
Octopus ORAM: An Oblivious RAM with
Communication and Server Storage Efficiency
Qiumao Ma, Wensheng Zhang∗

Iowa State University, Ames, IA 50011

Abstract

Most of existing ORAM constructions have communication efficiency as the major optimization priority;
the server storage efficiency, however, has not received much attention. Motivated by the observation that,
the server storage efficiency is as important as communication efficiency when the storage capacity is very
large and/or the outsourced data are not frequently accessed, we propose in this paper a new ORAM
construction called Octopus ORAM. Through extensive security analysis and performance comparison, we
demonstrate that, Octopus ORAM is secure; also, it significantly improves the server storage efficiency,
achieves a comparable level of communication efficiency as state-of-the-art ORAM constructions, at the cost
of increased client-side storage, and the increased client-side storage should be affordable to the clients who
adopt local facilities such as cloud storage gateways.

Received on 04 March 2019; accepted on 26 April 2019; published on 29 April 2019
Keywords: Cloud Storage, Data Access Pattern Privacy, Oblivious RAM
Copyright © 2019 Qiumao Ma et al., licensed to EAI. This is an open access article distributed under the terms 
of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits 
unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.
doi:10.4108/XX.X.X.XX

1. Introduction
As cloud computing has been a common computing
paradigm, cloud storage also become pervasive. In the
cloud storage model, a public cloud storage provider
owns and hosts a physical storage that may span over
multiple physical servers and locations; a client, which
could be an organization or individual, leases storage
capacity to store data.

Due to performance as well as security and privacy
concerns, it is popular for organizational clients of
cloud storage to deploy on-premise storage gateways.
Figure 1 shows an example architecture for a hybrid
cloud storage system, where an organizational client of
cloud storage runs an on-premise, small-scale, private
facilitate called storage gateway. The storage gateway
has moderate storage and computing resources; for
scalability and cost-efficiency, it outsources the majority
of its data to one or multiple off-premise, public, larger
and more scalable cloud storage servers. Meanwhile, the
storage gateway stores the meta-data and a moderate
set of the frequently-accessed or recently-accessed data,
to manage data as well as reduce the frequency and

∗Corresponding author. Email: wzhang@iastate.edu

Figure 1. Hybrid Cloud Storage System

latency of accessing data directly from the remote
server.

Research and Markets [32] projects the cloud storage
market to have an annual growth rate of 29.73% to
reach a total market size of 92.488 billion by 2022,
and identifies the fast-increasing adoption of storage
gateway as one major factor contributing to the growth.

When the client of a cloud storage cares the
security of its data, it can encrypt the data before
outsourcing. However, encryption can only protect
data confidentiality. The client’s access pattern to the
outsourced data, if not properly protected, can be

1

Research Article
EAI Endorsed Transactions  
on Security and Safety

EAI Endorsed Transactions on 
Security and Safety 

01 2019 - 04 2019 | Volume 6 | Issue 20 | e5

http://creativecommons.org/licenses/by/3.0/
mailto:<wzhang@iastate.edu>


Q. Ma, W. Zhang

easily leaked to the cloud server or attackers who
are interested in such information. Even worse, it has
been found that, the leaked data access pattern can
sometimes be used to infer the content of encrypted
data [17].

The oblivious RAM (ORAM) model [11], which was
originally proposed for software protection, has been
regarded as a provable approach to protect the client’s
access pattern to outsourced data. In recent years,
various ORAM constructions [12–16, 18, 21, 25, 28, 30,
31, 37–39, 39, 44, 45] have been developed.

As we survey in Section 7, the efficiency of client-
server communication and client-side storage has been
the main priority for optimization in developing ORAM
constructions, but the efficiency in server storage has
not received much attention. Particulary, to outsource
N real data blocks to the cloud storage, Partition
ORAM [37] incurs a communication cost of about
1.25 logN blocks per data query, requires a client-side
storage of O(cN ) (where c is a small number) blocks,
and needs to store about 4N real and dummy blocks
at the server. Path ORAM [38] has the similar level of
communication efficiency, while the client-side storage
is reduced to only O(logN ) blocks; but it requires the
server to store about 10N real and dummy blocks.
Recently, S3ORAM [16] was developed based on the
deployment of multiple non-colluding servers; for each
data query, this construction incurs only a constant
number of blocks for client-server communication, but
it requires at least 12N blocks to be stored at the servers.

The prioritization on communication efficiency over
server storage efficiency is based on the assumption
that, the monetary cost for communication is much
higher than that for storage. However, this is not always
true. Considering the Amazon S3 service in North
America, the price for transferring data from Amazon
to Internet is at least $0.05 per GB, while storing 1 GB
data for one month only costs $0.02. Nevertheless, when
the cloud server needs to store a large amount of data,
the momentary cost for storage could be comparable
to or even higher than that for communication. For
example, consider a client of Amazon S3 uses high-
speed Internet to connect to the cloud server, and
the network bandwidth is 1 Gbps. If the client keeps
accessing data from the server, and the bandwidth
is fully utilized for the accesses, the amount of data
that can be transferred from the server to the client
is no more than 324 TB per month, which costs about
$16,200, roughly the cost for the client to store 800 TB
data at the server. Hence, as long as the client has data
with several hundreds of TB or more to store at the
server, the monetary cost for storage is comparable to or
even higher than that for communication. This is even
more evident in practice, considering that the client
may not access the outsourced data too frequently, as
frequently-accessed data could be cached locally.

Our Contributions. In this paper, we propose a new
ORAM construction, called Octopus ORAM due to the
adoption of 8-ary tree (i.e., each non-leaf node on the
tree can have up to eight child nodes) as the server-
side data structure for storing outsourced data blocks,
to accomplish the efficiency in both communication and
server storage, at the cost of increased but affordable
client-side storage.

Specifically, we first propose a basic Octopus ORAM
with the following features (assuming N data blocks
are outsourced to the server; s, α and β are system
parameters):

• Only one server is required.

• The amortized client-server communication cost
per query is (9 + 7α) log8

N+3.5s
3.5s blocks.

• The storage overhead at the server is only (β +
1+α

7 )N + (1+α)s
2 ≈ 0.3N blocks.

• It is proved that, as long as s ≥ 25λ, α ≥ 0.34
and β ≥ 0.13, the Octopus ORAM fails with a
probability of O(2−λ).

• It is proved that, the Octopus ORAM does not
disclose the client’s data access pattern.

Then, we propose several optimizations to the basic
Octopus ORAM:

• We propose a de-amortized eviction algorithm
to allows query and eviction processes to run
concurrently.

• We propose a piece-by-piece eviction algorithm
to reduce the client-side storage overhead of the
Octopus ORAM.

• We extends the Octopus ORAM to employ three
non-colluding cloud servers, which reduces the
client-server communication cost to about 2
blocks per query, at the cost of introducing a
server-server communication cost of about 6 logN
blocks per query.

We compare Octopus ORAM with several state-
of-the-art ORAM constructions through analytical or
implementation-based study, which is reported in
detail in Section 6. The major results are as follows.

• Compared to Partition ORAM [37]: The Octopus
ORAM with a single server reduces the server
storage overhead to be less than 1

6 of that of
Partition ORAM, while its client-server commu-
nication cost becomes 0.5 times larger than that
of Partition ORAM. The Octopus ORAM with
three servers achieves the same level of server
storage efficiency as achieved by the Octopus
ORAM with a single server, but it reduces the

2 EAI Endorsed Transactions on 
Security and Safety 

01 2019 - 04 2019 | Volume 6 | Issue 20 | e5



Octopus ORAM: An Oblivious RAM with Communication and Server Storage Efficiency

client-server communication cost to only 2 blocks;
as a tradeoff, it introduces background commu-
nication between the servers, of which the cost
is less than 3 times of the client-server commu-
nication cost incurred by Partition ORAM. Note
that, large client-server communication results in
a data access delay that is directly experienced by
the client, but the delay caused by server-server
communication in the background can be hidden
from the client.

• Compared to the Path ORAM [38], Octopus
ORAM decreases the server storage overhead by
30 times, and has a lower communication cost
which is about 23-30% of that of Path ORAM. As a
tradeoff, it increases the client-side storage, which
is affordable to a client that deploys an on-premise
facility such as cloud storage gateway.

• Compared to the S3ORAM [16], the Octopus
ORAM with three servers decreases the server
storage overhead by 33 times, and halves the
client-side communication cost. As a tradeoff, it
increases the client-side storage, which is also
affordable to a client deploying an on-premise
facility such as cloud storage gateway.

Organization. The rest of the paper is organized as
follows. Section 2 defines the problem. Section 3
describes the basic Octopus ORAM, which is followed
by the security and cost analysis in Section 4. Section
5 proposes several optimizations to the basic Octopus
ORAM. Section 6 reports the performance comparisons
against Partition ORAM, Path ORAM and S3ORAM.
Section 7 briefly surveys the related work. Finally,
Section 8 concludes the paper.

2. Problem Definition
2.1. System Model
We consider a system consisting of a client and one
or multiple non-colluding cloud servers. Note that,
the proposed basic Octopus ORAM needs only a
single cloud storage server, while an extended version
assumes the existence of three non-colluding servers (as
assumed in related works such as [16]) and at least one
of them being cloud storage server.

Based on the hybrid cloud architecture discussed in
Section 1, we assume the client has a local storage with
a decent capacity, which however is much smaller than
the capacity of the cloud storage server.

Following the prior research on ORAM constructions,
we also assume the server(s) to be semi-honest (or
honest but curious); that is, it stores data and serves
the client’s requests according to the protocol that we
deploy, but it may attempt to figure out the client’s
access pattern.

2.2. Security Definitions
Assume the client outsources N equal-size data blocks
to the cloud storage server, and then accesses the data
every now and then.

Each data access intended by the client, which should
be kept private, is one of the following two types:
(i) read a data block D of unique ID i from the
storage, denoted as D = (read, i) and formally a 3-tuple
(read, i, D); or (ii) write a data block D of unique ID i to
the storage, denoted as a 3-tuple (write, i, D).

To accomplish each private data access, the client
usually needs to access multiple locations of the
storage. Each location access, which can be observed by
the server, is one of the following types: (i) retrieve
(i.e., read) a data block D from location l at the
storage, denoted as D = (read, l) and formally a 3-
tuple (read, l, D); or (ii) upload (i.e., write) a data block
D to location l at the storage, denoted as a 3-tuple
(write, l, D).

Similar to the security definition of ORAM in the
prior research [11, 37, 38], we define the security of our
proposed ORAM as follows.

