
Programming Knowledge Tracing based on Problem

Solution Embedding

1st Yongfeng Huang1, 2nd Rongfang Wang2

{yfhuang@dhu.edu.cn1, 2212647@mail.dhu.edu.cn2}

Donghua University, Shanghai, China

Abstract. With the development of the internet and information technology, using online

learning systems for programming practice has increasingly become a new trend. In this

process, continuously tracking students' proficiency in programming skills is also

particularly important. However, current research on students' programming practice

mainly focuses on their submitted code, neglecting the importance of official exercise

solutions in programming competitions for assessing students' proficiency in

programming skills. Therefore, we propose a new improved model for graph-based

knowledge tracing (CTGKT). Specifically, by embedding official exercise solutions,

combined with students' submitted codes and the exercise text contents, it assesses the

proficiency of students in programming skills. Experiments on our programming

competition practice dataset demonstrate that CTGKT model achieves state-of-the-art

performance compared to existing methods.

Keywords: knowledge tracing; performance prediction; feature fusion; CodeBERT

1 Introduction

Knowledge tracing(KT) utilizes students exercise records to monitor their knowledge states

and predict future exercise performance. Existing methods for tracking programming skill

proficiency mainly rely on KT, specifically divided into two methods: deep knowledge tracing

(DKT) and graph-based knowledge tracing(GKT).However, the two methods mentioned

above overlook the relationship between official exercise solutions and skills. For

programming competition practice, using a brute-force solution versus using a high-level

official solution to the same problem indicates different levels of proficiency in programming

skills.

Regarding this issue, we have conducted relevant research on the above issues and proposed a

new improved model based on graph-based knowledge tracing(CTGKT). CTGKT utilizes

RoBERTa to extract feature vectors from the official exercise solutions and exercise text

contents of complex programming problems, while CodeBERT is employed to capture the

feature representations of students' submitted code. Based on the graph-based knowledge

tracing model, we introduce an attention mechanism for feature fusion and updating students'

knowledge states. This enables us to better predict the accuracy of students feature

performance, thus indicating their proficiency in programming skills. In addition, we

conducted experiments on our dataset to validate the effectiveness of CTGKT, and the results

indicate that CTGKT outperforms existing methods in terms of performance.

EIMT 2024, March 29-31, Wuhan, People's Republic of China
Copyright © 2024 EAI
DOI 10.4108/eai.29-3-2024.2347724

2 Related Work

2.1 Knowledge Tracking

Inspired by the success of deep learning, recent knowledge tracing research has employed

deep learning techniques. The main idea of DKT utilizes recurrent neural networks as the

fundamental architecture to establish interactions between programming skills and

corresponding student exercises, effectively modeling the learning process of students[1][2].In

recent years, GKT has gradually been introduced into the field of programming education,

graph structures can effectively represent the relationships between multiple questions and

multiple skills. The main idea of GKT utilizes graph representation techniques to represent the

characteristics of students' exercises. By modeling the relationship between problems and

skills, it effectively measures students' proficiency in programming skills during the exercise

process[3][4].

2.2 Feature embedding

In addition, the BERT model can also be embedded into the DKT model to track students'

proficiency in programming skills. The main idea is as follows: The BERT model, based on

the Transformer architecture, adopts a bidirectional contextual encoding approach, making it

excellent at capturing contextual information from text[5]. RoBERTa builds upon BERT,

improving model performance by using a larger dataset, a larger batch size, and more training

iterations[6]. To better understand the structure and semantic information of source code,

Microsoft Research proposed the CodeBERT model, which can deeply analyze the inherent

logic and context of source code[7].

3 Problem Statement

Assuming a dataset for students' competition training, it is composed of all the competition

students, namely U={u1,u2,...,um}，],1[mi . Among them, ui is the overall exercise record of

a student, namely ui={ui1,ui2,...,uin}，],1[nj . uij is a exercise record of the student, namely

uij={qi,si,ti,ci,ai}. qi is the exercise question of the record,si is one or more skills

corresponding to the question, ti is the official exercise solution to the question, ci is the

submission code of the student's answer to the question, and ai is the student's response

result({0,1}) to the question.

Problem Formalization: Given the students' exercise records U={u1,u2,...,um} and a new

question qt+1, the knowledge tracing model is used to update the students' knowledge state and

predict the accuracy of their results to the new question, namely pt+1(at+1=1|U,qt+1).

