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Abstract. Mobile edge computing (MEC) provides computation ca-
pability at the edge of wireless network. To reduce the execution de-
lay, computation-intensive multimedia tasks can be offloaded from user
equipments (UEs) to the MEC server. How to allocate the computational
and wireless resources is one of the key issues to guarantee the quality
of services, and is very challenging when tasks are generated dynami-
cally. In this paper, we address the above problem. To minimize the sum
execution delay of multiple users, we jointly optimize the offloading de-
cision and the allocation of both computational and wireless resources.
We propose a deep policy gradient (DPG) algorithm based on the deep
reinforcement learning. Simulation results show that our proposed DPG
method can achieve lower latency than the baselines under different num-
bers of users, computation capacities and wireless bandwidths.

Key words: Computation offloading, mobile edge computing, reinforce-
ment learning, policy gradients

1 Introduction

Many promising applications in future mobile networks, such as virtual /augmented
reality (VR/AR), high definition video transmission and autonomous driving, de-
mand for more intensive computation, larger bandwidth and lower latency [1} 2].
However, current mobile devices can not well satisfy these requirements due to
their limited computation and communication capacities. The tension between
the evident weakness of mobile devices and the high demand of applications
poses significant challenges for future networks. Although mobile cloud comput-
ing can offload the computation-intensive task to the remote public clouds to
relieve the burden of UEs, the long latency for reaching the remote public cloud
through a wide area network is unacceptable for delay-sensitive applications.

To reduce the delay, a novel network architecture called MEC has been re-
cently proposed. MEC [3] provides cloud-computing capabilities in close prox-
imity to mobile users, and offers a low-latency and high rate access service en-
vironment. With the assistance of MEC, the computation-intensive applications
can be offloaded to the resource-rich cloud computing infrastructures within the
edge of mobile networks. By computation offloading, the latency is expected to
be significantly reduced.
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However, computation offloading is not always beneficial, and sometimes re-
sults in even higher latency. This is because both the computational resource
and the wireless bandwidth used to transmit application data are limited in
practice. If these resources are not properly allocated, the latency may be in-
creased. Hence, how to determine the tasks to be offloaded and how to allocate
different types of resource are key issues for computation offloading services in
MEC systems [4].

The above mentioned problem has been widely addressed. For example, the
authors in [5] propose a policy for computation offloading applications by solv-
ing a convex problem. The policy has a simple threshold structure to control
the offloading data and time allocation. In [6], the energy and latency cost is
minimized for MEC systems. Although these works can achieve good perfor-
mance, there are common drawbacks that the dynamic arrival of tasks and the
long-term latency are not considered, which are necessary for practical use.

Reinforcement learning (RL) is commonly regarded as an appropriate tech-
nology in addressing the above issue in practical system environments. A group
of RL-based approaches are proposed recently. In order to minimize the cost
of delay and energy consumption, the work in [7] designs a Deep Q Network
(DQN) policy, which jointly optimizes the computation offloading decision and
resource allocation. With the consideration of stochastic characteristics, an on-
line resource management learning algorithm in [8] is proposed, which learns
the optimal policy of dynamic workload offloading and edge server provisioning.
For offloaded workload, the latency is mainly transmission delay due to network
round trip time. Considering the delay of data transmission by wireless channel,
the work in [9] model the computation offloading process as Markov Decision
Process (MDP) and a polynomial value function approximation method for con-
tinuous state space is proposed. Considering task buffer stability constraint and
a stochastic task arrival model, the work in [I0] proposes a novel DRL-based
framework for power-efficient resource allocation and applys a Deep Neural Net-
work to approximate the action-value function.

Although RL has been introduced in MEC system, most of them focus on the
resource allocation problem without considering the dynamic decision of com-
putation offloading. Moreover, most existing works adopt classical RL methods
based on value iteration which usually have a large time complexity for the
practical system. Hence, in this paper, we aim to propose a policy iteration-
based scheme which is expected to converge faster. We consider the stochastic
task arrival model, and jointly optimize the offloading decision and the resource
allocation to reduce the execution latency of all tasks. We adopt deep policy
gradients (DPG) which uses neural network to estimate the policy gradients
(PG).