Definition Let λ be a security parameter, and ~x = 〈
(op1, i1, D1), (op2, i2, D2), · · · 〉 denote a private sequence
of the client’s data accesses, where each op is either a
read or write. Let A(~x) = 〈 (op′1, l1, D

′
1), (op′2, l2, D

′
2), · · ·

〉 denote the sequence of the client’s location accesses
(observed by the server) in order to accomplish the
data access sequence ~x. An ORAM system is said to be
secure if (i) for any two equal-length private sequences
~x and ~y of data accesses, their corresponding location
access sequences A(~x) and A(~y) are computationally
indistinguishable; and (ii) the ORAM system fails to
operate with a probability of O(2−λ).

3. The Basic Octopus ORAM
In this section, we present the detailed design of the
basic Octopus ORAM, in terms of storage organization,
system initialization, data query, and data eviction. The
scheme uses integer s > 1, and fractions 0 < α < 1 and
0 < β < 1, as system parameters to adjust the tradeoffs
between security and costs.

3.1. Storage Organization and Initialization
Server-side Storage. The server-side storage is orga-
nized as a balanced tree, called storage tree, in which
each non-leaf node can have up to eight child nodes.

Specifically, let L′ = blog8
N

3.5s c and Z ′ = N
8L′

. If 3.5s ≤
Z ′ ≤ 7s, the storage tree is a complete 8-ary tree with
height L = L′ + 1 and each leaf node storing Z = (1 +
β)Z ′ blocks. Otherwise, the storage tree is of height
L = L′ + 2, and the root has b Z ′3.5s c child nodes while each
child node is a root of a complete 8-ary tree with each

3 EAI Endorsed Transactions on 
Security and Safety 

01 2019 - 04 2019 | Volume 6 | Issue 20 | e5



Q. Ma, W. Zhang

leaf node storing Z = (1 + β) Z ′

b Z′3.5s c
blocks. Each non-leaf

node has a capacity of 3.5(1 + α)s blocks. Each node
ni is identified by a unique tuple (li , idi), where li ∈
{0, · · · , L − 1} is the ID of the layer that the node resides
(note: the root node is at layer 0 while the leaf nodes are
at layer L − 1), and idi ≥ 0 is the ID of the node on layer
li that indicates the order of the node on layer li (from 0
at the leftmost to right).

Figure 2 illustrates the storage tree, which is a
balanced 8-ary tree.

(0,0)Non-leaf: each node 
stores 3.5(1+α)s blocks.

Leaf: each node stores up to 7(1+β)s blocks.

(1,0) (1,7)...
(1,1) (1,6)

(2,0) (2,7) (2,63)(2,56)
... ...

(L-1,0) (L-1,1) (L-1,7)
...

(L-1,2L-1-2)(L-1,2L-1-1)

... ... ... ...

... ...

...

Layer 0

Layer 1

Layer 2

Layer L-1

Figure 2. Server Storage Organization.

Client-side Storage. The client maintains an index table
for all the N real data blocks and an index block for
each node on the tree. The index table has N entries
and each entry i ∈ {0, · · · , N − 1} records the path ID of
block i (i.e., the ID of the leaf node on the path storing
block i). Note that, Octopus ORAM follows most of the
tree-based ORAM constructions [9, 34, 35, 37, 38] and
enforces the following policy: a block with a path ID
must be stored on the path identified by the ID. For
each node on the tree, the index block has one entry
(id, ah) for each block it stores, where: id is the ID of the
block (id ∈ {1, · · · , N } if the block is real and id = 0 if the
block is dummy), and ah ∈ {0, 1, 2} indicates the access
history of the block since the system initialization or the
most recent data eviction process involving the node,
whichever is more recent:

• ah = 0 if the block has not been accessed;

• ah = 1 if the block has been accessed as a query
target;

• ah = 2 if the block has been accessed, but never as
a query target.

System Initialization. To initialize the system, the client
encrypts all the N data blocks using a certain
probabilistic encryption algorithm (e.g., AES with
different initial vector for each encryption), randomly

selects a path for each block, and stores the blocks to
the leaf nodes such that each block is at the leaf node on
the path selected for it. To hide the initial distribution
of blocks to the leaf nodes, the leaf nodes are also
filled with dummy blocks to make each of them to have
exactly Z real or dummy blocks.

3.2. Data Query
Suppose the client wishes to query data block Dt that
is not in its local buffer, where t denotes the ID of the
block. It looks up its index table to obtain pt , which is
the path ID of the node, and looks up the index blocks
of the path to identify the node that stores Dt . Then, the
client selects path pt as the query path and launches a
query process as follows.

For each node n′i on path pt , where i ∈ {0, · · · , L −
1} represents the layer ID of the node, let Si,0, Si,1
and Si,2 denote the sets of blocks with ah values 0,
1 and 2 respectively, and si,0, si,1 and si,2 denote the
cardinalities of the sets. The client selects one or two
data blocks from each n′i to download, according to the
following rules, with the purpose of making each data
block in n′i to be downloaded with the same probability.

• Case I: node n′i contains the query target. Depending
on the access history of the target block, there are
following subcases.

– Case I-a: the target belongs to set Si,0. The
client picks the target to download. If si,1 +
si,2 > 0, the client also randomly picks one
block from Si,1 with probability ρ or from
Si,2 otherwise (i.e., with probability 1 − ρ) to
download, where

ρ =
si,1(si,0 + si,2)
si,0(si,1 + si,2)

. (1)

– Case I-b: the target belongs to Si,1 or Si,2.
The client picks the target to download and
meanwhile, picks another block randomly
from Si,0 to download.

• Case II: node n′i does not contain the query target.
The client randomly picks one block from Si,0 and
another block from Si,1 ∪ Si,2 to download.

Note that, when a block is selected by the client to
download, the server simply sends a copy of the block
to the client and still keeps the block on the storage tree.

Upon receiving the selected blocks from the server,
the client keeps only the query target block while
discards the other blocks. Also, the client updates the
index blocks maintained by itself through: marking the
copy of target block remaining on the storage tree as a
dummy block that has been accessed as target; marking
the other selected blocks as have been accessed.

4 EAI Endorsed Transactions on 
Security and Safety 

01 2019 - 04 2019 | Volume 6 | Issue 20 | e5



Octopus ORAM: An Oblivious RAM with Communication and Server Storage Efficiency

Figure 3 illustrates the query process: In (a), the query
target block has not been accessed before and In (b), the
target block has been accessed before.

…

…

…

…

…

…

……

…

(0,0)

(1,2)

(2,10)

(3,85)

…

already accessed
not accessed
selected as target
selected as dummy

…

…

…

…

…

…

……

…

already accessed
not accessed
selected as target

(0,0)

(1,2)

(2,10)

(3,85)

…

selected as dummy

(a) (b)

Figure 3. Query Examples.

The above query algorithm ensures that the client
can always retrieve the query target, with the cost of
retrieving up to two blocks from each layer of the
storage tree. Meanwhile, the query process is random
and independent of the client’s data access pattern
and thus can hide the data access pattern, due to the
following reasons:

• The query path is the path associated with the
query target, which has been selected for the
query target randomly and independently. Hence,
the selection of query path is independent of the
client’s data access pattern.

• On the query path, up to two blocks are selected
from each node n′i to download, one block from
the set of blocks (i.e., Si,0) that haven’t been
accessed yet and another from the set of blocks
(i.e., Si,1 ∪ Si,2) that have been accessed already.
As we formally show in Section 4 (Lemma 4), the
above rule ensures that, each block in Si,0 has the
same probability to be selected and each block
in Si,1 ∪ Si,2 also has the same probability to be
selected, no matter whether the node contains the
target or not. Hence, the selection of blocks to
download is also random and independent of the
client’s data access pattern.

Also note that, the above query process could fail
when enforcing the Case I of the rule, if probability ρ
computed from Equation (1) is greater than 1. We defer
the study of the failure probability to Section 4.

3.3. Data Eviction
After every s queries, the client has retained at its buffer
s blocks that are the targets of the most recent s queries.
We call these blocks as the current evicting blocks. The
client randomly re-selects a path ID for each evicting
block, and then launches a data eviction process. Like
in some existing ORAM constructions [37], the eviction
(or shuffling) process can be carried out concurrently
with data query processes and the process can spread
over a long period of time. To focus on the basic ideas
of this construction, we assume here that the eviction
process is executed before any further data query is
processed. In Section 5, we will discuss in detail on how
to parallelize the eviction and query processes.

Each eviction process involves only one path, which
we call eviction path, of the storage tree. The eviction
path is selected in the reverse-lexicographic order, as
illustrated by Figure 4.

…

…

…

…
…

…

…
… …

…

…
…

…

…
…

…

…
… …

…

…
……

…

…

…

Figure 4. Reverse-lexicographic Order.

The eviction process runs iteratively, one iteration for
each node on the eviction path. We introduce variable
n′e to denote the node currently involved in the eviction.
Hence, n′e is initialized to n0,0 (i.e., the root node).

To facilitate the explanation, we further divide the
real blocks in n′e, when n′e is not a leaf node, into
up to eight groups denoted as g0, · · · , gx−1 where x
represents the number of child nodes of n′e. Here, gi
for i = 0, · · · , x − 1 is the set of real blocks in n′e that
can only be evicted to a child denoted as n′e,i of n′e,
because the paths associated with the blocks in gi all
pass through n′e and n′e,i . Note that, the grouping is just
a temporary and logical grouping, which is known only
by the client during eviction without requiring any data
structure to keep the state.

Next, we elaborate the operations of each iteration
based on the following different case scenarios, which
is also illustrated in Figure 5.

Case I: n′e is a non-leaf node and its child n′e,c
(c ∈ {0, · · · , x − 1}) is the next node on the eviction path.
First, the client retrieves all the 3.5(1 + α)s blocks from
n′e. The real blocks from n′e are divided into x groups,
and the current evicting blocks at the client’s buffer
are distributed into the x groups according the paths
associated with them.

5 EAI Endorsed Transactions on 
Security and Safety 

01 2019 - 04 2019 | Volume 6 | Issue 20 | e5



Q. Ma, W. Zhang

...

g0 g1 g2 g3 .. ..g7

...

g0 g1 g2 g3 .. ..g7

…

…

…

…

Client's BufferServer's Storage Tree

...

g0 g1 g2 g3 .. ..g7

Current evicting 
blocks

Iteration 1

...

g0 g1 g2 g3 .. ..g7

Iteration 2

Iteration 3

Iteration 4

…

……

① ②

③
④

①
②

③

④
①

②

③

④

① ②

③

Evicting Node ① Downloading ② Merging

③ Uploading after random permutation & re-encryption ④ Storing new evicting blocks

Figure 5. Eviction Overview.