Figure.1. TCGKT

4 The Proposed Model CTGKT

The architecture of CTGKT is depicted in Figure 1, primarily consists of a feature embedding

module and a knowledge tracing module.

4.1 Embedding Module

This section will provide a detailed introduction on how the CTGKT model captures feature

embedding in students' programming competition practices through the embedding module.

For students participating in programming competitions, their submitted code during daily

practice contains information about their proficiency in programming skills and their ability to

comprehensively apply competitive skills. We use CodeBERT to transform students' submitted

code into a universal and comparable vector representation that comprehensively reflects the

features and semantic information of the code.

For programming competition practices, the focus is not limited to basic syntax knowledge.

Even though different solutions to a single problem can yield correct results, they may vary

significantly in terms of time complexity and space complexity. The official exercise

solutions, as an essential component of competition exercises, provide us with rich

problem-solving approaches. Additionally, considering that programming competition

problems often contain long textual descriptions information, we concatenate these two

embedding to form a complete embedding representation of the problem information. We

utilize RoBERTa to generate embedding for exercise texts and official exercise solutions, and

connect these two embedding to form a complete representation of the problem information

embedding.

In the context of programming competition practice, each problem typically involves one or

more skills, and a skill may also appear in multiple problems. To gain a deeper understanding

of the relationship between problems and skills, we adopt a graph structure to establish

connections between questions and skills. And we use graph convolutional network(GCN) to

conduct a thorough analysis of this relationship, and obtain the aggregated embedding of

questions and skills.

4.2 Fusion Module

In the fusion module, we organically integrate the submission code embedding c, office

exercise solution embedding t,the exercise text embedding d, question embedding q, and

answer embedding a obtained from the embedding module to acquire a more comprehensive

exercise embedding e. Firstly, we utilize the answer fusion module to fuse c with a, resulting

in an aggregated embedding r that combines the code representation of the students'

problem-solving process with the semantic information of the final answer. Subsequently, the

question fusion module combines t, d, and q to generate an aggregated embedding w, which

aims to integrate different types of information related to the question, including the in-depth

explanation of the official solution, text description, and the semantic meaning of the question

itself. Finally, we input the two aggregated embedding r and w into a nonlinear neural network

for further integration and processing, thereby generating the desired final exercise embedding

e. This embedding represents the overall representation of the students' programming

competition exercise, encompassing their submission code representation, the semantic

information of the answer, and the comprehensive information related to the question. The

entire process can be expressed as formulas (1), (2), and (3).

W1、W2、W3、b1、b2、b3 are trainable matrices and parameters.

4.3 Assessment and Prediction Module

The model generates students' knowledge states through the aforementioned exercise

embedding e, and based on these knowledge states, the model can further make predictions

using this information. To ensure effective training of the model, we have chosen the Adam

optimization method. This method continuously updates the parameters in the model by

minimizing the loss function, thereby enhancing the model's prediction accuracy and

performance. The loss function is expressed as formula (4).

5 Experiments

In this section, we first introduced the real dataset used in the experiment, and then conducted

comparison and ablation experiments to verify the effectiveness of the model.

5.1 Dataset

We conducted a statistical analysis on the daily exercise records of all participants from our

university who took part in programming contests. After necessary data cleaning procedures

such as removing null values and duplicate submissions, we organized 8,714 submission

records in total, which correspond to 1,089 programming contest problems with official

exercise solutions. These submission records contain detailed information such as problem

IDs, required programming skills, official solutions, the exercise text, students' submitted

code, and the results of students' results to the problems. The total number of annotated skills

in the datasets is 37, with example skills including greedy algorithms, recursion, and

constructive algorithms. In terms of datasets partitioning, we randomly divided it into a

training set and a test set at a ratio of 4:1. To further improve the generalization ability of the

model, we further divided the training set into five parts for cross-validation.

Table 1. Comparison experiment

Model AUC Model AUC

DKT 71.36% SAKT 76.98%

DKVMN 74.75% SAINT 77.22%

DKT+ 75.21% AKT 77.33%

KQN 75.56% IEKT 78.39%

SKVMN 75.13% ATKT 78.86%

GKT 76.04% CTGKT 83.42%

5.2 Comparison Experiment

To evaluate the effectiveness of the CTGKT model in predicting students' performance, we

conducted a comparative experiment. After preprocessing our own dataset, we trained and

compared it with existing Knowledge Tracing (KT) models. All models were trained using the

Pytorch framework on a CPU platform.