In summary, the major contributions of the paper are:

— We consider the stochastic task arrival model and the tasks can be executed
either at the local UE or be offloaded to the MEC server. By jointly opti-
mizing the offloading decision and the allocation of network and computation
resources, we propose a policy iteration-based algorithm to minimize the total
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execution latency. Moreover, for the problem of the large space actions, we
use a trick to effectively reduce the action space.

— We evaluate the performance of our proposed algorithm. The simulation re-
sults show that the performance of the proposed algorithm outperforms the
baselines in delay performance under different numbers of users, computation
capacities and wireless bandwidths.

The rest of the paper is organized as follows. We first present the system
model in Section II. Then, we formulate the multi-user computation offloading
problem in Section III. In Section IV, we provide a DRL framework where the
state, action and reward are designed based on the characteristics of the com-
putation offloading problem. We present the simulation results in Section V and
conclude this paper in Section VI.

2 System Model

2.1 Network Model

We consider an MEC-enabled wireless system as shown in Fig 1. A BS connects
to a high-performance server which is used to execute the offloaded tasks. A
set NV of users are located within the coverage of the BS, each of which has a
computation-intensive task which can be executed either on the local equipment
or offloaded to the MEC server. We assume that a task cannot be further divided
into multiple parts to execute on more than one device.

The BS manages the uplink/downlink communications of mobile users. We
apply a time division multiple access (TDMA) method for the channel access. In
this method, the time is divided into slots which will be allocated to UEs. Only
one UE can offload its task to the MEC server within a time slot. Let B denote
the wireless channel bandwidth. The uploading rate for UE n is given by

BNy

where p,, denotes the transmission power of UE n for uploading data, g,, denotes
the channel gain between UE n, and the base station and Nj is the variance of
white Gaussian channel noise.

r, = Blog, (1 + g"p”) , (1)

2.2 Task Model

Each UE has a computation-intensive task to execute. A task T}, £ (vp, 5, an,)
is composed of three parts: v, denotes the size of the executed task, including
input parameters and program codes; s,, denotes the amount of CPU cycles that
a task consumes; a,, is the arrival time of the task generated in user n. All the
three parameters can be estimated by task profiles. We assume that stochastic
task model is characterized by random arrivals. s,, is positively related to the size
of v,,. Due to the different computation capacities between UE and MEC server,
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Fig. 1. System Model.

the time cost for executing the task is different. The UE first send a request to
the BS and wait for the offloading decision as shown in Fig 1. The arrived but
not yet executed tasks will wait on a queue for scheduling. We define ¢,, € {0, 1}
as the offloading decision for UE n. If BS decides to offload the task of UE n to
the MEC server, BS will set ¢,, = 0. Otherwise, ¢, = 1.

Local Computing Model. Different UEs may have various computation ca-
pacities, we denote the computation capacity of UE n by f,,. If a task is executed
locally, the execution delay T is given by

1 Sn
T =2 @

Offloading Computing Model. If a task is executed in the MEC server, the
whole offloading procedure will consist of three steps. Firstly, a UE uploads its
task program codes and parameters to the BS via wireless channel. Then, the
BS forwards the data to the MEC server. Secondly, the MEC server allocates
some of the computation resource to execute the task. Finally, the BS sends the
computation result back to the mobile user. Based on , we can obtain the
data transmission delay T% by

g (3)

We assume that only one task can be executed by the MEC server at a time,

and other tasks will wait until the BS makes the offloading decision. Hence, the

task may wait for scheduling on the local equipment and be offloaded in the

next time slot. We set the time that the UE uploads the transmission data via

wireless channel as t,,, which means the network scheduling time. The execution
delay T is given by:

T'n
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where f€ is the MEC server computation resource (i.e., CPU cycles per second).
More than one task on the MEC server may wait to be executed, so there is
a queue on the MEC server that stores the offloading tasks. Once the running
task ends, MEC server gets the next task from queue. We set the time that
task begins to execute on the MEC server as 7,, which means the computing
scheduling time.

