

performed by the agent, which makes it difficult to improve execution efficiency. 

The proxy re-encryption (PRE) proposed by Blaze works well for the above situation [1]. 

PRE-scheme allows the agent to encrypt the user's ciphertext twice. The re-encrypted ciphertext 

can be decrypted directly by Bob, while the agent cannot obtain any valuable information. In 

the actual environment, PRE has a wide range of applications, such as cloud data sharing system 

[2], distributed file system [3], network backup system [4] and so on. However, in the original 

PRE scheme, the proxy can arbitrarily convert its encrypted file without Alice's consent, and 
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the conversion permissions are not well controlled. To solve this problem, Weng et al. proposed 

the concept of conditional proxy re-encryption (C-PRE) [5]. Under C-PRE, the agent can re-

encrypt its ciphertext only after matching the conditions set by Alice. C-PRE has been put into 

practical use, such as social network data sharing systems [6]. In an actual application 

environment, Alice may need to share files to multiple people, at this time, the C-PRE scheme 

needs to perform multiple re-encryption operations, which takes up a lot of time and storage 

resources. The conditional proxy broadcast re-encryption proposed by Chu et al. can solve such 

a problem [7]. In this scheme, the proxy only needs to re-encrypt Alice's ciphertext once, and a 

group of users can decrypt the obtained ciphertext. The previous C-PRE and CPBRE schemes 

can not provide flexible control over proxy transition conditions. A proxy broadcast re-

encryption scheme supporting variable condition numbers, arbitrary condition combinations, 

and partial condition matching has yet to be proposed. 

Taking the file-sharing system as an example, Alice wants to hand over the working 

documents to the grassroots engineers in the R&D department in Hong Kong or Guangdong. 

She needs to describe the forwarding conditions 𝒯 = ("Research and Development Department" 

∧"Grassroots Engineer" ∧ ("Hongkong" ∨ "Guangdong")). In this article, we introduce the 

concept of fine-grained conditional proxy broadcast re-encryption. In the FGC-PBRE scheme, 

ciphertext is encrypted with a set of keywords 𝑊, and a re-encryption key is generated using 

the access tree 𝒯. The agent can transform Alice's ciphertext into a group of users if and only if 

𝑊 satisfies 𝒯. 

 

1.1 Related Work 

 

Blaze et al. introduced the concept of proxy re-encryption in Eu-rocrypt98 [1]. He proposed 

a two-way PRE scheme that chooses plaintext security. In this scheme, the proxy can convert 

Alice's ciphertext to Bob's ciphertext, or Bob's ciphertext to Alice's ciphertext. Subsequently, 

Ateniese et al. proposed a one-way proxy re-encryption based on bilinear pairing in ACM CCS 

2005 and proved the CPA security of the scheme [8]. Weng et al. proposed a one-way proxy re-

encryption scheme using the adaptive model, which is the first CCA-secured one-way proxy re-

encryption scheme [9]. Deng et al. proposed a multi-directional proxy re-encryption scheme 

without bilinear pairing [10]. Chu et al. proposed a scheme for conditional proxy re-encryption 

[11]. The conditional proxy re-encryption implements the permission control of the encrypted 

ciphertext, and only the ciphertext is satisfying the specified condition set by Alice can be re-

encrypted by the proxy. In ProvSec 2009, Fang et al. proposed an anonymous conditional proxy 

re-encryption scheme that supports conditional fault tolerance [12]. Luo et al. proposed the 

concept of ciphertext policy attribute proxy re-encryption [13]. 

 

1.2 Roadmap 

 

Section two of this paper provides some related theorems. Section three illustrates the 

construction of the FGC-BPRE scheme. Section four demonstrates the scheme is CCA-safe in 

stand model. Finally, the text concludes Section five. 

  



 

 

 

 

2 Preliminaries 

2.1 Bilinear mapping 

 

Let 𝐺 and 𝐺𝑇 be two multiplicative cyclic groups. 𝐺 and 𝐺𝑇 have the same prime order 𝑝. 

𝑔 is a generator of group 𝐺. A bilinear map 𝑒: 𝐺 × 𝐺 → 𝐺𝑇 satisfying the following conditions: 

1. 𝑒(𝑔1
𝑎, 𝑔2

𝑏) = 𝑒(𝑔1, 𝑔2)𝑎𝑏 for all 𝑎, 𝑏
𝑅
← 𝑍𝑝

∗  and 𝑔1, 𝑔2 ∈ 𝐺. 

2. 𝑒(𝑔, 𝑔) ≠ 1. 

3. 𝑒(𝑔1, 𝑔2) can be computed in polynomial time for all 𝑔1, 𝑔2 ∈ 𝐺. 

2.2 The n-BDHE assumption 

 

𝑍𝑝 denotes the set {0,1, … , 𝑝 − 1} and 𝑍𝑝
∗  denotes the set {1,2, … , 𝑝 − 1}. Set prime 𝑝. Let 

𝑒: 𝐺 × 𝐺 → 𝐺𝑇 be a bilinear map. Given 2𝑛 + 2 elements: 

(ℎ, 𝑔, 𝑔𝛼 , 𝑔𝛼2
, … , 𝑔𝛼𝑛

, 𝑔𝛼𝑛+2
, … , 𝑔𝛼2𝑛

, 𝑇) ∈ 𝐺2𝑛+1 × 𝐺𝑇 

The adversary needs to decide if 𝑇 =
?

𝑒(𝑔, ℎ)𝛼𝑛+1
. 

Use 𝑔𝑖 to indicate 𝑔𝛼𝑖
. The davantage of an adversary 𝒜 is: 

𝐴𝑑𝑣𝐺,𝒜
𝑛−𝐵𝐷𝐻𝐸 = |

Pr[𝒜(ℎ, 𝑔, 𝑔1, … , 𝑔𝑛, 𝑔𝑛+2, … , 𝑔2𝑛, 𝑒(𝑔𝑛+1, ℎ))] = 1

− Pr[𝒜(ℎ, 𝑔, 𝑔1, … , 𝑔𝑛, 𝑔𝑛+2, … , 𝑔2𝑛, 𝑇)] = 1
| 

where 𝑔, ℎ ∈ 𝐺, 𝛼 ∈ 𝑍𝑝
∗  and 𝑇 ∈ 𝐺𝑇 are randomly chosen. The n-BDHE assumption holds, 

if 𝐴𝑑𝑣𝐺,𝒜
𝑛−𝐵𝐷𝐻𝐸 is negligible for all probability polynomial time adversary 𝒜. 

 

2.3 Model and security notion 

 

This section describes the definition of fine-grained conditional proxy broadcast re-

encryption and their security models. The scheme uses an access tree to describe an access 

policy, where each internal node is a threshold gate and the leaves are associated with a keyword. 

Using this approach, we can render trees with "AND" and "OR" gates by using n-out-of-n and 

1-out-of n threshold gates, respectively. When the ciphertext satisfies the condition of the tree 

node, the system will be able to re-encrypt the ciphertext using the re-encryption key that 

provides the user. 