Second, the client merges the real blocks in groups
c + 1, · · · , x − 1, 0, · · · , c − 1, randomly permutes and
re-encrypts them, adds randomly-composed dummy
blocks to them to make the total number of such blocks
be 3.5(1 + α)s, and uploads the blocks back to n′e.

Third, the client retains the remaining real blocks,
i.e., the blocks in group c, at the buffer. These block now
become the new set of current evicting blocks, which
will be evicted to child node n′e,c in the next iteration.
Also, the client updates variable n′e to represent child
node n′e,c; that is, n′e,c now becomes the evicting node.
Then, the next iteration of the eviction process starts.

Note that, in the second step, it is possible that

|
⋃

i∈{c+1,··· ,x−1,0,··· ,c−1}
gi | > 3.5(1 + α)s, (2)

i.e., there are more than 3.5(1 + α)s real blocks that can
only be evicted to the child nodes other than n′e,c. When
this occurs, more than 3.5(1 + α)s would be uploaded
to n′e, which would cause the storage space of the node
to overflow. Hence, this is a failure scenario, and the
client should declare failure and abort the process.
In Section 4, we will analyze the probability for such
failure to occur.

Case II: n′e is a leaf node. The client downloads all
the blocks currently in n′e, and merges the blocks with
the current evicting blocks. Among these blocks, if the
number of real blocks is more than Z, the client declares
failure and aborts; in Section 4, we will analyze the
probability for such failure to occur. Otherwise, the
client adds or removes dummy blocks to the make the
total number of blocks to be Z, and randomly permutes
and re-encrypts them before uploading them back to n′e.

4. Security and Cost Analysis
In this section, we first study the failure probability and
the obliviousness of the basic Octopus ORAM. Then, we
analyze the costs of the construction.

4.1. Failure Probability Analysis
Octopus ORAM could fail at a query or eviction process.

Failure Probability for A Query Process. According to
Section 3.2, a query process fails at a node n′i which
is on layer i, if and only if ρ computed according
to Equation (1) is greater than 1; i.e., si,1 · (si,0 +
si,2) > si,0 · (si,1 + si,2), a.k.a., si,1 > si,0. As it is hard to
directly compute P r[si,1 > si,0], we instead compute
P r[si,1 + si,2 > si,0]. Since P r[si,1 + si,2 > si,0] ≥ P r[si,1 >
si,0], P r[si,1 + si,2 > si,0] is an upper bound of the failure
probability of a query process.

Lemma 1. Let ni denote an arbitrary node on layer i of the
storage tree, and ξi denote the total number of nodes
on the layer. If n′i is involved in at least one eviction
process after every x queries launched by the client,
then a query process fails at n′i with a probability no
greater than

(
eγ

(1 + γ)1+γ )x/ξi , (3)

where γ = ξi ·3.5(1+α)s
2x − 1.

Proof. For every x queries launched by the client, on
average there are q̃ = x

ξi
queries that have n′i on the

query paths, because of the randomness in the path
selection for blocks and that layer i has ξi nodes.

Therefore, the probability for q̂ = 3.5(1+α)s
2 or more of

these queries to select n′i on their query paths is less
than

(
eγ

(1 + γ)1+γ )x/ξi ,

where γ = q̂
q̃ − 1 = ξi ·3.5(1+α)s

2x − 1, according to the
multiplicative Chernoff bound.

Note that, a query will not fail at n′i if n′i has not been
on the query paths for q̂ times, because si,0 > si,1 + si,2 as
long as n′i has been on less than q̂ query paths.

Hence the lemma is proved.

Based on the above Lemma, we have the following
main theorem regarding the failure probability of a
query process.

Theorem 1. (Failure Probability for A Query Process in
the Basic Octopus ORAM.) When an eviction process
is always launched after every s queries and completed
before any further query, as the Basic Octopus ORAM
does, a query process fails at a node with a probability

6 EAI Endorsed Transactions on 
Security and Safety 

01 2019 - 04 2019 | Volume 6 | Issue 20 | e5



Octopus ORAM: An Oblivious RAM with Communication and Server Storage Efficiency

no greater than

(
e1.75α+0.75

(1.75α + 1.75)1.75α+1.75 )s.

In particular, the probability is no greater than 2−λ

when α ≥ 0.34 and s ≥ 1.1λ.

Proof. On the storage tree, for every node n′i on layer i
with totally ξi nodes, it is involved in an eviction after
every x = ξi · s queries. Then, applying Lemma 1 with
x = ξi · s, the theorem is proved.

Failure Probability for An Eviction Process. An eviction
process can fail if and only if one of the following
scenarios occurs.

• Failure Scenario I: This scenario occurs during an
eviction iteration (detailed in Section 3.3) with a
non-leaf node as the current evicting node. After
the current evicting blocks are merged with the
existing blocks at the current evicting node, there
are more than 3.5(1 + α)s real blocks that can
only be evicted to the child nodes other than the
next evicting node. This would require more than
3.5(1 + α)s blocks to be uploaded to a non-leaf
node and thus would lead to space overflow at the
node.

• Failure Scenario II: This scenario occurs during the
eviction iteration with a leaf node (with capacity
Z blocks) as the current evicting node. When
the current evicting blocks are merged with the
existing blocks at the current evicting node, the
total number of real blocks become more than Z.

Lemma 2. As long as α ≥ 0.34 and s ≥ 25λ, the Failure
Scenario I occurs with a probability of O(2−λ).

Proof. Firstly, let us consider a current evicting node n′e
that is a non-leaf node with 8 children. Without loss of
generality, we assume the leftmost child of n′e, i.e., child
0, is the next evicting node. After the current evicting
blocks have been merged with the blocks in n′e, all of
these blocks are grouped into eight groups, where each
group gi for i = 0, · · · , 7 contains the real blocks that
can only be evicted to child i. Note that the real blocks
in each gi were evicted to n′e in the last 8 − i eviction
processes that involve n′e.

On average, each eviction process involving n′e evicts
s real blocks to n′e, and among them s

8 real blocks can
only be evicted to child i of n′e; hence, the average
size of gi , denoted as |gi |, is 8−i

8 · s blocks. Due to the
multiplicative Chernoff bound, the probability for |gi | >
8−i
8 · s · (1 + αi), i.e. P r[|gi | > 8−i

8 · s · (1 + αi)], is less than

[
eαi

(1 + αi)(1+αi )
]

8−i
8 ·s. (4)

Following inequality (4), when s ≥ 25λ, α1 ≥ 0.265,
α2 ≥ 0.285, α3 ≥ 0.31, α4 ≥ 0.35, α5 ≥ 0.41, α6 ≥ 0.5,
and α7 ≥ 0.74, it holds that P r[|gi | > 8−i

8 · s · (1 + αi)] <

2−λ. That is, when α =
∑7
i=1[ 8−i

8 ·s·(1+αi )]∑7
i=1[ 8−i

8 ·s]
≥ 0.339, the

Failure Scenario I occurs with a probability less than
7 ∗ 2−λ, i.e., O(2−λ).

Next, we consider a general scenario that the current
evicting node n′e has x ≤ 8 children. The above proof
can be simply changed to that the number of groups is
x instead of 8. After group 0 is evicted to the leftmost
child, the rest groups (i.e., groups 1, · · · , x − 1) should
not have more blocks than the groups 1, · · · , 8 in the
above proof. Hence, the probability for the number of
blocks in groups 1, · · · , x − 1 to exceed 3.5(1 + α)s blocks
is also O(2−λ).

Lemma 3. As long as β ≥ 0.13 and s ≥ 25λ, the Failure
Scenario II occurs with a probability of O(2−λ).

Proof. On the server-side storage tree, each leaf node
has a capacity of Z blocks where Z ≥ 3.5(1 + β)s. For
each leaf node with ID i, let us use random variable xi
to denote the number of real blocks that have i as their
path IDs and x̄i to denote the mean of xi . Thus, it holds
that x̄i = Z

1+β ≥ 3.5s due to the following reasoning:

• When the root of the storage has exactly 8
children, the total number of leaf nodes is 8L

′
, and

thus x̄i = N
8L′

. Due to Z = (1 + β) N
8L′

, it holds that

x̄i = Z
1+β .

• When the root of the storage has less than 8
children, the total number of leaf nodes is 8L

′ ·
b Z ′3.5s c, and thus x̄i = N

8L′ ·b Z′3.5s c
. Due to Z = (1 +

β) Z ′

b Z′3.5s c
, it holds that x̄i = Z

1+β .

Further due to the multiplicative Chernoff bound, for
any leaf node with ID i:

P r[xi ≥ Z] = P r[xi ≥ (1 + β)x̄i] < (
eβ

(1 + β)(1+β)
)x̄i . (5)

Because x̄i ≥ 3.5s, it holds that P r[xi ≥ Z] < 2−λ when
β ≥ 0.13 and s ≥ 25λ.

Following Lemmas 2 and 3, we have the following
main theorem regarding the failure probability for
Octopus ORAM.

Theorem 2. (Failure Probability of an Eviction Process in
the Basic Octopus ORAM.) An eviction process fails at
a node with a probability of O(2−λ), as long as α ≥ 0.34,
β ≥ 0.13 and s ≥ 25λ.

7 EAI Endorsed Transactions on 
Security and Safety 

01 2019 - 04 2019 | Volume 6 | Issue 20 | e5



Q. Ma, W. Zhang

4.2. Obliviousness Analysis
In this subsection, we analyze the obliviousness of the
query and eviction processes. That is, we show that
these processes are random and independent of the
client’s data access pattern.

Obliviousness in Query Path Selection. When the system
is initialized, the path ID of each block is selected
randomly and independently of each other. After a
block has been queried, its path ID is re-selected
randomly and independently of the client’s data access
pattern. Due to the randomness in the selection of path
ID, the query path of each query process, which is the
determined by the path ID of the query target block, is
random and independent of the client’s access pattern.

Obliviousness in Block Access from Query Path. From each
node on the query path selected for a query process,
the client must select one block that has already been
accessed and one block that has not been accessed
to access. As stated and proved in Lemma 4, the
algorithm for block selection ensures that, each of the
blocks that have already been accessed has the same
probability to be selected; each of the blocks that have
not been accessed also has the same probability to be
selected. Hence, each query process is also random and
independent of the data access pattern.

Lemma 4. In every node on the query path selected for
a query process, all the un-accessed blocks within the
node have the same probability to be accessed; all the
already-accessed blocks within the node have the same
probability to be accessed.

Proof. Let us re-use the notations in the data query
algorithm (Section 3.1). For any node n′i , n

′
t (i.e., the

node does not contain the query target) on the query
path, there are two cases as follows:

• If the node has not been accessed since its
most recent construction, one block is randomly
selected to access; hence, each block has the same
probability to be selected.