Finally, the computation result has to be sent back to the corresponding
UE. According to [I1I, [12], the data size of computation outcome is very small
compared to the uploading data, so we ignore the backhaul delay.

Since the MEC server starts to perform the task after the task data has been
uploaded, the following inequality should be satisfied that

L (5)
The total delay for UE n to offload its task to the BS is given by:

T2 =1, +Tr — ay. (6)

3 PROBLEM FORMULATION

Our aim is to minimize the total latency. Based on , and @, an optimiza-
tion problem is formulated as follows

N
min Z enTh 4+ (1 —¢,)T?
=1

Cnyln,Tn

st. cn €{0,1}, @

Tp > tn +TE.

We can solve the problem by finding the optimal value of ¢, , t, and 7,.
However, the problem is not convex due to the integer optimization variables.
The solution space of the problem increases rapidly with the increase of the UEs.
Hence, we adopt a DRL method to solve the non-convex problem.

4 DRL-based algorithm design

In this section, we present our DRL-based algorithm design. Firstly, we formulate
the state, the action, and the reward of the RL model. Then we introduce our
DPG method.
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4.1 RL Formulation

State The state contains the BS network, MEC server computation resources
occupation and the jobs waiting to be scheduled. Fig.2 shows the allocation of
computation and network resource, starting from current time slot and looking
ahead T steps into the future. When UE has a task needs to be executed, it
will send the task information. The BS will store the job in the backlog. Then
if the job slot is empty, the job in the backlog will schedule the place and wait
the BS deciding to offload or not. The job in the slot will represent the network
and computation resources consumption, which are represented by the time slots
that need to be allocated from the current time slot for network and computation
resource. For example, the red job in the slot 1 need two time slots computation
resource and a time slot network resource from the current time slot. If BS
offloads the job to the MEC server, MEC resource will consume a time slot
network resource and two time slots computation resource. Because the task
needs to be uploaded to the BS, it will first allocate the network resource and
then allocate computation resource.

We can have as many job slots in the state as there are jobs waiting for

service. However, it is not desirable for neural network input that needs to have
a fixed state representation. Therefore, we use a column to represent the network
resource and a column to represent the computation resource for the BS, and
we limit the number of tasks that BS can offload to be K. The length of the
backlog is limited. If the backlog is full, a UE’s request will be ignored by the
BS.
Action The action refers to the decisions that whether offload a job to the MEC
server or local equipment. The BS can schedule the offloaded tasks from job slots.
The BS scheduler may choose any subset of the job slots. Therefore, the action
space is as large as 2% . So we use a trick to make the action space small. In
a time slot, the BS scheduler can execute more than one action continuously.
The action space is {0,1,2,...,2K}. a = 0 means there is no job scheduling and
it is a void action. a € {1,2,..., K} means the BS chooses the job at the a-th
job slot to offload to the MEC server. a € {K + 1, K + 2,...,2K} means the job
at the a — K-th job slot to offload the local UE. The time slot is non-frozen if
BS scheduler chooses either void action or invalid action (e.g. the BS scheduler
choose the job at job slot 3 to offload to the MEC server, but the MEC resource
cannot afford to execute the job). For each valid action (e.g. the first time slot
can satisfy the job resource’s requirement till completion), the agent will observe
a state transition due to the job moving to the appreciate position on the MEC
resource. If the BS scheduler chooses void action or invalid action, the time slot
will proceed and move one step down. The BS scheduler can choose again job
due to the new state. Hence, we can keep the action space linear by choosing
multiple actions in a time slot.

Reward The agent on reinforcement learning is to maximize the expected cu-
n
mulative discounted reward Y ~'r;, v is the discounted factor. Our goal is to
t=0
minimize the tasks latency. Specifically, we set the reward r, = > —1, where J is
JjE€J
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Fig. 2. System state representation. BS stores the user’s task information and choose
task from job slot.

the job on the system. The agent doesn’t receive reward when time slot is frozen.
When the job completes on the local UE or MEC server, it no longer belongs to
J. We set the discounted factor v = 1, the maximizing cumulative discounted
sum is equivalent to minimizing the sum of jobs latency. Hence, maximizing the
cumulative sum is equivalent to minimizing the jobs latency.