Definition 1 (Access Tree). Let 𝒯 represent the access tree. The non-leaf nodes of the tree 

represent threshold gates, and the child nodes represent thresholds. Let 𝑛𝑢𝑚𝑥 be the number 

of children of node 𝑥, 𝑘𝑥 is its threshold and get 0 < 𝑘𝑥 ≤ 𝑛𝑢𝑚𝑥. When 𝑘𝑥 = 𝑛𝑢𝑚𝑥, it is an 

AND gate. When 𝑘𝑥 = 1, the threshold is an OR gate. Each leaf node x of the tree is described 

by a conditional keyword and a threshold 𝑘𝑥 = 1. Let the depth of the root node of the access 

tree be 0. Let 𝐿𝑁𝒯
̅̅ ̅̅ ̅ be the set of all non-leaf nodes, and 𝐿𝑁𝒯 is the set of all leaf nodes. The tree 

𝑝(𝑥) represents the parent of node 𝑥. The function 𝑘𝑒𝑦𝑤𝑜𝑟𝑑(𝑥) is defined only when 𝑥 ∈
𝐿𝑁𝑇, which represents the condition key associated with the leaf node 𝑥 in the tree. The access 

tree 𝒯 also defines the ordering between the child nodes of each node, that is, the child nodes 

of the node are numbered from 1 to 𝑛𝑢𝑚. The function 𝑖𝑛𝑑𝑒𝑥(𝑥) returns the index associated 

with node 𝑥, each index value representing a unique node in the access tree. 

Definition 2 (Satisfying an Access Tree). Let 𝒯 be the access tree with root 𝑥, and 𝒯𝑥 is the 

subtree rooted at node 𝑥. Then 𝒯 and 𝒯𝑥 are the same. 𝒯𝑥(𝑊) = 1 indicates that a set of 

conditions 𝑊 satisfies the access tree 𝒯𝑥. If 𝑥 ∈ 𝐿𝑁𝑇,then 𝒯𝑥(𝑊)  =  1 if and only if the 



 

 

 

 

𝑘𝑒𝑦𝑤𝑜𝑟𝑑(𝑥) ∈ 𝑊. If 𝑥 ∈ 𝐿𝑁𝒯
̅̅ ̅̅ ̅ , evaluate 𝒯𝑧(𝑊) for all children 𝑧 of node 𝑥, 𝒯𝑥(𝑊) return 1 if 

and only if at least 𝑘𝑥 children return 1. 

Definition 3 (FGC-PBRE). The final grain conditional proxy broadcast re-encryption scheme 

consists the following algorithms. 

• 𝑆𝑒𝑡𝑢𝑝(𝜆, 𝑛): Input the security parameter λ, maximum the number of users 𝑛, output the 

public key 𝑃𝐾 and the master secret key 𝑚𝑠𝑘. 

• 𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝑃𝐾, 𝑚𝑠𝑘, 𝑖): Input the public key 𝑃𝐾, the master key 𝑚𝑠𝑘, user 𝑖 ∈ {1,2, … , 𝑛}, 

output user 𝑖’s secret key 𝑠𝑘𝑖. 

• 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑃𝐾, 𝑆, 𝑚, 𝑊): Input the public key 𝑃𝐾, a user set 𝑆 ⊆ {1,2, … , 𝑛}, message 𝑚 and 

a descriptive keyword set 𝑊, output the ciphertext 𝐶 for user set 𝑆 with the condition set 𝑊. 

• 𝑅𝐾𝐺𝑒𝑛(𝑃𝐾, 𝑠𝑘𝑖 , 𝑆′, 𝒯): Input the public key 𝑃𝐾, user 𝑖’s secret key 𝑠𝑘𝑖 , a user set 𝑆′ ⊆
{1,2, … , 𝑛} and an access tree 𝒯, output the re-encryption key 𝑟𝑘𝑖→𝑆′,𝒯. 

• 𝑅𝑒𝐸𝑛𝑐(𝑃𝐾, 𝑟𝑘𝑖→𝑆′,𝒯 , 𝑖, 𝑆, 𝑆′, 𝐶): Input the public key 𝑃𝐾, re-encryption key 𝑟𝑘𝑖→𝑆′,𝑊′, user 

𝑖 , two user sets 𝑆, 𝑆′ , an original ciphertext 𝐶 . If 𝒯(𝑊) = 1 , output the re-encrypted 

ciphertext 𝐶𝑅, or an error symbol ⊥. 

• 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑂(𝑃𝐾, 𝑠𝑘𝑖 , 𝑖, 𝑆, 𝐶): 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑂 is used to decrypt the ciphertext. Input the public key 

𝑃𝐾, user 𝑖’s private key 𝑠𝑘𝑖, user 𝑖, a user set 𝑆 and ciphertext 𝐶 for user set 𝑆. Output the 

plaintext 𝑚, or an error symbol ⊥. 

• 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅(𝑃𝐾, 𝑠𝑘𝑗 , 𝑖, 𝑗, 𝑆, 𝑆′, 𝐶𝑅): 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅 is used to decrypt the re-encrypted ciphertext. 

Input the public key 𝑃𝐾, user 𝑗’s private key 𝑠𝑘𝑗, two users 𝑖, 𝑗, two user sets 𝑆, 𝑆′, and re-

encrypted ciphertext 𝐶𝑅. Output the plaintext 𝑚, or an error symbol ⊥. 

Consistency. The affirmative determination of the FGC-PBRE scheme is defined as given two 

users 𝑖 ∈ 𝑆, 𝑗 ∈ 𝑆′ , two user set 𝑆, 𝑆′ , condition sets 𝑊, 𝑊′ , 𝐶 =
𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑃𝐾, 𝑆, 𝑚, 𝑊) , 𝑟𝑘𝑖→𝑆′,𝒯 = 𝑅𝐾𝐺𝑒𝑛(𝑃𝐾, 𝑠𝑘𝑖 , 𝑆′, 𝒯)  and 𝐶𝑅 =

𝑅𝑒𝐸𝑛𝑐(𝑃𝐾, 𝑟𝑘𝑖→𝑆′,𝒯 , 𝑖, 𝑆, 𝑆′, 𝐶): 

 Pr[𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑂(𝑃𝐾, 𝑠𝑘𝑖 , 𝑖, 𝑆, 𝐶) = 𝑚] = 1, if 𝑖 ∈ 𝑆; 

 Pr[𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅(𝑃𝐾, 𝑠𝑘𝑗 , 𝑖, 𝑗, 𝑆, 𝑆′, 𝐶𝑅) = 𝑚] = 1, if 𝑗 ∈ 𝑆′, 𝒯(𝑊) = 1. 

Definition 4 (IND-CCA game). Let 𝒜 be an adversary and 𝒞 be a challenger. Considering 

the two security games. 

Game 1. IND-O-CCA game proves the security of the original ciphertexts. 

1. Init. The adversary 𝒜  chooses a target user set 𝑆∗ ⊆ {1,2, … , 𝑛} and condition set 𝑊∗ =
{𝜔1

∗ , 𝜔2
∗ , … , 𝜔𝑛

∗ }. 
2. Setup. The challenger 𝒞 runs 𝑆𝑒𝑡𝑢𝑝(𝑛) to obtain public key 𝑃𝐾 and master key 𝑚𝑠𝑘, and 

give 𝑃𝐾 to 𝒜. 