• If the node has been accessed before, one block
is randomly selected from Si,0 to access (i.e.,
each block is Si,0 has the same probability of 1

si,0
to be accessed), and another block is randomly
selected from Si,1 ∪ Si,2 to access (i.e., each block
in Si,1 ∪ Si,2 has the same probability of 1

si,1+si,2
to

be accessed).

For node n′i = n′t (i.e., the node contains the query
target) on the query path, if the node has not been
accessed since its most recent construction, Dt is any
block on the node with the same probability. According
to the query algorithm, Dt is selected to access; hence,
each block has the same probability to be selected.

If the node has been accessed since its most recent
construction, Si,0 is the set of blocks that have not
been accessed before, Si,1 is the set of blocks that have
been accessed before as target, and Si,2 is the set of
blocks that have been accessed before as non-targets
(i.e., dummies). Dt has the same probability to be any
block belonging to Si,0 ∪ Si,2; that is, it is in Si,0 with
probability si,0

si,0+si,2
or in Si,2 with probability si,2

si,0+si,2
.

According to the query algorithm:

• If Dt is in Si,0 (occurring with probability si,0
si,0+si,2

),
Dt is selected to access (i.e., each block in Si,0 has
the probability of 1

si,0
to be accessed); meanwhile,

another block is randomly selected from Si,1 to
access with probability ρ (i.e., each block in
Si,1 has the probability of ρ

si,1
= si,0+si,2

si,0(si,1+si,2) to be
accessed) or from Si,2 otherwise (i.e., each block
in Si,2 has the probability of 1−ρ

si,2
= si,0−si,1

si,0(si,1+si,2) to be
accessed).

• If Dt is in Si,2 (occurring with probability si,2
si,0+si,2

),
Dt is selected to access (i.e., each block in Si,2 has
the probability of 1

si,2
to be accessed); meanwhile,

another block is randomly selected from Si,0 to
access (i.e., each block in Si,0 has the probability
of 1

si,0
to be accessed.

Summarizing the above two cases, each block in Si,0
always has the probability of 1

si,0
to be accessed; each

block in Si,1 has the probability of

si,0
si,0 + si,2

·
si,0 + si,2

si,0(si,1 + si,2)
=

1
si,1 + si,2

to be accessed; each block in Si,2 also has the probability
of

si,0
si,0 + si,2

·
si,0 − si,1

si,0(si,1 + si,2)
+

si,2
si,0 + si,2

· 1
si,2

=
1

si,1 + si,2

to be accessed.

Obliviousness in eviction process. The eviction process
is random and independent of the client’s data access
pattern, due to the following reasons:

• Each eviction process involves only one root-to-
leaf path (called eviction path), and the order in
which the paths are selected for as eviction paths
is fixed and independent of data access pattern.

• During each eviction process, the processing for
each node on the selected eviction path follows
a fixed pattern which is independent of data
access pattern: all the data blocks on the node
are retrieved to the client; the blocks are all re-
encrypted by the client; then, the same number
of blocks (but may or may not be the same set of
blocks) are uploaded back to the node.

8 EAI Endorsed Transactions on 
Security and Safety 

01 2019 - 04 2019 | Volume 6 | Issue 20 | e5



Octopus ORAM: An Oblivious RAM with Communication and Server Storage Efficiency

Based on the above analysis about failure probability
and obliviousness, we get the following theorem.

Theorem 3. (Security of the Basic Octopus ORAM.)
As long as system parameters α ≥ 0.34, β ≥ 0.13 and
s ≥ 25λ, the basic Octopus ORAM is secure under
Definition 2.2.

4.3. Cost Analysis
Communication Cost. For each query process, up to
two blocks are downloaded from each node on the
query path.

After every s query processes, an eviction process is
launched. During an eviction process, one root-to-leaf
path is selected to access. All the data blocks on the
eviction path are downloaded and then replaced with
the same number of blocks uploaded. Hence, in total
7(1 + α)(L − 1)s + 2Z blocks are transferred between the
client and the server.

To summarize, the average communication cost per
query is

2L + [7(1 + α) · L + 2Z]/s ≈ (9 + 7α) log8
N + 3.5s

3.5s
(6)

blocks.
Server-side Storage Cost. The number of leaf nodes

on the server-side storage tree is at most 8L−1 = N+3.5s
3.5s ,

and the number of non-leaf node is no more than 1 +
· · · + 8L−2 < 8L−1/7 = N+3.5s

24.5s . Considering that each leaf
nodes store (1 + β)N data blocks and each non-leaf node
stores 3.5(1 + α)s blocks, the total number of blocks
stored by the server is no more than

(1 + β +
1 + α

7
)N +

(1 + α)s
2

(7)

blocks. In particular, when α = 0.34 and β = 0.13, the
server-side storage overhead is about 0.3N blocks.

Client-side Storage Cost. The client stores an index
table, which takes at most N · log 8L−1 = 3(L − 1)N bits.
It also stores an index block for each node, where every
dummy block takes 3 bits (one for ID 0 and two for
ah) and every real block takes logN + 2 bits (logN for
ID and two for ah); hence, the index blocks consumes
about N · (logN + 3) bits. Besides the above permanent
storage consumption, the client also needs to store the
recently queried s blocks, and up to Z blocks at the time
of eviction. Hence, the overall storage consumption is
about

N · (logN + 3) + [s + 7(1 + β)]B (8)

bits, where B denotes the size of a block.

5. Optimizations
In this section, we discuss several optimizations that
can improve the performance of the basic Octotupus
ORAM.

5.1. De-amortized Eviction
In the basic Octopus ORAM, no query can be processed
when an eviction process is on going, and the eviction
process could take a long time when system parameter
s and the number of outsourced blocks are large. Hence,
we propose to de-amortize this process and thus allow
the query and eviction processes to run concurrently.

The De-amortization Algorithm. To de-amortize an evic-
tion process, we first divide the process evenly into s
sub-processes called eviction steps, each having the same
amount of communication workload. Specifically, let-
ting s · w denote the total number of block transferred
between the client and the server during an eviction
process, Then, the Octopus ORAM system with de-
amortized eviction works as follows.

1. Each query process is uniquely identified by
a non-positive integer, from 0 and onwards
consecutively. The query process is conducted in
the same way as in the basic Octopus ORAM.

2. After every i · s (where i ≥ 1) queries have been
processed, a new eviction process is launched.
As the eviction process is divided into s eviction
steps, each step is identified by (i − 1) · s + j where
j = 0, · · · , s − 1.

3. For each query identified by k ≥ s, the client starts
processing it only if k − s or more eviction steps
have already completed.

4. When processing query k ≥ s, like in the basic
Octopus ORAM, the path that contains the query
target is selected as the query path. Then, one
or two blocks are selected from each node to
retrieve according to the same query algorithm in
Section 3.2. Note that, for a node that is currently
involved in an eviction step, its blocks can be all at
the server, all at the client, or partly at the server
and partly at the client; the block selection is not
affected by the distribution.

Security Analysis. Applying the de-amortized eviction
algorithm does not change the obliviousness property
of the Octopus ORAM or the failure probability of an
eviction process. However, it makes a node to have
more blocks accessed before an eviction process arrives
at the node. Lemma 5 states how this change impacts
the failure probability of a query process, the proof of
which is presented in the Appendix.

Lemma 5. In an Octopus ORAM with de-amortized
eviction, as long as s ≥ 8λ and the storage tree has
at least 4 leaf nodes, a query process fails with a
probability of O(2−λ).

Proof. Let ξl denote the number of nodes at layer
0 ≤ l ≤ L − 1, where ξL−1 ≥ 4. According to the de-
amortized eviction algorithm, between two consecutive

9 EAI Endorsed Transactions on 
Security and Safety 

01 2019 - 04 2019 | Volume 6 | Issue 20 | e5



Q. Ma, W. Zhang

eviction processes (note: the system initialization is
treated at the first eviction process) completed at a node
on layer l ∈ {0, · · · , L − 1}, there should be at most ql =
s · ξl + s · l+1

L queries processed.
For the root node of the storage tree, it is obvious

that q0 < 1.5s < 1.75(1 + α)s as long as L > 1 (which is
implied by the existence of 4 leaf nodes); hence, a query
process will never fail at the root.

For a non-root node at layer l (where l ≥ 1), it
is obvious that ql < (ξl + 1)s ≤ 1.25ξl · s; hence, among
these queries, the average number of queries that
involve this node is q̂l = ql

ξl
< 1.25s. Due to the

multiplicative Chernoff bound, the probability for more
than 1.75s queries to involve this node is

(
e0.4

1.41.4 )1.25s < (0.915)s,

where 1.4 = 1.75/1.25. The probability is less than 2−λ

as long as s ≥ 8λ.

Cost Analysis. Applying the de-amortized eviction
algorithm only changes the temporal distribution of
communication workload, but not the overall cost
of communication. The computation and server-side
storage costs are not changed either. However, it
increases the client-side storage cost, because the client
now needs to have two dedicated buffers, one for
recently queried target blocks and one for eviction. Note
that, with the basic Octopus ORAM, only one buffer is
needed, which is used to support eviction at the eviction
time and used to store the recently queried target blocks
during other time. The increase in storage consumption
is bounded by s blocks.

5.2. Piece-by-piece Eviction
During an eviction process, the client needs to store the
s evicting blocks as well as all the blocks in evicting node
n′e; recall that a non-leaf evicting node has 3.5(1 + α)s
blocks and a leaf evicting node has Z blocks. To reduce
the client-side storage cost, we further propose piece-
by-piece eviction in the following.

Dividing Blocks into Pieces. To facilitate piece-by-piece
eviction, we first divide the plain text of each block
into θ − 1 pieces each of τ bits. That is, each block of
ID i is split into pieces di,1, di,2, · · · , di,θ−1. Before being
exported to the remote storage server, the plain-text
data block is encrypted piece by piece with a secret key
k, as shown in Figure 6:

ci,0 = Ek(ri), where ri is a random number used as IV;

ci,1 = Ek(ci,0 ⊕ di,1);

ci,2 = Ek(ci,1 ⊕ di,2);

· · · ,
ci,θ−1 = Ek(ci,θ−2 ⊕ di,θ−1).

Thus, the encrypted data block (denoted as Di and
hereafter called data block for brevity) has the following
format:

Di = (ci,0, ci,1, ci,2, · · · , ci,θ−1).

It contains θ pieces and has τ · θ bits. Note that, a
block in cipher text is longer than the block in plain
text due to the addition of IV. This communication
and storage overhead however is not brought by our
proposed piece-by-piece eviction; as long as a block is
encrypted probabilistically, IV is needed.