4.2 Deep Policy Gradient Algorithm

The traditional RL method simulates the state change through tables. When
the number of states is too large, it is hard to traverse each state and results
in failures of the algorithm. By contrast, the PG schemes can overcome the
drawback. We first briefly introduce the PG technology that we adopt in the
paper. The agent chooses an action based on a policy, defined as w,7(s,a) —
[0, 1], which means the probability that the action is chosen for the state. Due
to the large number of {state, action} pairs, it is impossible to store each policy
in tabular. Hence, we use the neural network to represent the policy my(s,a) .
The objective is to maximize the cumulative reward, and we define Q™ (s, a) as
the cumulative reward that the action a is chosen in the state s. The gradients
of maximizing the cumulative reward is

o0
VoEr, [Z viry] = Er,[Velog mg(s,a)Q™ (s, a)]. (8)
t=0
The key idea in equation is to estimate the value Q@™ (s, a). In the Monte
Carlo Method, it is estimated by agent sampling multiple trajectories and com-
puting the cumulative reward v; at each timestep t. The parameters 6 is updated
by
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0 9+aZV9 log 7o (st, at)vs. (9)
t

In order to derive a strategy that maps an input state to an output action, we
adopt a policy gradient method. We represent the strategy using neural network.
The input state is shown in Fig 2, and its output is a probability distribution
of all actions. We train the network in an episodic setting. The episodic will not
terminate until all task are completed.

In the process of training network, we use different job sets, where the arrival
time and number of jobs are different. It is not sufficient to train the policy by
only exploring once. So we use N networks in parallel to explore the possible
action space for each job set and store the corresponding results of state, action
and reward.

Note that, policy gradients may fail to converge due to the high variance.
To reduce variance, the cumulative reward usually subtracts a baseline, which is
obtained by averaging the cumulative discounted reward on the same time slot
of all episodes with the same job set. Due to the exploration of N networks, the
policy enables current network to converge fast to the best one.

5 SIMULATION

5.1 Simulation setup

We simulate a wireless system composed of a BS and multiple users. The BS is
connected to a MEC server and locates at the center of the cell. The UEs are
randomly scattered within 500 meters away from the BS. The main simulation
setting is listed in Table. [I} We compare our proposed algorithm with four base-
lines, namely, mobile execution, MEC server execution, random execution, and
DPG with the average allocation of network resource by offloading multiple users
(DPGM) [7]. They work as follows:

— Mobile Execution: All the tasks are executed on the local equipment.

— MEC Server Execution: All the tasks are offloaded to the MEC server.

— Random Execution: When the job slots are not empty, the job is executed
in the MEC server or the local equipment randomly.

— DPGM: The system bandwidth is allocated equally to the offloaded users,
then the computation resource is allocated simultaneously to these users.

Jobs are generated randomly. Job computation and network resource de-
mands is chosen as follows: 20% of the jobs have duration uniformly chosen from
1 to 3 time slots; the remaining are chosen uniformly from 4 to 8 time slots.

5.2 Performance Evaluation

Fig[3] shows the latency all jobs are completed achieved by the learning policy.
Due to the N networks in parallel to explore the possible action space, DPG
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Table 1. Simulation Parameters

Parameters Values
Number of job slots 5
Length of backlog 60
System bandwidth 20MHz
Shadow fading 10dB

User transmission power| 23dB
Local CPU frequency 1GHZ

Number of UEs 30
MEC CPU frequency 3GHZ
Gaussian Noise power |-88dB
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E
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=11}
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-400 L L L
0 2000 4000 6000 8000

The number of iteration

Fig. 3. Convergence of the total reward in the training procedure.

Max means the maximum reward across all of the Monte Carlo running at each
iteration and DPG Mean means the average reward. The large gap between the
maximum and average reward implies the policy needs to be improved further.
When the DPG Max isn’t equal to DPG Mean at each iteration, it indicates
there are some action paths that are much better than the average action paths,
so it is necessary to adjust the policy to increase reward. Conversely, if the
gap narrows, it means the policy has chosen better action than ever before. As
expected, the DPG Mean and DPG Max improve with the iteration number
increase. When the iteration number is 200, the gap between the maximum and
average reward is smaller. Finally, the model has totally converged when the
number of iterations is near 5000.