3. Query Phase I. The adversary 𝒜 submits the following queries: 

• 𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝑖): The challenger runs 𝑠𝑘𝑖 = 𝐾𝑒𝑦𝐺𝑒𝑛(𝑃𝐾, 𝑚𝑠𝑘, 𝑖), returns 𝑠𝑘𝑖 to 𝒜.  

• 𝑅𝐾𝐺𝑒𝑛(𝑖, 𝑆′, 𝒯) : The challenger runs 𝑟𝑘𝑖→𝑆′,𝒯 = 𝑅𝐾𝐺𝑒𝑛(𝑃𝐾, 𝑠𝑘𝑖 , 𝑆′, 𝒯) , where 𝑠𝑘𝑖 =

𝐾𝑒𝑦𝐺𝑒𝑛(𝑃𝐾, 𝑚𝑠𝑘, 𝑖), returns 𝑟𝑘𝑖→𝑆′,𝒯 to 𝒜. 

• 𝑅𝑒𝐸𝑛𝑐(𝑖, 𝑆, 𝑆′, 𝐶): The challenger runs 𝑅𝑒𝐸𝑛𝑐(𝑃𝐾, 𝑟𝑘𝑖→𝑆′,𝒯 , 𝑖, 𝑆, 𝑆′, 𝐶), where 𝑟𝑘𝑖→𝑆′,𝒯 =

𝑅𝐾𝐺𝑒𝑛(𝑃𝐾, 𝑠𝑘𝑖 , 𝑆′, 𝒯), 𝑠𝑘𝑖 = 𝐾𝑒𝑦𝐺𝑒𝑛(𝑃𝐾, 𝑚𝑠𝑘, 𝑖). Returns the result to 𝒜. 



 

 

 

 

• 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑂(𝑖, 𝑆, 𝐶) : The challenger runs 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑂(𝑃𝐾, 𝑠𝑘𝑗 , 𝑖, 𝑆, 𝐶) , where 𝑠𝑘𝑖 =

𝐾𝑒𝑦𝐺𝑒𝑛(𝑃𝐾, 𝑚𝑠𝑘, 𝑖), returns the result to 𝒜. 

• 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅(𝑖, 𝑗, 𝑆, 𝑆′, 𝐶𝑅): the challenger runs 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅(𝑃𝐾, 𝑠𝑘𝑗 , 𝑖, 𝑗, 𝑆, 𝑆′, 𝐶𝑅), where 𝑠𝑘𝑗 =

𝐾𝑒𝑦𝐺𝑒𝑛(𝑃𝐾, 𝑚𝑠𝑘, 𝑗), returns the result to 𝒜. 

During Query Phase I, 𝒜 is limited to: 

- 𝒜 is restricted to make 𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝑖) for any 𝑖 ∈ 𝑆∗; 

- 𝒜 s restricted to make 𝑅𝐾𝐺𝑒𝑛(𝑖, 𝑆′, 𝑊′) and 𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝑗), where 𝑖 ∈ 𝑆∗, 𝑗 ∈ 𝑆′ and 𝒯 = 1. 

4. Challenge. After Query Phase I is executed, 𝒜 outputs two equal length messages 𝑚0, 𝑚1. 

Challenger 𝒞  randomly chooses a bit 𝑏 ∈ {0,1}  and sets the challenge ciphertext 𝐶∗ =
𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑃𝐾, 𝑚𝑏, 𝑆∗, 𝑊∗). Afterwards, Challenger 𝒞 return 𝐶∗ to adversary 𝒜. 

5. Query phase II. The steps in Query Phase I and Query Phase II are the same. However, the 

restrictions in query phase II have changed: 

- 𝒜 is restricted to make 𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝑖) for any 𝑖 ∈ 𝑆∗; 

- 𝒜  is restricted to make 𝑅𝐾𝐺𝑒𝑛(𝑖, 𝑆′, 𝒯)  and 𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝑗) , where 𝑖 ∈ 𝑆∗ , 𝑗 ∈ 𝑆′  and 

𝒯(𝑊∗) = 1; 

- 𝒜 is restricted to make 𝑅𝑒𝐸𝑛𝑐(𝑖, 𝑆∗, 𝑆′, 𝐶∗) and 𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝑗), if 𝑖 ∈ 𝑆∗, 𝑗 ∈ 𝑆′; 
- 𝒜 is restricted to make 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑂(𝑖, 𝑆∗, 𝐶∗) for any 𝑖 ∈ 𝑆∗; 

- 𝒜  is restricted to make 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅(𝑖, 𝑗, 𝑆∗, 𝑆′, 𝐶𝑅) , where 𝑖 ∈ 𝑆∗ , 𝑗 ∈ 𝑆′  and 𝐶𝑅 =
𝑅𝑒𝐸𝑛𝑐(𝑖, 𝑆∗, 𝑆′, 𝐶∗). 

6. Guess. 𝒜 outputs the guess 𝑏′. If 𝑏 = 𝑏′, the adversary 𝒜 wins. 

The above adversary 𝒜 is an IND-O-CCA adversary. Its advantage is defined as: 

𝐴𝑑𝑣𝒜,𝑛
𝐺𝑎𝑚𝑒1 = | Pr[𝑏′ = 𝑏] −

1

2
| 

Game 2. IND-Re-CCA game considers the indistinguishability of the re-encrypted ciphertext. 

Game 2 considers the security of the re-encrypted ciphertext. A complementary definition of 

security provides a guarantee that an adversary cannot distinguish re-encrypted ciphertexts. 

For a one-time use scenario, an attacker can access all re-encryption keys, so re-encrypting 

oracle becomes useless. And Decrypt2 oracle has become unnecessary. 

1. Init. The adversary 𝒜  chooses a target user set 𝑆∗ ⊆ {1,2, … , 𝑛} and condition set 𝑊∗ =
{𝜔1

∗ , 𝜔2
∗ , … , 𝜔𝑛

∗ }. 

2. Setup. The challenger 𝒞 runs 𝑆𝑒𝑡𝑢𝑝(𝑛) to calculate public key 𝑃𝐾 and master key 𝑚𝑠𝑘, and 

outputs 𝑃𝐾 to 𝒜. 

3. Query Phase I. The adversary 𝒜 makes the following queries: 

• 𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝑖) : the challenger calculates 𝑠𝑘𝑖 = 𝐾𝑒𝑦𝐺𝑒𝑛(𝑃𝐾, 𝑚𝑠𝑘, 𝑖) , returns 𝑠𝑘𝑖  to 𝒜 . 𝒜 

cannot make 𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝑖), where 𝑖 ∈ 𝑆∗; 

• 𝑅𝐾𝐺𝑒𝑛(𝑖, 𝑆′, 𝒯) : the challenger runs 𝑟𝑘𝑖→𝑆′,𝒯 = 𝑅𝐾𝐺𝑒𝑛(𝑃𝐾, 𝑠𝑘𝑖 , 𝑆′, 𝒯) , where 𝑠𝑘𝑖 =

𝐾𝑒𝑦𝐺𝑒𝑛(𝑃𝐾, 𝑚𝑠𝑘, 𝑖), returns 𝑟𝑘𝑖→𝑆′,𝒯 to 𝒜. 