B=τ· θ bits

⊕ ⊕ ⊕

τ bits τ bitsτ  bits

di,1 di,2 … di,θ-1Plain-text Block

ci,1 ci,2 … ci,θ-1Cipher-text Block ci,0

IV

Ek(·) Ek(·) Ek(·) Ek(·)

Figure 6. Format of a data block.

Piece-by-piece Eviction Algorithm. When an eviction
process is working on evicting node n′e with a capacity
of c blocks, the eviction buffer consists of the following
segments:

• Segment 0, which can store c + s pieces that are
used as IV pieces for re-encryption;

• Segment 1, which can store c + s pieces that are
used as IV pieces for decryption.

• Segment 2, which can store c + s pieces that are
used to store pieces waiting to be decrypted and
then re-encrypted.

• Segment 3, which can store the s current evicting
blocks.

The piece-by-piece eviction process at n′e is as follows.
The client first devices a permutation function π

that can randomly permute s + c pieces. Specifically,
π should permute an input block sequence, which
includes the s current evicting blocks followed by the
c blocks currently at n′e, to an output block sequence,
which includes the s new evicting blocks followed by
the c blocks that should be evicted to n′e; that is, π
should work according to the eviction algorithm in
Section 3.3.

Then, the client randomly picks s + c new IV pieces
and stores them to Segment 0 of the eviction buffer.
It also retrieves the first pieces of the s evicting blocks
and the first pieces of the c blocks currently at n′e, and
saves these c + s pieces, which are the old IV pieces, to
Segment 1 of the eviction buffer.

10 EAI Endorsed Transactions on 
Security and Safety 

01 2019 - 04 2019 | Volume 6 | Issue 20 | e5



Octopus ORAM: An Oblivious RAM with Communication and Server Storage Efficiency

Next, the client iteratively re-encrypts, permutes and
uploads pieces 1, · · · , θ − 1 of the current s evicting
blocks and c blocks at n′e. Specifically, each iteration
i = 1, · · · , θ − 1 runs as follows.

1. The client retrieves the pieces with offset i from
the s current evicting blocks stored at Segment 3
and the c blocks stored at n′e, and stores them to
Segment 2 of the eviction buffer.

2. The client permutes all the pieces in Segment 0
using π, saves the first s pieces of the permuted
sequence to Segment 3, and uploads the rest c
pieces to n′e.

3. A temporary variable iv is used by the client
for re-encryption. For each j = 0, · · · , c + s − 1, the
client lets iv be piece j of Segment 1, replaces
the piece j of Segment 1 with the piece j of
Segment 2, and updates the piece j of Segment 2
by decrypting it with its secret key the iv as the IV.
Hence, after this step finishes, Segment 1 stores
the pieces with offset i from the s current evicting
blocks and the s blocks stored at n′e, which will be
used as the IV pieces for decryption in the next
iteration; Segment 2 stores the plain texts which
will be re-encrypted in the next step.

4. The client re-encrypts pieces in Segment 2 with its
secret key and the pieces in Segment 0 as the IV
pieces. Then, the pieces in cipher text are copied
to Segment 0 as IV pieces for re-encryption in the
next iteration.

As we can see, the piece-by-piece eviction algorithm
reduces the size of eviction buffer from Z + s blocks to s
blocks plus 3Zτ bits.

5.3. Extension to Multiple Servers
As analyzed in subsection 4.3, the client-server
communication cost isO(log8N ) blocks per query in the
basic Octopus ORAM. To reduce the cost, we propose an
optimization based on employing three non-colluding
cloud servers, denoted as S0, S1 and S2. Among them,
Server S0 hosts the storage tree, S1 stores the most
recently accessed s data blocks, and S2 only helps in re-
encrypting data blocks.

System Initialization. The client picks a pseudo random
number generator P RG0(k), which takes a secret seed k
of l bits (where l is a security parameter) and outputs
a pseudo-random sequence of 3l bits. The client also
shares with the servers another pseudo random number
generator function, denoted as P RG1(k), which takes a
secret seed k and outputs a pseudo-random data block.

In the index table maintained by the client, the entry
for each block with ID i now stores two fields: the path

ID of the block and a secret key ki which is randomly
selected by the client to encrypt the block.

Initially, before each real block Di with ID i is
outsourced, the block is encrypted as follows. The client
first randomly picks a secret seed ki . Then, it computes
P RG0(ki) to obtain ki,0||ki,1||ki,2, a concatenation of three
secret seeds of the same length. Next, it computes
P RG1(ki,0), P RG1(ki,1) and P RG1(ki,2) to generate three
pseudo-random blocks denoted as Ri,0, Ri,1 and Ri,2.
Finally, it performs bit-wise XOR operations on the four
blocks Di , Ri,0, Ri,1 and Ri,2, to encrypt Di to D ′i =
Di ⊕ Ri,0 ⊕ Ri,1 ⊕ Ri,2.

Data Query Process. During a query process, up to two
blocks need to be accessed at each layer of the storage
tree, just like in basic Octopus ORAM. For simplicity,
suppose the client needs to retrieve exactly two blocks
from each layer of the storage tree at S0, and the IDs
of these blocks are i0, i1, · · · , i2L−1. The client sends a
request to S0, which contains (i) the offsets of these
selected blocks on the layers where they reside and (ii)
a random permutation function; the client also sends to
S1 a request which contains a number between 0 and
2L − 1.

In response to the client’s request, S0 makes a
copy of the selected blocks (i.e., the ones with
IDs i0, i1, · · · , i2L−1), permutes the copies using the
permutation function provided by the client, and
forwards the resulting block sequence to S1. Upon
receiving the sequence, S1 retains only the query target
block whose offset on the sequence is the number
contained in the client’s request, and immediately
returns a copy of the block to the client. After the client
has accessed the block, the block may be updated, and
then re-encrypted and sent back to S1.

Data Eviction Process. Next, we present the revised
eviction algorithm for the three servers to carry out.
For simplicity, we consider only the scenario that
an eviction process is launched immediately after s
queries have been processed and completed before any
further query can be processed; based on this algorithm,
a de-amortized eviction algorithm can be developed
accordingly to allow concurrent execution of eviction
and query.

When the eviction process begins, S1 stores the s
blocks queried most recently. It appends α · s dummy
blocks to the end of the s blocks. Then, the eviction
process runs iteratively, one iteration for each node
on the eviction path. Like in Section 3.3, we use n′e
to denote the node currently involved in the eviction.
Hence, n′e is initialized to n0,0 (i.e., the root node). Next,
we elaborate the operations of each iteration using the
following notations.

Let L0 denote a sorted list of blocks currently stored
in node n′e (on the storage tree hosted by S0); L1 denote
the list of blocks currently stored at server S1 and sorted

11 EAI Endorsed Transactions on 
Security and Safety 

01 2019 - 04 2019 | Volume 6 | Issue 20 | e5



Q. Ma, W. Zhang

according to the order they were stored; L′0 denote the
ordered list of blocks that should be stored to n′e after
the eviction; L′1 denote the ordered list of blocks that
should be stored to S1 after the eviction. Hence, L0 ∪
L1 = L′0 ∪ L

′
1. Also, for every block of ID i belonging

to L0 ∪ L1, let ki denote its current secret seed and
k′i denote the new secret seed randomly picked for
the block; furthermore, let P RG0(ki) = ki,0||ki,1||ki,2 and
P RG0(k′i ) = k′i,0||k

′
i,1||k

′
i,2.

1. The client sends to S0 a permutation function π0,
and asks S0 to permute blocks in n′e with π0 and
send the resulting block sequence L0 to S1. S1
appends L1 to the end of L0, and thus gets a new
list L0||L1.

2. The client sends to S1 a permutation function π1
and the following list of secret seeds

〈(ki0,0, k
′
i0,1

), · · · , (kin−1,0, k
′
in−1,1

)〉,

where n = |L0| + |L1|, and 〈i0, i1, · · · , in−1〉 is the
list of IDs of blocks in L0||L1. Upon receiving π1
and the list, S1 updates each block Dij ∈ L0||L1

to Dij ⊕ Rij ,0 ⊕ R
′
ij ,1

where Rij ,0 = P RG1(kij ,0) and

R′ij ,1 = P RG1(kij ,1). Then, S1 permutes the blocks
with π1 and sends the resulting list, denoted as
L′ , to S2.

3. The client sends to S2 the following list of secret
seeds

〈(ki′0,1, k
′
i′0,2

), · · · , (ki′n−1,1
, k′i′n−1,2

)〉,

where n = |L′ |, and 〈i′0, i
′
1, · · · , i

′
n−1〉 is the list of

IDs of blocks in L′′ . Upon receiving the list, S2
updates each block Di′j ∈ L

′′ to Di′j ⊕ Ri′j ,1 ⊕ R
′
i′j ,2

where Ri′j ,1 = P RG1(ki′j ,1) and R′i′j ,2
= P RG1(k′i′j ,2

).

Then, S2 sends the updated list of blocks, denoted
as L′′ , to S0.

4. The client sends to S0: (i) a list of offsets each
between 0 ,and (ii) n − 1 and (ii) the following list
of secret seeds

〈(ki′′0 ,2, k
′
i′′0 ,0

), · · · , (ki′′n−1,2
, k′i′′n−1,0

)〉,

where n = |L′′ |, and 〈i′′0 , i
′′
1 , · · · , i

′′
n−1〉 is the list of

IDs of blocks in L′′ . Upon receiving the list of
secret seeds, S0 updates each block Di′′j ∈ L

′′ to

Di′′j ⊕ Ri′′j ,2 ⊕ R
′
i′′j ,0

where Ri′′j ,2 = P RG1(ki′′k ,2) and

R′i′′j ,0
= P RG1(k′i′′j ,0

). Then, S0 retains the blocks

with the offsets specified in the offset list received
from the client. If n′e is not a leaf node, S0 sends
the rest blocks to S1; otherwise, it simply discards
the rest blocks.

Cost Analysis. In the following, we analyze the
communication and storage costs of the Octopus ORAM
with three servers.

• Client-Server Communication Cost: During a
query process, the client sends 2L offsets and
a permutation vector for these offsets to S0;
meanwhile, it receives the query target block from
S1 and needs to write it back after re-encryption.

During an eviction, which occurs after every s
query processes, the client does not exchange data
blocks with the server; however, it needs to send
secret seeds and permutations to the servers. The
number of seeds sent to the server is no more
than 6 · [3.5(1 + α) + 1] · (L − 1) + 6 · [7(1 + β) + 1]
per query. In particular, when l = 128 bits, α =
0.34 and β = 0.13, the number of bytes sent as
seeds is about 192 log N

3.5s ; furthermore, if N <
240, this is less than 8 K bytes.