As shown in Table 1, through the comparison experiment on our datasets, we found that the

CTGKT model outperformed other comparative models in terms of the AUC metric. This

indicates that the CTGKT model is better able to capture students' knowledge states and

changes, providing more accurate prediction results.

5.3 Ablation Experiment

To assess the impact of different embedding components on the performance of the CTGKT

model, we conducted an ablation study. We designed several variants of CTGKT. Here are the

detailed descriptions of these variants:

CTGKT-baseline: the baseline model, which does not include any additional information.

CTGKT-tutorial: a variant that only uses official exercise solution information as input.

CTGKT-code: a variant that only utilizes students submitted code information as input.

CTGKT-describe: a variant that only uses the exercise text information as input.

CTGKT-tutorial, code: a variant that incorporates both official exercise solution and students

submitted code information as input.

CTGKT-tutorial, describe: a variant that incorporates both official exercise solution and the

exercise text information as input.

CTGKT-code, describe: a variant that incorporates both students submitted code and the

exercise text information as input.

CTGKT: the complete CTGKT model, through which we can understand the predictive power

when all components work together.

Table 2. Ablation experiment

Model F1-score ACC AUC

CTGKT-baseline 71.22% 80.62% 77.52%

CTGKT-tutorial 77.28% 83.96% 81.33%

CTGKT-code 78.06% 83.65% 81.81%

CTGKT-discribe 77.43% 83.79% 81.45%

CTGKT-tutorial,code 78.91% 84.65% 82.49%

CTGKT-tutorial,discribe 78.47% 84.03% 82.05%

CTGKT-code,discribe 78.29% 84.35% 82.24%

CTGKT 80.18% 85.25% 83.42%

As shown in Table 2, when considering the official exercise solutions, the exercise texts, and

students submitted code information comprehensively, CTGKT exhibits the best performance

in evaluation metrics such as AUC, ACC, and F1-score. Further comparing CTGKT with other

variant models, we find that CTGKT-tutorial, CTGKT-code, and CTGKT-describe all show

improvements compared to CTGKT-baseline. This indicates that official exercise solution, the

exercise texts, and students submitted code all play positive roles in improving model

performance. Among them, CTGKT-code performs particularly well, suggesting that students

submitted code plays an indispensable role in enhancing model effectiveness. Moreover, when

comparing the three variant models of CTGKT-tutorial, code, CTGKT-tutorial, describe, and

CTGKT-code, describe, it can be observed that introducing two types of student information

simultaneously is more effective in improving model performance than introducing only one

type of information.

6 Conclusions

Addressing the shortcomings of existing knowledge tracing models in handling data from

programming competition students, who overlook the relationship between solution

information and skills, we propose a novel graph-based knowledge tracing model, namely

CTGKT. This model innovatively incorporates official exercise solution, not only considering

the impact of students submitted code and the exercise text on measuring proficiency in

programming skills, but also fully incorporating the influence of solution information on

complex problems and skills. Through experiments, we have validated the effectiveness of

CTGKT. In the future, we will further explore the impact of different programming

competition practice methods (such as daily practice and competition practice) on modeling

students' proficiency in programming skills.

References

[1] Hui-Chun Hung, Ping-Han Lee:Applying Deep Knowledge Tracing Model for University

Students' Programming Learning. ICOIN 2023: 574-577

[2] Yang Shi, Min Chi, Tiffany Barnes, Thomas W. Price:Code-DKT: A Code-based Knowledge

Tracing Model for Programming Tasks. EDM 2022

[3] Renyu Zhu, Dongxiang Zhang, Chengcheng Han, Ming Gao, Xuesong Lu, Weining Qian, Aoying

Zhou:Programming Knowledge Tracing: A Comprehensive Dataset and A New Model. ICDM

(Workshops) 2022: 298-307

[4] Ruixin Li, Yu Yin, Le Dai, Shuanghong Shen, Xin Lin, Yu Su, Enhong Chen:PST: Measuring Skill

Proficiency in Programming Exercise Process via Programming Skill Tracing. SIGIR 2022:

2601-2606

[5] BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.

NAACL-HLT (1) 2019: 4171-4186

[6] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike

Lewis, Luke Zettlemoyer, Veselin Stoyanov:RoBERTa: A Robustly Optimized BERT Pretraining

Approach. CoRR abs/1907.11692 (2019)

[7] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou,

Bing Qin, Ting Liu, Daxin Jiang, Ming Zhou:CodeBERT: A Pre-Trained Model for Programming and

Natural Languages. EMNLP (Findings) 2020: 1536-1547