• 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅(𝑖, 𝑗, 𝑆, 𝑆′, 𝐶𝑅): the challenger runs 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅(𝑃𝐾, 𝑠𝑘𝑗 , 𝑖, 𝑗, 𝑆, 𝑆′, 𝐶𝑅), where 𝑠𝑘𝑗 =

𝐾𝑒𝑦𝐺𝑒𝑛(𝑃𝐾, 𝑚𝑠𝑘, 𝑗), returns the result to 𝒜. 

4.  Challenge. Once Query Phase I is over, adversary 𝒜  outputs an equal length message 

(𝑚0, 𝑚1). Challenger 𝒞 randomly chooses a bit 𝑏 ∈ {0,1} and sets the challenge ciphertext 



 

 

 

 

to be 𝐶∗ = 𝑅𝑒𝐸𝑛𝑐(𝑃𝐾, 𝑟𝑘𝑖→𝑆∗,𝒯 , 𝑖, 𝑆, 𝑆∗, 𝐶) , where 𝑖 ∈ 𝑆, 𝑖 ∉ 𝑆∗  and 𝐶 =

𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑃𝐾, 𝑚𝑏, 𝑆, 𝑊∗), 𝒯 = 1. Finally, return 𝐶∗ to the adversary 𝒜. 

5. Query Phase II. 𝒜 continues making queries in Query Phase I with the following restrictions: 

- 𝒜 cannot make 𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝑖) for any 𝑖 ∈ 𝑆∗; 

- 𝒜 cannot make 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅(𝑖, 𝑗, 𝑆, 𝑆∗, 𝐶∗), if 𝑖 ∈ 𝑆 and 𝑗 ∈ 𝑆∗. 

6. Guess. 𝒜 outputs the guess 𝑏′. If 𝑏′ = 𝑏, the adversary 𝒜 wins. 

Referring to the above adversary 𝒜 as an IND-Re-CCA adversary. Its advantage is defined 

as: 

𝐴𝑑𝑣𝒜,𝑛
𝐺𝑎𝑚𝑒2 = | Pr[𝑏′ = 𝑏] −

1

2
| 

If for all PPT adversary 𝒜, 𝐴𝑑𝑣𝒜,𝑛
𝐺𝑎𝑚𝑒1  and 𝐴𝑑𝑣𝒜,𝑛

𝐺𝑎𝑚𝑒2  are negligible, fine-grained 

conditional proxy broadcast re-encryption scheme is IND-sSet-CCA secure. 

3 Proposed FGC-PBRE Scheme 

3.1 FGC-PBRE Overview 
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Fig. 1. FGC-BPRE framework 

The framework of fine-grained conditional proxy broadcast re-encryption is shown as 

Figure 1. Alice wants to share the encrypted file that has been saved on the server to someone 

else. At this point, she needs to generate the conversion key 𝑟𝑘𝑖→𝑆′,𝒯 and send it to the server 

together with multiple condition tree 𝒯. At this point, the server will separately verify whether 

the users Bob, Carol, Dave, etc. in the group S' satisfy the forwarding conditions set by Alice. 



 

 

 

 

If Bob, Dave meets the condition, the server will forward the re-encrypted ciphertext that Bob 

and Dave can decrypt directly. The proxy will not send the re-encrypted ciphertext to users who 

do not meet the criteria, such as Carol. Multiple conditions provide good control over the 

receiving permissions of individual users in a user group. In this process, the agent cannot get 

any content from Alice's ciphertext. 

 

3.2 FGC-PBRE Construction 

 

Define the Lagrange coefficient Δ𝜔,𝐹(𝑥), where 𝜔 ∈ 𝑍𝑝 and a set 𝐹 of elements in 𝑍𝑝: 

Δ𝜔,𝐹(𝑥) = ∏
𝑥 − 𝑖

𝜔 − 𝑖
𝑖∈𝐹,𝑖≠𝜔

 

FGC-PBRE consists of the following algorithms: 

• 𝑆𝑒𝑡𝑢𝑝(𝜆, 𝑛): Construct a bilinear map parameter (𝑝, 𝑔, 𝐺, 𝐺𝑇 , 𝑒) and message 𝑀 = {0,1}𝑘. 

Randomly choose 𝛼, 𝛾 ∈ 𝑍𝑝 , 𝑍 ∈ 𝐺  and 𝑔𝑖 = 𝑔𝛼𝑖
 for 𝑖 = 1,2, … , 𝑛, 𝑛 + 2, … ,2𝑛 . Set 

𝐻𝛼: 𝑍𝑝
∗ → 𝐺, 𝐻𝛽: {0,1}𝑘 → 𝑍𝑝

∗ as collusion resistant hash functions. Compute 𝑣 = 𝑔𝛾. Output 

the public key 𝑃𝐾 and the master secret key 𝑚𝑠𝑘 as: 

𝑃𝐾 = (𝑔, 𝑔1, … , 𝑔𝑛, 𝑔𝑛+2, 𝑔2𝑛, 𝑣, 𝑍, 𝐻α, 𝐻𝛽), 𝑚𝑠𝑘 = 𝛾 

• 𝐾𝑒𝑦𝐺𝑒𝑛(𝑃𝐾, 𝑚𝑠𝑘, 𝑖): User 𝑖’s private key is: 

𝑠𝑘𝑖 = 𝑔𝑖
𝛾
 

• 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑃𝐾, 𝑆, 𝑚, 𝑊) : 𝐸𝑛𝑐𝑟𝑦𝑝𝑡  is used to encrypt a message 𝑚 ∈ 𝑀  for user set 𝑆 ⊆
{1,2, … , 𝑛} with the condition set 𝑊. Picks a random 𝜎 ∈ 𝐺𝑇, 𝑡 ∈ 𝑍𝑝

∗ . Output the ciphertext 

𝐶 = (𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝑆). 

𝐶1 = 𝜎 ∙ 𝑒(𝑔1, 𝑔𝑛)𝑡 , 𝐶2 = 𝑔𝑡 , 𝐶3 = (𝑣 ∙ ∏ 𝑔𝑛+1−𝑗

𝑗∈𝑆

)

𝑡

 

𝐶4 = (𝐻α(𝜔))
𝑡
, 𝐶5 = [𝑃𝑅𝐹(𝜎, 𝐶2)𝐾−𝑘||([𝑃𝑅𝐹(𝜎, 𝐶2)]𝑘 ⊕ 𝑚) 

𝒢(λ) → (𝑠𝑣𝑘, 𝑠𝑠𝑘), 𝑆 = 𝒮(𝑠𝑠𝑘, (𝐶2, 𝐶4, 𝐶5)) 

• 𝑅𝐾𝐺𝑒𝑛(𝑃𝐾, 𝑠𝑘𝑖 , 𝑆′, 𝒯) : Input 𝑠𝑘𝑖 = 𝑔𝑖
𝛾

, 𝑆′ ∈ {1,2, … , 𝑛}  and 𝒯 . Randomly select 𝜎 ∈
{0,1}𝑘 and a polynomial 𝑞𝑥 for each non-leaf node 𝑥 in the tree 𝒯. Starting from the root 

node 𝑟, the program 𝑅𝐾𝐺 (𝒯, 𝐻𝛽(𝜎)) is selected from top to bottom to select the polynomial.  