As offsets and the permutation vector are small,
the client-server communication cost is about
2B + 8K bytes per query, where B is the block size
in bytes.

• Server-Server Communication Cost: During a query
process, at most 2L blocks are sent from S0
to S1. When an eviction process works on an
evicting node n′e, the s current evicting blocks
and all the blocks in n′e are sent for three times
between the servers. Hence, considering that an
eviction process occurs after every s queries, the
total server-server communication cost per query
is up to [3.5(1 + α) + 1]s · (L − 1) + [7(1 + β) + 1]s
blocks. In particular, when α = 0.34 and β = 0.13,
the cost is no more than 6 log N+3.5s

3.5s blocks.

• Server-side Storage Cost: The storage cost of S0
is the same as the server in the basic Octopus
ORAM. S1 needs to store the s most recently
queried data blocks. Besides, each of S1 and
S2 also needs a temporary buffer that can store
up to Z + s blocks to support re-encryption
and permutation operations during an eviction
process. Thus, compared to the basic Octopus
ORAM, the Octopus ORAM with three servers
introduces an extra storage cost of 2s + Z < (7β +
9)s blocks.

• Client-side Storage Cost: Compared to the basic
Octopus ORAM, the Octopus ORAM with three
servers increases the client-side storage cost
sightly by N · l bits, where l is the size of a secret
seed in the unit of bit.

6. Performance Comparisons
We implement the proposed schemes, and conduct
performance comparisons between Octopus ORAM and

12 EAI Endorsed Transactions on 
Security and Safety 

01 2019 - 04 2019 | Volume 6 | Issue 20 | e5



Octopus ORAM: An Oblivious RAM with Communication and Server Storage Efficiency

several state-of-the-art ORAM constructions that are
the most related. Specifically, we conduct the following
three comparisons:

• We compare Octopus ORAM to Partition
ORAM [37], which is one of the most
communication-efficient ORAM that does not
require intensive computation or multiple servers
and shares the same assumption with Octopus
ORAM in that the client has a decent amount of
local storage space (in particular, it assumes the
client to have a local storage of O(

√
N ) blocks).

• We compare the Octopus ORAM with a single
server to Path ORAM, which is one of the
most communication-efficient ORAM that does
not require intensive computation or multiple
servers and only requires a small local storage
(i.e., O(logN ) blocks).

• We compare the Octopus ORAM with 3 servers
to the S3ORAM [16] with also 3 servers, which
is a state-of-the-art ORAM construction requiring
multiple non-colluding servers.

6.1. Comparison with Partition ORAM
We implement two versions of Octopus ORAM, i.e.,
the Octopus ORAM with a single server and the
Octpus ORAM with 3 servers. For both versions,
the optimizations of de-amortized eviction and piece-
by-piece eviction have been applied. The system
parameters s, α and β are adapted according to N
(i.e., the number of outsourced real blocks) to make
the client-side storage size similar to that of Partition
ORAM while assuring the failure probability of our
constructions to be lower than 2−40. Note that, we have
not implemented the Partition ORAM due to the lack
of details on optimizations adopted by that design; so
we use the performance results reported in [37] in this
comparison. Also the block size is set to 64 KB, as used
in [37].

Table 1 compares the ORAM constructions in terms
of the client-side storage cost, which includes all the
permanent or temporary storage space allocated at
the client side, and the server-side storage overhead,
which is computed as all the storage space allocated
at the server side minus the storage space necessary
to store the N real data blocks. We have the following
observations from the table.

• When Octopus ORAM uses a similar size of
client-side storage as Partitiona ORAM, Octopus
ORAM’s Server storage overhead is only 12-16%
of that incurred by Partition ORAM; note that,
the storage overhead of Partition ORAM is more
than twice of that necessary for storing the real
blocks. This improvement in storage efficiency is

important in practice, when the storage size is
large. In the client’s perspective, as we discussed
in Section 1, the monetary cost of renting large
space is comparable to or even higher than the
communication cost, and hence it is desired to
reduce the server-side storage. In the server’s
perspective, lower server storage overhead means
lower monetary cost to maintain/upgrade storage
devices and less labors to manage the space.

• Octopus ORAM with 3 servers does not increase
the server-side storage noticeably; but it incurs
around twice client-side storage cost, compared
to the other two constructions. The increase is
mainly due to the storage of secret seeds for
encrypting and decrypting data blocks.

Table 2 compares the communication costs between
the ORAM constructions. Particularly, we measure and
compare the client-server and server-server communi-
cation costs per query, in the unit of data block. The
observations from the table are as follows.

• With similar client-side storage cost, Octopus
ORAM with single server incurs a client-server
communication cost that is about 1.4-1.5 times
of that by Partition ORAM. This demonstrates
the tradeoff between the communication and the
server-side storage costs.

• Octopus ORAM with single server can be con-
veniently extended to Octopus ORAM with 3
servers. With the extension, the client-server
communication cost can be sharply reduced to
about 2 blocks per query, at the price of intro-
ducing server-server communication cost that is
less than 3 times of the client-server commu-
nication cost of Partition ORAM. Besides the
storage-communication tradeoff discussed above,
this comparison demonstrates another tradeoff
between the data query latency experienced by
the client and the overall communication cost: our
proposed ORAM significantly reduces the query
latency at the cost of introducing more server-
server communication occurring in the back-
ground.

6.2. Comparison with Path ORAM
To evaluate the performance of the Octopus ORAM
with a single server in a practical application scenario,
we rented two AWS EC2 instances to run server
and client software. The communication bandwidth
between the two instance is around 700 Mbps (as
measured using LANBench [33]), with a round trip
delay of 50 ms added intentionally (as done in [44]),
in order to simulate a practical scenario that the client
has a high-speed Internet connection with the server.

13 EAI Endorsed Transactions on 
Security and Safety 

01 2019 - 04 2019 | Volume 6 | Issue 20 | e5



Q. Ma, W. Zhang

Table 1. Comparing Storage Efficiency Between Partition ORAM and Octopus ORAMs

Capacity # Blocks
Client Storage Cost Server Storage Overhead

Partition
ORAM

Octopus
(1
Server)

Octopus
(3
Servers)

Partition
ORAM

Octopus
(1
Server)

Octopus
(3
Servers)

64 GB 220 204 MB 203.5
MB

16.5 MB 141 GB 16.8 GB 18.8 GB

256 GB 222 415 MB 415 MB 66 MB 563 GB 67.7 GB 71.9 GB
1 TB 224 858 MB 858 MB 264 MB 2.2 TB 0.3 TB 0.3 TB
16 TB 228 4.2 GB 4.3 GB 4.1 GB 35 TB 4.7 TB 4.8 TB
256TB 232 31 GB 31.7 GB 66 GB 563 TB 80.1 TB 80.4 TB
1024TB 234 101 GB 103.42

GB
264 GB 2018 TB 314.1 TB 315 TB

Table 2. Comparing Communication Efficiency Between Partition ORAM and Octopus ORAMs

Capacity # Blocks
Client-Server Server-Server

Partition
ORAM

Octopus
(1
Server)

Octopus
(3
Servers)

Partition
ORAM

Octopus
(1
Server)

Octopus
(3
Servers)

64 GB 220 22.5 X 33.6 X 2 X - - 56 X
256 GB 222 24.1 X 36 X 2 X - - 73 X
1 TB 224 25.9 X 41 X 2 X - - 70 X
16 TB 228 29.5 X 43.7 X 2 X - - 87 X
256TB 232 32.7 X 50.3 X 2 X - - 86 X
1024TB 234 34.4 X 50.6 X 2 X - - 87 X

The instances are both of type AWS m4.xlarge, each
has 4 vCPUs, 2.4 GHz, Intel Xeon E5-2686v4, and 16
GB memory. Note that, Octopus ORAM has embedded
the optimizations of de-amortized and piece-by-piece
eviction.

For comparison purpose, we implemented Path
ORAM (with index table stored at the client) and run
the system on the same platform. The two constructions
are compared in terms of the following metrics:

• Communication Cost per Query, which is measured
as the average amount of data uploaded to or
downloaded from the server, per query, in the unit
of data block.

• Query Delay, which is measured as the average
time elapse from when the client sends out a
query request to when the client has received and
decrypted the query target block. This measures
the query delay experienced by the client at the
ideal scenario (i.e., a query request does not wait
locally).

• Processing Time per Query, which is measured as
the average time elapse from when the client
sends out a query request to when the query
and associated eviction operations have been
completed and the client is able to send the next

query. Note that, for simplicity, we do not process
multiple queries concurrently.

We also compare their storage cost, and study the
tradeoff in the above performance metrics.

In the comparison, the parameters of Octopus ORAM
are set as follows: λ = 40, s = 1024, α = 0.34 and β =
0.13. For Path ORAM, the capacity of each node is set
to 5 blocks. We choose N to range from 220 to 226, and
block size B to range from 128 KB to 1 MB.

Communication Cost per Query. Figure 7 compares the
communication cost per query between Octopus ORAM
and Path ORAM. As we can see, the communication cost
incurred by Octopus ORAM is 23-30 % of that by Path
ORAM, as N and B vary.

Query Delay. Figure 8 compares the average query
delay between Octopus ORAM and Path ORAM. As we
can see, the average query delay incurred by Octopus
ORAM is 8-33 % of that by Path ORAM. This is mainly
because: Octopus ORAM separates the query process
from the eviction process, its query process only needs
to download and decrypt a small number of blocks
(i.e., up to 2 blocks from each layer of the storage
tree which has a much smaller height than the tree
used in Path ORAM), and a query target block can be
accessed immediately after the query process finishes.

14 EAI Endorsed Transactions on 
Security and Safety 

01 2019 - 04 2019 | Volume 6 | Issue 20 | e5



Octopus ORAM: An Oblivious RAM with Communication and Server Storage Efficiency

0

10

20

30

40

50

2
20

2
22

2
24

2
26

C
o

m
m

u
n

ic
at

io
n
 C

o
st

 (
u

n
it

:M
B

)

N

Path ORAM
Octopus ORAM

0

20

40

60

80

100

2
20

2
22

2
24

2
26

C
o

m
m

u
n

ic
at

io
n
 C

o
st

 (
u

n
it

:M
B

)
N

Path ORAM
Octopus ORAM

(a) B = 128KB (b) B = 256KB

0

40

80

120

160

200

2
20

2
22

2
24

2
26

C
o

m
m

u
n

ic
at

io
n
 C

o
st

 (
u

n
it

:M
B

)

N

Path ORAM
Octopus ORAM

0

80

160

240

320

400

2
20

2
22

2
24

2
26

C
o

m
m

u
n

ic
at

io
n
 C

o
st

 (
u

n
it

:M
B

)

N

Path ORAM
Octopus ORAM

(c) B = 512KB (d) B = 1MB

Figure 7. Comparing Communication Cost per Query Between
Octopus ORAM and Path ORAM.