Fig.4 shows the completing all job latency with respect to the different num-
ber of UEs. The execution latency increase with the increase of UE number.
DPG method achieves the best result that the latency is smallest when the UE
number is different. When the UE number is 50, DPG outperforms DPGM and



10 Baichuan Cheng, Zhilong Zhang and Danpu Liu

—O—— DPGM
Mobile Execution
—>—— MEC Server Execution
DPG

—Q; Random Execution

time slot

10 20 30 40 50
The number of UE

Fig. 4. Latency with different number of UEs.

offers more than 10% performance gain. Because network resource is divided into
many parts by DPGM method, it will increase the transmission latency and the
job offloaded to the MEC server will consume longer time due to the allocation
of computation resource. MEC Server Execution gets the worst result. Because
there is only one server to execute the offloading tasks, job needs to wait for
execution at the server queue. Random Execution can utilize the local compu-
tation resource. The Mobile Execution outperforms Random , and the time slot
consumed is reduced by 30% when UE number is 50. It is because the task can
be offloaded to the local equipment directly. The DPG and DPGM outperform
Mobile Execution. Because it utilizes the MEC computation resource and the
task that is offloaded to the MEC server will not consume too many time slot
to wait for execution.The training algorithm can adappt to the changes in the
environment.

Fig. 5 shows the latency cost with the increase of MEC CPU frequency to lo-
cal equipment CPU frequency ratio. When MEC CPU frequency is equal to the
local equipment CPU frequency, DPG, DPGM, Mobile Execution are equal. Be-
cause the MEC CPU frequency is same as local CPU frequency. Hence, the best
strategy that DPG explores is to execute the task on the local equipment. Task
is offloaded to the MEC server will consume more time slot due to transmission
latency. With the increase of MEC CPU frequency, DPG outperforms DPGM
and Mobile Execution. Due to the smaller execution latency on the MEC, DPG
and DPGM explore better strategy than Mobile Execution. When MEC CPU
frequency to local equipment CPU frequency ratio is 5, DPG offers more than
20% performance gain compared than DPGM. The allocation of computation
and network resource for offloading tasks causes longer latency in DPGM. DPG
will schedule the tasks that wait to execute on the server to local equipment if
the latency by offloading is larger. MEC Server Execution is the worst result. It
will lead to all tasks offloaded to the MEC server to execute. Firstly, all tasks
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Fig. 5. The latency for different MEC CPU frquency.

need to allocate network resource to transmit data, which causes many tasks will
wait longer time slot to transmit data. Secondly, the offloaded tasks will wait
for execution on the MEC server. Random Execution randomly schedule some
tasks to MEC server, the other tasks is executed on the local equipment. Due
to the local computation utilization, it outperforms MEC Server Execution.

—O©—— DPGM

—Q— Mobile Execution

——>%—— MEC Server Execution
DPG

—Q— Random Execution

10° (\)M

=—— - — vy X

time slot

102 1 1 1
10 12 14 16 18

system bandwidth(MHz)

Fig. 6. The latency for different system bandwidth

Fig.6 shows the total latency of completing all job with respect to the dif-
ferent system bandwidth. Mobile Execution is constant under different system
bandwidth parameters, due to the task is same. The different system bandwidth
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parameters will lead to different transmission latency. However, our algorithm
outperforms baselines. MEC Server Execution is still worst. Random Execution
outperforms MEC Server Execution due to the utilization of local computation
resource. DPGM is worse than DPG because the allocation of computation and
network resource by offloading tasks cause longer time slot to transmit data and
execute task.

6 CONCLUSION

In this paper, we address the probem of computation offloading and the alloca-
tion of network and computation resource in a multi-user system. We formulate
the state, action, and reward models, and propose the DPG algorithm. Our
simulation results show that our proposed method outperforms baselines under
different system parameters. For the future work, we will extend our research by
jointly consider the energy and latency consumption.
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