The program 𝑅𝐾𝐺 (𝒯, 𝐻𝛽(𝜎)) is defined as follows: For each node 𝑥 in the tree, the degree 

of the polynomial 𝑞𝑥 is set to 𝑑𝑥 = 𝑘𝑥 − 1. Set the degree of root 𝑞𝑟(0)  = 𝐻𝛽(𝜎). For any 

other node 𝑥, set 𝑞𝑥(0) = 𝑞𝑝(𝑥) (index(x)) and randomly select 𝑑𝑥 to fully define 𝑞𝑥. Once 

the polynomial is determined, for each leaf node 𝑥, set 𝜔 = 𝑘𝑒𝑦𝑤𝑜𝑟𝑑(𝑥). 

Therefore, the re-encryption key for the agent is calculated as follows: 

Select a random value 𝑟𝑥

𝑅
← 𝑍𝑝

∗ , computes: 

𝐴𝑥 = 𝑠𝑘𝑖 ∙ 𝑍𝑞𝑥(0) ∙ 𝐻𝛼(𝜔)𝑟𝑥; 𝐵𝑥 = 𝑔𝑟𝑥; 𝑥 ∈ 𝐿𝑁𝒯 



 

 

 

 

Chooses random value 𝑡′ ∈ 𝑍𝑝
∗ , 𝑟′ ∈ 𝐺𝑇, 𝑅 ∈ {0,1}𝑘 and sets: 

𝑟𝑘1 = 𝑅′ ∙ 𝑒(𝑔1, 𝑔𝑛)𝑡′
, 𝑟𝑘2 = 𝑔𝑡′

, 𝑟𝑘3 = (𝑣 ∙ ∏ 𝑔𝑛+1−𝑗

𝑗∈𝑆′

)

𝑡′

 

𝑟𝑘4 = [𝑃𝑅𝐹(𝜎′, 𝑟𝑘2)𝐾−𝑘||([𝑃𝑅𝐹(𝜎′, 𝑟𝑘2)]𝑘 ⊕ 𝑅) 

𝒢(λ) → (𝑠𝑣𝑘′, 𝑠𝑠𝑘′), 𝑆′ = 𝒮(𝑠𝑠𝑘′, (𝑟𝑘2, 𝑟𝑘4))
𝑡′

 

Output the re-encryption key: 

 𝑟𝑘𝑖→𝑆′,𝒯′ = (𝒯, 𝐴𝑥, 𝐵𝑥, 𝑟𝑘1, 𝑟𝑘2, 𝑟𝑘3, 𝑟𝑘4, 𝑆′). 

• 𝑅𝑒𝐸𝑛𝑐(𝑃𝐾, 𝑟𝑘𝑖→𝑆′,𝒯′ , 𝑖, 𝑆, 𝑆′, 𝐶): Input a re-encryption key 𝑟𝑘𝑖→,𝑆′,𝑊′  and a ciphertext 𝐶 . 

Check whether the following equalities hold: 

 𝑒(𝐶2, 𝑣 ∙ ∏ 𝑔𝑛+1−𝑗𝑗∈𝑆 ) =
?

𝑒(𝑔, 𝐶3) (1) 

 𝒱(𝑠𝑣𝑘, 𝑆, (𝐶2, 𝐶4, 𝐶5)) =
?

1 (2) 

 𝑒(𝐶2, 𝐻α(𝒯)) =
?

𝑒(𝑔, 𝐶4) (3) 

If one of the above equations does not holds, output ⊥. Otherwise, define a recursive 

algorithm 𝑁𝑜𝑑𝑒𝑅𝑒𝐸𝑛𝑐(𝐶, 𝑟𝑘𝑖→𝑆′,𝒯′ , 𝑥)  that takes as input the original ciphertext 𝐶 , the re-

encryption key𝑟𝑘𝑖→𝑆′,𝒯′ and the note 𝑥 in the tree. 

1. For leaf node 𝑥, if 𝜔 ∈ 𝑊, let 𝜔 = 𝑘𝑒𝑦𝑤𝑜𝑟𝑑(𝑋), then 

𝑁𝑜𝑑𝑒𝑅𝑒𝐸𝑛𝑐(𝐶, 𝑟𝑘𝑖→𝑆′,𝒯′ , 𝑥) =
𝑒(𝐶2, 𝐴𝑥)

𝑒(𝐵𝑥, 𝐶4)
=

𝑒(𝑔𝑡 , 𝑠𝑘𝑖 ∙ 𝑍𝑞𝑥(0) ∙ 𝐻𝛼(𝜔)𝑟𝑥)

𝑒(𝑔𝑟𝜔 , 𝐻𝛼(𝜔)𝑡)
 

= 𝑒(𝑠𝑘𝑖 , 𝑔𝑡) ∙ 𝑒(𝑍, 𝑔)𝑡∙𝑞𝑥(0) 

Otherwise, output ⊥. 

2. If 𝑥 is a non-leaf node, recursively call 𝑁𝑜𝑑𝑒𝑅𝑒𝐸𝑛𝑐(𝐶, 𝑟𝑘𝑖→𝑗,𝒯′ , 𝑧) on all child nodes 𝑧 of 𝑥 

and store the output as 𝒯𝑧. Let 𝐹𝑥 be an arbitrary 𝑘𝑥-sized set of child notes 𝑧, makes the 𝒯𝑧 ≠
⊥ . If there is no such set, the node is not satisfied and the function 

𝑁𝑜𝑑𝑒𝑅𝑒𝐸𝑛𝑐(𝐶, 𝑟𝑘𝑖→𝑆′,𝒯′ , 𝑥)  returns ⊥ . Otherwise, let 𝐹𝑥
′ =  {𝑖𝑛𝑑𝑒𝑥(𝑧): 𝑧 ∈ 𝑆}  and 

calculate: 

𝑇𝑥 = ∏ (𝑇𝑧)
Δ

𝑖,𝐹𝑥
′ (0)

𝑧∈𝐹𝑥,𝑖=𝑖𝑛𝑑𝑒𝑥(𝑧)

 

= ∏ (𝑒(𝑠𝑘𝑖 , 𝑔𝑡) ∙ 𝑒(𝑍, 𝑔)𝑡∙𝑞𝑥(0))
Δ

𝑖,𝐹𝑥
′ (0)

𝑧∈𝐹𝑥,𝑖=𝑖𝑛𝑑𝑒𝑥(𝑧)

 

= 𝑒(𝑠𝑘𝑖 , 𝑔𝑡) ∙ ∏ (𝑒(𝑍, 𝑔)𝑡∙𝑞𝑝(𝑧)𝑖𝑛𝑑𝑒𝑥(𝑧))
Δ

𝑖,𝐹𝑥
′ (0)