Path ORAM, on the other hand, combines the query and
eviction processes. A query target block can be accessed,
in the average case, only after the combined query and
eviction process has downloaded and decrypted half of
the blocks that need to be processed, and the number of
such blocks is much larger than that in Octopus ORAM.

0

100

200

300

400

500

2
20

2
22

2
24

2
26

Q
u

er
y

 D
el

ay
 (

u
n

it
:m

s)

N

Path ORAM
Octopus ORAM

0

200

400

600

800

1000

2
20

2
22

2
24

2
26

Q
u

er
y

 D
el

ay
 (

u
n

it
:m

s)

N

Path ORAM
Octopus ORAM

(a) B = 128KB (b) B = 256KB

0

500

1000

1500

2000

2500

3000

2
20

2
22

2
24

2
26

Q
u

er
y

 D
el

ay
 (

u
n

it
:m

s)

N

Path ORAM
Octopus ORAM

0

500

1000

1500

2000

2500

3000

2
20

2
22

2
24

2
26

Q
u

er
y

 D
el

ay
 (

u
n

it
:m

s)

N

Path ORAM
Octopus ORAM

(c) B = 512KB (d) B = 1MB

Figure 8. Comparing Query Delay Between Octopus ORAM and
Path ORAM.

Also note that, the average query delay is only about
20-200 ms with the above settings.

Processing Time per Query. Figure 9 compares the
average processing time per query between Octopus
ORAM and Path ORAM. As we can see from the
figure, the average processing time incurred by Octopus
ORAM is 10-30% of that by Path ORAM. This is
because: (i) Octopus ORAM has smaller communication

cost per query; (ii) Octopus ORAM separates query and
eviction processes, which can be run in parallel and
thus also reduce the processing time.

0

150

300

450

600

750

900

2
20

2
22

2
24

2
26

P
ro

ce
ss

in
g

 T
im

e 
(u

n
it

:m
s)

N

Path ORAM
Octopus ORAM

0

250

500

750

1000

1250

1500

2
20

2
22

2
24

2
26

P
ro

ce
ss

in
g

 T
im

e 
(u

n
it

:m
s)

N

Path ORAM
Octopus ORAM

(a) B = 128KB (b) B = 256KB

0

500

1000

1500

2000

2500

3000

2
20

2
22

2
24

2
26

P
ro

ce
ss

in
g

 T
im

e 
(u

n
it

:m
s)

N

Path ORAM
Octopus ORAM

0

1000

2000

3000

4000

5000

6000

2
20

2
22

2
24

2
26

P
ro

ce
ss

in
g

 T
im

e 
(u

n
it

:m
s)

N

Path ORAM
Octopus ORAM

(c) B = 512KB (d) B = 1MB

Figure 9. Comparing the Processing Time per Query between
Octopus ORAM and Path ORAM.

Storage Cost and Overhead. Table 3 compares Path
ORAM and Octopus ORAM in terms of client-side
storage cost and server-side storage overhead. As we can
see, the server-side storage overhead of Octopus ORAM
is only 1

30 of that of Path ORAM. Meanwhile, Octopus
ORAM has higher client-side storage cost; but, the cost
is only a small fraction of the ORAM capacity.

Table 3. Comparing Storage Efficiency between Octopus ORAM
(with single server) and Path ORAM

Capacity# Blocks
Client Storage
Cost

Server
Storage
Overhead

Path
ORAM

Octopus
ORAM

Path
ORAM

Octopus
ORAM

64 GB 220 0.25
MB

64.5
MB

576
GB

18.8
GB

256
GB

222 1 MB 66 MB 2.2 TB 76 GB

1 TB 224 4 MB 72 MB 9 TB 304
GB

4TB 226 16 MB 96 MB 36 TB 1.2 TB
16 TB 228 64 MB 192

MB
144
TB

4.7 TB

64 TB 230 256
MB

576
MB

576
TB

19 TB

15 EAI Endorsed Transactions on 
Security and Safety 

01 2019 - 04 2019 | Volume 6 | Issue 20 | e5



Q. Ma, W. Zhang

6.3. Comparison with S3ORAM
The results of comparing Octopus ORAM with
S3ORAM are as follows.

• Client-Server Communication Cost. Both construc-
tions require a constant number of blocks to be
transferred between the client and server for each
query. Specifically, S3ORAM needs to transfer 6
data blocks, while Octopus ORAM needs to trans-
fer 2 data blocks plus about 8KB data.

• Server-Server Communication Cost. Both construc-
tions have a similar level of server-server commu-
nication cost, which is around 6 logN data blocks
per query.

• Server-side Storage Cost. Both constructions
require 3 non-colluding servers. For S3ORAM,
all servers have the same structure, different in
that each server stores a different secret-shared
version of blocks. Octopus ORAM stores blocks
on one server, i.e., S0, while the other two servers
only need to allocate small storage to facilitate
query and eviction. Specifically, the server-
side storage overhead of S3ORAM is 11N data
blocks, while the overhead of Octopus ORAM is
(β + 1+α

7 )N + (1+α)s
2 ), which is no more than 0.3N

blocks.

• Client-side Storage Cost. Octopus ORAM requires
larger client-side storage space than S3ORAM,
which is similar to the comparison between Path
ORAM and Octopus ORAM.

• Server Computational Cost. Both constructions
require moderate level of computation at the
server side. Specifically, S3ORAM requires its
servers to execute addition and multiplication of
Shamir Secret Sharing operations, while Octopus
ORAM requires server to run random number
generator to produce pseudo random sequences
and then perform XOR operations to decrypt or
re-encrypt data blocks.

7. Related Works
Since the first introduction of oblivious RAM simulator
by Goldreich and Ostrovsky [10, 11, 27] for software
protection, the idea of ORAM has been extensively
explored for protecting a user’s access pattern to
outsourced data.

Hash-based and Index-based ORAMs. ORAM
constructions can be roughly categorized into two
classes, hash-based ORAMs and index-based ORAMs,
based on the techniques used for look up data blocks.

Hash-based ORAMs [7, 11–14, 18, 19, 28, 41–43, 45]
usually organize the server storage as a hierarchy of

layers. Each layer contains either a series of buckets [11,
41, 44, 45], or a pair of Cuckoo Hash tables with
stash [12–15, 18, 28]. In a bucket ORAM proposed
in [11], the server needs to additionally store (2 logN −
1)N dummy blocks in order to host its client’s N
real data blocks; its communication cost is O(log3N )
blocks per query, with a constant client-side storage. In
a bucket ORAM proposed in [41, 44, 45], the server
additionally stores at least N dummy blocks and cN
bits (0 < c < 1) of Bloom Filters for each layer; its
communication cost is O(log2N log logN ) blocks per
query, with a client-side storage of O(log2N ) blocks. In
a Cuckoo Hash ORAM [12–15, 18, 28], the server stores
at least 7N dummy data blocks; its communication cost
isO(log2N ) blocks per query with a constant client-side
storage, or O(logN ) blocks per query with a client-side
storage of O(N c) blocks (0 < c < 1).

Index-based ORAMs [3–6, 8, 9, 20–26, 29–31, 34–
39, 46] use index table for data lookup. They require
the client to either store the index table locally,
or outsource it to the server recursively in a way
similar to storing their data, at the expense of
increased communication cost. Representative index-
based ORAMs include Partition ORAM [37], binary
tree ORAM (T-ORAM) [34], Path ORAM [38], Gentry’s
ORAM [9], P-PIR [21] and SCORAM [40]. Partition
ORAM organizes its server-side storage as a number
of partitions, where each partition is a fully-functional
Oblivious RAM. In Partition ORAM, the server side
storage needs to store about 3N dummy blocks, and
incurs a communication cost of O(logN ) blocks per
query, with a client-side storage of O(cN ) blocks. The
other index-based ORAMs organize their server-side
storage as a tree, where each node is a bucket storing a
certain number of data blocks. For T-ORAM and P-PIR,
the server needs to store (2 logN − 1)N dummy blocks,
and incurs a communication cost of O(log2N ) blocks
per query, with a constant client-side storage. Path
ORAM and SCORAM each stores at least 5N dummy
blocks at the server, and incurs a communication cost of
O(logN · B) blocks per query, with a client-side storage
of O(logN ) ·ω(1) blocks, where ω(1) is a security
parameter. At last, Gentry’s ORAM requires the server
to store at least N dummy blocks, and it achieves a
communication cost of O(log2N log logN ) blocks per
query, with a client-side storage of O(log2N ) blocks.

ORAMs with Constant Client-Server Bandwidth-
blowup. In most of the research works on ORAM
design, communication efficiency has been the top pri-
ority for optimization. Recently, several ORAMs with
constant client-server bandwidth-blowup have been
developed. Devadas et al. proposed Onion-ORAM [6],
which achieves O(1) bandwidth-blowup by requiring
the client and server to interactively run partially
Homomorphic Encryption operations; this work how-
ever has been considered not practical due to the

16 EAI Endorsed Transactions on 
Security and Safety 

01 2019 - 04 2019 | Volume 6 | Issue 20 | e5



Octopus ORAM: An Oblivious RAM with Communication and Server Storage Efficiency

high computational cost and the requirement on large
data block size. Moataz et al. proposed C-ORAM [25],
which claims to also achieve O(1) bandwidth-blowup
and meanwhile significantly reduces the computational
cost of Onion-ORAM and lifts the requirement of
large block size. Moataz et al. also proposed CHF-
ORAM [23], which claims to further improve the com-
putational efficiency of C-ORAM by deploying mul-
tiple non-colluding servers. Unfortunately, C-ORAM
and CHF-ORAM were found flawed [1]. Most recently,
Hoang et al. [16] proposed S3ORAM also based on the
deployment of multiple (at least three) non-colluding
servers, which achieves O(1) bandwidth-blowup for
client-server communication but requires O(logN )
bandwidth-blowup for communication between the
servers. Note that, this means the design achieves O(1)
data access delay for the client, but the overall commu-
nication cost per data request is O(logN ) blocks. Also,
to outsource N data blocks, each server in S3ORAM
needs to store 4N blocks (and so 12N blocks for the 3
servers). Both Onion-ORAM and S3ORAM only require
O(1) local storage at the client.