𝑧∈𝐹𝑥,𝑖=𝑖𝑛𝑑𝑒𝑥(𝑧)

 



 

 

 

 

= 𝑒(𝑠𝑘𝑖 , 𝑔𝑡) ∙ ∏ (𝑒(𝑍, 𝑔)𝑡∙𝑞𝑥(𝑖))
Δ

𝑖,𝐹𝑥
′ (0)

𝑧∈𝐹𝑥,𝑖=𝑖𝑛𝑑𝑒𝑥(𝑧)

 

= 𝑒(𝑠𝑘𝑖 , 𝑔𝑡) ∙ 𝑒(𝑍, 𝑔)𝑠𝑞𝑥(0) 

In the end, computes: 

𝐶1̃ = 𝐶1 ∙
𝑒(𝑇𝑟 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆,𝑗≠𝑖 , 𝐶2)

𝑒(𝑔𝑖 , 𝐶3)
 

The re-encrypted ciphertext is 𝐶𝑅 = (𝑠𝑣𝑘, 𝐶1̃, 𝐶2, 𝐶4, C5, 𝑆, 𝑟𝑘1, 𝑟𝑘2, 𝑟𝑘3, 𝑟𝑘4, 𝑆′). 

• 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑂(𝑃𝐾, 𝑠𝑘𝑖 , 𝑖, 𝑆, 𝐶) : Input a private key 𝑠𝑘𝑖  and an original ciphertext 𝐶 =
(𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝑆), proceeds as follows: 

1. Checks whether the equations (1) ~ (3) hold. If one of the above equations does not holds, 

output ⊥ the abort. 

2. Computes 𝜎 = 𝐶1 ∙ 𝑒(𝑠𝑘𝑖 , ∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆,𝑗≠𝑖 , 𝐶2)/𝑒(𝑔𝑖 , 𝐶3) . If 𝑃𝑅𝐹[𝜎, 𝐶2]𝐾−𝑘 = [𝐶5]𝐾−𝑘 

hold, returns 𝑚 = 𝑃𝑅𝐹[𝜎, 𝐶2]𝑘 ⊕ [𝐶5]𝑘. Else return ⊥ and abort. 

• 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅(𝑃𝐾, 𝑠𝑘𝑗 , 𝑖, 𝑗, 𝑆, 𝑆′, 𝐶𝑅): Input a private key 𝑠𝑘𝑗 and a re-encrypted ciphertext 𝐶𝑅, 

proceeds as follows: 

1. Checks the equations: 

 𝑒(𝑟𝑘2, 𝑣 ∙ ∏ 𝑔𝑛+1−𝑗𝑗∈𝑠 ) =
?

𝑒(𝑔, 𝑟𝑘3) (4) 

 𝒱(𝑠𝑣𝑘′, 𝑆′, (𝑟𝑘2, 𝑟𝑘4)) =
?

1 (5) 

If one of these equations does not holds, output ⊥ and abort. 

2. Calculate 𝜎′ = 𝑟𝑘1 ∙ 𝑒(𝑠𝑘𝑗 ∙ ∏ 𝑔𝑛+1−𝑙+𝑗𝑙∈𝑆′,𝑙≠𝑗 , 𝑟𝑘2)/𝑒(𝑔𝑗 , 𝑟𝑘3) , if 𝑃𝑅𝐹[𝜎′, 𝑟𝑘2]𝐾−𝑘 =

[𝑟𝑘4]𝐾−𝑘, output 𝑅 = 𝑃𝑅𝐹[𝜎′, 𝑟𝑘2]𝑘 ⊕ [𝑟𝑘4]𝑘. If not, returns ⊥ and abort. 

3. Calculate 𝜎 = 𝐶1̃/𝑒(𝐶2, 𝑍𝐻𝛽(𝑅)). If 𝑃𝑅𝐹[𝜎, 𝐶2]𝐾−𝑘 = [𝐸]𝐾−𝑘 , output 𝑚 = 𝑃𝑅𝐹[𝜎, 𝐶2]𝑘 ⊕

[𝐶5]𝑘. Else, returns ⊥ and abort. 

Consistency. 

1. If 𝐶 = (𝑠𝑣𝑘, 𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝑆) is an original ciphertext, then: 

𝐶1 ∙
𝑒(𝑠𝑘𝑖 ∙ ∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆,𝑗≠𝑖 , 𝐶2)

𝑒(𝑔𝑖 , 𝐶3)
 

= 𝜎 ∙ 𝑒(𝑔1, 𝑔𝑛)𝑡 ∙
𝑒(𝑔𝑖

𝛾
∙ ∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝑡)

𝑒(𝑔𝑖 , 𝑔𝛾 ∙ ∏ 𝑔𝑛+1−𝑗𝑗∈𝑆 )
𝑡  

= 𝜎 ∙ 𝑒(𝑔1, 𝑔𝑛)𝑡 ∙
𝑒(𝑔𝑡 , ∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆,𝑗≠𝑖 )

𝑒(𝑔𝑡 , ∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆 )
 

= 𝜎 ∙
𝑒(𝑔1, 𝑔𝑛)𝑡

𝑒(𝑔𝑡 , 𝑔𝑛+1)
 

= 𝜎 



 

 

 

 

2. If 𝐶𝑅 = (𝑠𝑣𝑘, 𝐶1̃, 𝐶2, 𝐶4, 𝑆, 𝑠𝑣𝑘′, 𝑟𝑘1, 𝑟𝑘2, 𝑟𝑘3, 𝑟𝑘4, 𝑟𝑘5, 𝑆′) is a re-encrypted ciphertext, then: 

𝐶1̃ = 𝐶1 ∙ 𝒯𝑟 ∙
𝑒(∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆,𝑗≠𝑖 , 𝐶2)

𝑒(𝑔𝑖 , 𝐶3)
 

= 𝜎 ∙ 𝑒(𝑔1, 𝑔𝑛)𝑡 ∙ 𝑒(𝑠𝑘𝑖 , 𝑔𝑡) ∙ 𝑒(𝑍, 𝑔)𝑠𝑞𝑥(0) ∙
𝑒(∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆,𝑗≠𝑖 , 𝑔𝑡)

𝑒(𝑔𝑖 , 𝑣 ∙ ∏ 𝑔𝑛+1−𝑗𝑗∈𝑆 )
𝑡  

= 𝜎 ∙ 𝑒(𝑔𝑡 , 𝑍)𝐻β(𝑅)
 

It is finally possible to calculate: 

𝐶1̃

𝑒(𝐶2, 𝑍𝐻β(𝑅))
= 𝜎 

4 Proof of security 

This section will demonstrate the IND-CCA security of the scheme. The analysis of the 

security game is as follows. 

Theorem 1. If 𝐻𝛼 , 𝐻𝛽 are target collision resistant hash functions, then the FGC-BPRE 

scheme is IND-CCA secure without random oracles under the Decisional n-BDHE 

assumption. 

Lemma 1. If there exists an IND-O-CCA adversary 𝒜 that can break the FGC-BPRE scheme, 

may wish to construct a simulator ℬ that can solve Decisional n-BDHE assumption. 

Proof. Given a Decisional n-BDHE instance (ℎ, 𝑔, 𝑔1, … 𝑔𝑛, 𝑔𝑛+2, … , 𝑔2𝑛, 𝑇), ℬ has decide 

whether 𝑇 = 𝑒(𝑔𝑛+1, ℎ) or 𝑇 is a random element in 𝐺𝑇.  

ℬ maintains the following initial empty table: 

- 𝐾𝑒𝑦𝐿𝑖𝑠𝑡: records the tuples (𝛽, 𝑖, 𝑠𝑘𝑖), which are the information of secret keys; 
- 𝑅𝑒𝐾𝑒𝑦𝐿𝑖𝑠𝑡 : stores the information generated by 𝑅𝐾𝐺𝑒𝑛(𝑠𝑘𝑖 , 𝑆′, 𝑊′)  in tuple 

(𝛽1, 𝑖, 𝑆′, 𝑊′, 𝑟𝑘𝑖→𝑆′,𝒯 , 𝜎, 𝑅, 𝑓𝑙𝑎𝑔1) . 𝑓𝑙𝑎𝑔1 = 1  indicates that the re-encryption key is a 

valid key, and 𝑓𝑙𝑎𝑔1 = 0 indicates that the re-encryption key is a random value. 

1. Init. The adversary 𝒜 selects a challenge user set 𝑆∗ ⊆ {1,2, … , 𝑛} and condition set 𝑊∗ =
{𝜔1

∗ , 𝜔2
∗ , … , 𝜔𝑛

∗ }. 

2. Setup. The simulator ℬ pick up a random value 𝜇 ∈ 𝑍𝑝
∗ , 𝑍 ∈ 𝐺 and sets: 

𝑣 = 𝑔𝜇 ∙ (∏ 𝑔𝑛+1−𝑗

𝑗∈𝑆∗

)

−1

=
Δ

𝑔𝛾 

ℬ sets the public key as 𝑃𝐾 = (𝑔, 𝑔1, … , 𝑔𝑛, 𝑔𝑛+2, … , 𝑔2𝑛, 𝑣, 𝑍, 𝐻𝛼, 𝐻𝛽) and 𝑠𝑘 = 𝛾, giving 

𝑃𝐾 to 𝒜. 

3. Query Phase I. ℬ responds to the following questions raised by 𝒜: 

• 𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝑖) : ℬ  first confirm 𝑖 ∉ 𝑆∗ . Then, ℬ  searches 𝐾𝑒𝑦𝐿𝑖𝑠𝑡 , if (𝛽, 𝑖, 𝑠𝑘𝑖)  exists in 

𝐾𝑒𝑦𝐿𝑖𝑠𝑡, returns 𝑠𝑘𝑖 to 𝒜. Otherwise, ℬ generates a biased coin 𝛽 , where Pr[𝛽 = 1] = 𝛿. 



 

 

 

 

- If 𝛽 = 0, ℬ outputs a random bit and aborts. 

- If 𝛽 = 1, ℬ computes 𝑠𝑘𝑖 = 𝑔𝑖
𝜇

∙ (∏ 𝑔𝑛+1−𝑗+𝑖𝑗∈𝑆∗ )
−1

. Then 

𝑠𝑘𝑖 = 𝑔𝑖
𝜇

∙ (∏ 𝑔𝑛+1−𝑗
𝑗∈𝑆∗

)

−1

 

= (𝑔𝜇 ∙ (∏ 𝑔𝑛+1−𝑗
𝑗∈𝑆∗

)

−1

)

𝛼𝑖

 

= 𝑣𝛼𝑖
 

= 𝑔𝑖
𝛾
 

• 𝑅𝐾𝐺𝑒𝑛(𝑖, 𝑆′, 𝒯): Set 𝑖 ∈ 𝑆∗ , 𝑗 ∈ 𝑆∗ , and 𝒯(𝑊∗) = 1. ℬ  checks that there is no tuple (∗
, 𝑗, 𝑠𝑘𝑗) in 𝐾𝑒𝑦𝐿𝑖𝑠𝑡, where ∗ is a wildcard. If such an entry exists, ℬ aborts. Else if there is a 

tuple (∗, 𝑖, 𝑆′, 𝒯, 𝑟𝑘𝑖→𝑆′,𝒯 , 𝜎, 𝑅,∗)  in 𝑅𝑒𝐾𝑒𝑦𝐿𝑖𝑠𝑡 , ℬ  returns 𝑟𝑘𝑖→𝑆′,𝒯  Else, ℬ  proceeds as 

follows: 

- If (1, 𝑖, 𝑠𝑘𝑖) exists in 𝐾𝑒𝑦𝐿𝑖𝑠𝑡 , ℬ uses 𝑠𝑘𝑖  to generate the re-encryption key 𝑟𝑘𝑖→𝑆′,𝒯  visa 

algorithm 𝑅𝐾𝐺𝑒𝑛 as in the real scheme. Returns the re-encryption key to 𝒜 and adds (∗
, 𝑖, 𝑆′, 𝒯, 𝑟𝑘𝑖→𝑆′,𝒯 , 𝜎, 𝑅, 1) to 𝑅𝑒𝐾𝑒𝑦𝐿𝑖𝑠𝑡 , where 𝑟′, 𝑅  are randomly chosen in the 𝑅𝐾𝐺𝑒𝑛 

algorithm. 

- Otherwise, ℬ flips a biased coin ℬ. If 𝛽 = 1, ℬ queries the 𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝑖) to get 𝑠𝑘𝑖, and then 

generates 𝑟𝑘𝑖→𝑆′,𝒯 visa algorithm 𝑅𝐾𝐺𝑒𝑛, returning the re-encryption key 𝑟𝑘𝑖→𝑆′,𝒯 to 𝒜, 

then adds (1, 𝑖, 𝑠𝑘𝑖) and (∗, 𝑖, 𝑆′, 𝒯, 𝑟𝑘𝑖→𝑆′,𝒯 , 𝜎, 𝑅, 1) to 𝐾𝑒𝑦𝐿𝑖𝑠𝑡  and 𝑅𝑒𝐾𝑒𝑦𝐿𝑖𝑠𝑡 . If 𝛽 = 0, 

ℬ  sets {(𝐴𝜔 = 𝜌𝜔), (𝐵𝜔 = 𝜌𝜔
′ ); 𝜔 ∈ 𝑘𝑒𝑦𝑤𝑜𝑟𝑑(ω)}  for randomly chosen 𝜌𝜔, 𝜌𝜔

′ ∈ 𝐺 . 

Then ℬ  constructs 𝑟𝑘1, 𝑟𝑘2, 𝑟𝑘3, 𝑟𝑘4  and pick up 𝜎′, 𝑅 . In the end, ℬ  forwards the re-

encryption key to 𝒜 and adds (∗, 𝑖, 𝑆′, 𝒯, 𝑟𝑘𝑖→𝑆′,𝒯 , 𝜎, 𝑅, 0) to 𝑅𝑒𝐾𝑒𝑦𝐿𝑖𝑠𝑡. 