Uniqueness of Our Work. As summarized in Section
1, our proposed work is unique in that, besides
being efficient in client-server communication, it also
significantly improves the efficiency of server-side
storage.

8. Conclusion and Future Work
We designed and evaluated Octopus ORAM. Com-
pared to state-of-the-art ORAM constructions, Octopus
ORAM significantly improves the storage efficiency at
the server and achieves the comparable level of commu-
nication efficiency, at the cost of increased client-side
storage consumption. As we target at the application
setting of hybrid cloud systems, the increased client-
side storage consumption should be affordable to the
clients who have local facility such as cloud storage
gateway. In the future, we plan to develop further opti-
mizations to reduce the communication cost without
sacrificing the server storage efficiency.

References
[1] I. Abraham, C. Fletcher, K. Nayak, B. Pinkas, and L. Ren.

Asymptotically Tight Bounds for Composing ORAM
with PIR. In ICAR International Workshop on Public Key
Cryptography, 2017.

[2] V. Bindschaedler, M. Naveed, X. Pan, X. Wang, and
Y. Huan. Practicing Oblivious Access on Cloud Straoge:
athe Gap, the Fallacy, and the New Way Forward. In Proc.
CCS, 2015.

[3] B. Chen, H. Lin, and S. Tessaro. Oblivious Parallel RAM:
Improved efficiency and generic constructions. In IACR
Cryptology ePrint Archive. International Association for
Cryptologic Research, 2015.

[4] J. Dautrich and C. Ravishankar. Combining ORAM with
PIR to minimize bandwidth costs. In Proc. CODASPY,
2015.

[5] J. Dautrich, E. Stefanov, and E. Shi. Burst ORAM:
Minimizing ORAM response times for bursty access
patterns. In Proc. USENIX Security, 2014.

[6] S. Devadas, M. van Dijk, C. Fletcher, L. Ren, E. Shi,
and D. Wichs. Onion ORAM: A Constant Bandwidth
Blowup Oblivious RAM. In Proc. Theory of Cryptography
Conference, 2015.

[7] C. W. Fletcher, M. Naveed, L. Ren, E. Shi, and
E. Stefanov. Bucket ORAM: Single online roundtrip,
constant bandwidth Oblivious RAM. In IACR Cryptology
ePrint Archive. International Association for Cryptologic
Research, 2015.

[8] C. W. Fletcher, L. Ren, A. Kwon, M. V. Dijk, E. Stefanov,
and S. Devadas. Tiny ORAM: A low-latency, low-
area hardware ORAM controller. In IACR Cryptology
ePrint Archive. International Association for Cryptologic
Research, 2014.

[9] C. Gentry, K. Goldman, S. Halevi, C. Julta, M. Raykova,
and D. Wichs. Optimizing ORAM and using it efficiently
for secure computation. In Proc. PETS, 2013.

[10] O. Goldreich. Towards a theory of software protection
and simulationon oblivious RAMs. In Proc. SIGACT
STOC, 1987.

[11] O. Goldreich and R. Ostrovsky. Software protection
and simulation on oblivious RAM. Journal of the ACM,
43(3):431–473, May 1996.

[12] M. T. Goodrich and M. Mitzenmacher. Mapreduce paral-
lel cuckoo hashing and Oblivious RAM simulations. In
Proc. CoRR, 2010.

[13] M. T. Goodrich and M. Mitzenmacher. Privacy-
preserving access of outsourced data via oblivious RAM
simulation. In Proc. ICALP, 2011.

[14] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and
R. Tamassia. Oblivious RAM simulation with efficient
worst-case access overhead. In Proc. CCSW, 2011.

[15] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and
R. Tamassia. Privacy-preserving group data access via
stateless oblivious RAM simulation. In Proc. SODA,
2012.

[16] T. Hoang, C. Ozkaptan, A. Yavuz, J. Guajardo, and
T. Nguyen. S3ORAM: A Computation-Efficient and
Constant Client Bandwidth Blowup ORAM with Shamir
Secret Sharing. In ACM CCS, 2017.

[17] M. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern
disclosure on searchable encryption: ramification, attack
and mitigation. In Proc. NDSS, 2012.

[18] E. Kushilevitz, S. Lu, and R. Ostrovsky. On the
(in)security of hash-based oblivious RAM and a new
balancing scheme. In Proc. SODA, 2012.

[19] S. Lu and R. Ostrovsky. Multi-server Oblivious
RAM. In IACR Cryptology ePrint Archive. International
Association for Cryptologic Research, 2011.

[20] Q. Ma, J. Zhang, W. Zhang, and D. Qiao. SE-
ORAM: A storage-efficient Oblivious RAM for privacy-
preserving access to cloud storage. In IACR Cryptology
ePrint Archive. International Association for Cryptologic
Research, 2016.

17 EAI Endorsed Transactions on 
Security and Safety 

01 2019 - 04 2019 | Volume 6 | Issue 20 | e5



Q. Ma, W. Zhang

[21] T. Mayberry, E.-O. Blass, and A. H. Chan. Efficient
private file retrieval by combining ORAM and PIR. In
Proc. NDSS, 2014.

[22] T. Mayberry, E.-O. Blass, and G. Noubir. Multi-Client
Oblivious RAM secure against Malicious Servers. In
IACR Cryptology ePrint Archive. International Associa-
tion for Cryptologic Research, 2015.

[23] S. Moataz, E.-O. Blass, and T. Mayberry. CHf-
ORAM: A Constant Communication ORAM without
Homomorphic Encryption. In Proc. IACR Cryptology
ePrint Archive, 2015.

[24] T. Moataz, E.-O. Blass, and G. Noubir. Recursive trees for
practical ORAM. In Proc. FC, 2015.

[25] T. Moataz, T. Mayberry, and E.-O. Blass. Constant
Communication ORAM with Small Blocksize. In Proc.
CCS, 2015.

[26] T. Moataz, T. Mayberry, E.-O. Blass, and A. H. Chan.
Resizable tree-based Oblivious RAM. In IACR Cryptology
ePrint Archive. International Association for Cryptologic
Research, 2014.

[27] R. Ostrovsky. Efficient computation on oblivious RAMs.
In Proc. SIGACT STOC, 1990.

[28] B. Pinkas and T. Reinman. Oblivious RAM revisited. In
Proc. CRYPTO, 2010.

[29] L. Ren, C. W. Fletcher, A. Kwon, E. Stefanov, E. Shi,
M. van Dijk, and S. Devadas. Ring ORAM: Closing the
gap between small and large client storage Oblivious
RAM. In IACR Cryptology ePrint Archive. International
Association for Cryptologic Research, 2014.

[30] L. Ren, C. W. Fletcher, X. Yu, A. Kwon, M. van Dijk,
and S. Devadas. Unified Oblivious-RAM: Improving
recursive ORAM with locality and pseudorandomness.
In IACR Cryptology ePrint Archive. International Associ-
ation for Cryptologic Research, 2014.

[31] L. Ren, C. W. Fletcher, X. Yu, M. van Dijk, and
S. Devadas. Integrity verification for path Oblivious-
RAM. In Proc. HPEC, 2013.

[32] Research and Markets. Cloud storage
market - forecasts from 2017 to 2022. In

https://www.researchandmarkets.com/research/lf8wbx/cloud_storage,
2017.

[33] Z. Saw. LANBench,A Simple LAN / TCP Network
Benchmark Utility. In http://www.zachsaw.com/, 2017.

[34] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious
RAM with O((logN )3) worst-case cost. In Proc.
ASIACRYPT, 2011.

[35] E. Stefanov and E. Shi. Multi-Cloud Oblivious Storage.
In Proc. CCS, 2013.

[36] E. Stefanov and E. Shi. ObliviStore: high performance
oblivious cloud storage. In Proc. S&P, 2013.

[37] E. Stefanov, E. Shi, and D. Song. Towards practical
oblivious RAM. In Proc. NDSS, 2011.

[38] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren,
X. Yu, and S. Devadas. Path ORAM: an extremely simple
oblivious RAM protocol. In Proc. CCS, 2013.

[39] X. Wang, T.-H. H. Chan, and E. Shi. Circuit ORAM: On
tightness of the Goldreich-Ostrovsky lower bound. In
Proc. CCS, 2015.

[40] X. S. Wang, Y. Huang, T.-H. H. Chan, A. Shelat,
and E. Shi. SCORAM: oblivious RAM for secure
computation. In Proc. CCS, 2014.

[41] P. Williams and R. Sion. Building castles out of
mud: practical access pattern privacy and correctness on
untrusted storage. In Proc. CCS, 2008.

[42] P. Williams and R. Sion. Usable PIR. In Proc. NDSS, 2008.
[43] P. Williams and R. Sion. Access privacy and correctness

on untrusted storage. In Proc. TISSEC, 2013.
[44] P. Williams, R. Sion, and A. Tomescu. PrivateFS: a

parallel oblivious file system. In Proc. CCS, 2012.
[45] P. Williams, R. Sion, and A. Tomescu. Single round access

privacy on outsourced storage. In Proc. CCS, 2012.
[46] X. Yu, L. Ren, C. W. Fletcher, A. Kwon, M. van

Dijk, and S. Devadas. Enhancing Oblivious RAM
performance using dynamic prefetching. In IACR
Cryptology ePrint Archive. International Association for
Cryptologic Research, 2014.

18 EAI Endorsed Transactions on 
Security and Safety 

01 2019 - 04 2019 | Volume 6 | Issue 20 | e5


	1 Introduction
	2 Problem Definition
	2.1 System Model
	2.2 Security Definitions

	3 The Basic Octopus ORAM
	3.1 Storage Organization and Initialization
	Server-side Storage
	Client-side Storage
	System Initialization

	3.2 Data Query
	3.3 Data Eviction

	4 Security and Cost Analysis
	4.1 Failure Probability Analysis
	Failure Probability for A Query Process
	Failure Probability for An Eviction Process

	4.2 Obliviousness Analysis
	Obliviousness in Query Path Selection
	Obliviousness in Block Access from Query Path
	Obliviousness in eviction process

	4.3 Cost Analysis

	5 Optimizations
	5.1 De-amortized Eviction
	The De-amortization Algorithm
	Security Analysis
	Cost Analysis

	5.2 Piece-by-piece Eviction
	Dividing Blocks into Pieces
	Piece-by-piece Eviction Algorithm

	5.3 Extension to Multiple Servers
	System Initialization
	Data Query Process
	Data Eviction Process
	Cost Analysis


	6 Performance Comparisons
	6.1 Comparison with Partition ORAM
	6.2 Comparison with Path ORAM
	6.3 Comparison with S3ORAM

	7 Related Works
	8 Conclusion and Future Work