• 𝑅𝑒𝐸𝑛𝑐(𝑖, 𝑆, 𝑆′, 𝐶): ℬ performs the following operations: 

- If (∗, 𝑖, 𝑆′, 𝒯, 𝑟𝑘𝑖→𝑆′,𝒯 , 𝜎, 𝑅,∗)  exists in 𝑅𝑒𝐾𝑒𝑦𝐿𝑖𝑠𝑡 , 𝐶 =

𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑃𝐾𝑚, 𝑆, 𝑚, 𝑊), 𝒯(𝑊) = 1 , ℬ  uses 𝑟𝑘𝑖→𝑆′,𝒯  to generate 𝐶𝑅  visa algorithm 

𝑅𝑒𝐸𝑛𝑐. Then, ℬ returns 𝐶𝑅 to 𝒜 and adds (𝑖, 𝑆, 𝑆′, 𝐶, 𝐶𝑅,∗) to 𝑅𝑒𝐸𝑛𝑐𝐿𝑖𝑠𝑡. 

- Otherwise, ℬ  issues 𝑅𝐾𝐺𝑒𝑛(𝑖, 𝑆′)  query to obtain re-encryption key 𝑟𝑘𝑖→𝑆′,𝒯 . Then ℬ 

generates 𝐶𝑅 and adds (𝑖, 𝑆, 𝑆′, 𝐶, 𝐶𝑅 ,∗) to the 𝑅𝑒𝐸𝑛𝑐𝐿𝑖𝑠𝑡. 

• 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑂(𝑖, 𝑆, 𝐶): ℬ verifies whether (1)-(3) is established. If the equations do not hold, 

output ⊥. Otherwise proceeds: 

- If (1, 𝑖, 𝑠𝑘𝑖) exists in 𝐾𝑒𝑦𝐿𝑖𝑠𝑡, using 𝑠𝑘𝑖 to recover 𝑚. 

- Otherwise, ℬ issues 𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝑖) query to obtain 𝑠𝑘𝑖 and uses 𝑠𝑘𝑖 to recover 𝑚. 

• 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑅(𝑖, 𝑗, 𝑆, 𝑆′, 𝐶𝑅): ℬ verifies whether (4)-(5) is established. If the above formula is not 

true, output ⊥ and abort. Otherwise, ℬ proceeds: 

- If (1, 𝑗, 𝑠𝑘𝑗) exists in 𝐾𝑒𝑦𝐿𝑖𝑠𝑡, using 𝑠𝑘𝑗 to recover 𝑚. 

- Otherwise, ℬ runs 𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝑗) to obtain 𝑠𝑘𝑗 and uses 𝑠𝑘𝑗 to recover 𝑚. 



 

 

 

 

4. Challenge. When 𝒜 decides Query Phase I is over, it outputs two equal length message 

𝑚0, 𝑚1. ℬ randomly chooses 𝑏 ∈ {0,1}, 𝑟∗ ∈ 𝐺𝑇. Let ℎ = 𝑔𝑡∗
for some randomly chosen 𝑡∗. 

ℬ computes: 

𝐶1
∗ = 𝜎∗ ∙ 𝑇 

𝐶2
∗ = ℎ = 𝑔𝑡∗

 

𝐶3
∗ = ℎ𝜇 = 𝑔𝜇𝑡∗

 

= (𝑔𝜇 ∙ (∏ 𝑔𝑛+1−𝑗
𝑗∈𝑆∗

)

−1

(∏ 𝑔𝑛+1−𝑗
𝑗∈𝑆∗

))

𝑡∗

 

= (𝑣 ∙ ∏ 𝑔𝑛+1−𝑗
𝑗∈𝑆∗

)

𝑡∗

 

𝐶4
∗ = 𝐻α(𝜔)𝑡∗

, 𝜔 ∈ 𝑊∗ 
𝐶5

∗ = [𝑃𝑅𝐹(𝜎∗, 𝐶2
∗)]𝐾−𝑘||([𝑃𝑅𝐹(𝜎∗, 𝐶2

∗)]𝑘 ⊕ 𝑚𝑏) 
𝒢(λ) = (𝑠𝑠𝑘∗, 𝑠𝑣𝑘∗) 

𝑆∗ = 𝒮(𝑠𝑣𝑘∗, (𝐶2
∗, 𝐶4

∗, 𝐶5
∗)) 

If 𝑇 = 𝑒(𝑔𝑛+1, ℎ), 𝐶1
∗ = 𝜎∗ ∙ 𝑇 = 𝜎∗ ∙ 𝑒(𝑔, 𝑔𝑛+1)𝑡∗

. We can draw 𝐶3
∗ is a valid challenge 

ciphertext. If 𝑇 is a random value in 𝐺𝑇, 𝐶3
∗ is independent of 𝑏 in the adversary’s view. 

5. Query Phase II. 𝒜  continues making queries as in Query Phase I with the restrictions 

described in the IND-O-CCA game. 

6. Guess. 𝒜 outputs the guess 𝑏′, if 𝑏′ = 𝑏, then output 1 meaning 𝑇 = 𝑒(𝑔𝑛+1, ℎ); else output 

0 meaning 𝑇 is a random value in 𝐺𝑇. 

The above steps complete the proof of Lemma 1. 

Lemma 2. If there exists an IND-Re-CCA adversary 𝒜 that can break the FGC-BPRE scheme, 

a simulator ℬ that can solve Decisional n-BDHE assumption. 

Proof. In addition to the challenge phase, the proof of Lemma 2 is like Lemma 1. The challenger 

constructs the challenge re-encrypted ciphertext in the following manner. ℬ randomly chooses 

𝑏 ∈ {0,1}, 𝜎∗ ∈ 𝐺𝑇. Let ℎ = 𝑔𝑡∗
 for some randomly chosen 𝑡∗. ℬ computes: 

𝐶1̃
∗

= 𝜎∗ ∙ 𝑒(ℎ, 𝑍)𝐻β(𝜎) 

𝐶2
∗ = ℎ = 𝑔𝑡∗

 
𝐶5

∗ = [𝑃𝑅𝐹(𝜎∗, 𝐶2
∗)]𝐾−𝑘||([𝑃𝑅𝐹(𝜎∗, 𝐶2

∗)]𝑘 ⊕ 𝑚𝑏) 

ℬ constructs 𝑟𝑘1
∗, 𝑟𝑘2

∗, 𝑟𝑘3
∗ , 𝑟𝑘4

∗ , 𝑟𝑘5
∗ in the same way as in Game 1. 

5 Conclusion 

This article describes the concept of fine-grained conditional proxy broadcast re-encryption. 

If the ciphertext keyword satisfies the conditions in the access tree, then the scheme allows the 

proxy to convert the user's ciphertext into a new set of users' ciphertext. In addition, this paper 

also constructs a fine-grained conditional proxy broadcast re-encryption scheme and verifies the 

security of selective ciphertext attacks under the standard model. Fine-grained conditional proxy 



 

 

 

 

broadcast re-encryption itself is built on attribute-based encryption and can be applied to, file 

sharing systems, email systems, and so on. 
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