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Abstract. The Internet of Things (IoT) has been rapidly growing, connecting an ever-in-

creasing number of devices and generating massive amounts of data. However, centralized 

IoT infrastructures face challenges such as single points of failure, privacy concerns, and 

scalability issues. This paper explores the application of blockchain technology in IoT data 

sharing and consensus algorithms to address these challenges and explore innovations. 

Simulation experiments and theoretical analyses demonstrate the effectiveness of the pro-

posed innovations in enhancing blockchain performance, enabling secure data sharing, and 

incentivizing miner participation, providing new insights for the application of blockchain 

in IoT information management. 
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1 Introduction 

The Internet of things (IoT) is a network paradigm that connects objects in the real world to the 

network. IoT allows devices to collect, process and communicate data without intervention [1]. 

With the development of IoT, the number of devices connected to the network is growing rap-

idly. According to the Ericsson’s prediction, by 2025, more than 24.9 billion devices will be 

connected to the network [2]. The exponential explosion of IoT devices has led to an ever-

increasing amount of data. On account of this, the magnitude and ability of human society to 

generate, obtain and process data will usher in a new leap. 

Most existing IoT infrastructures are highly dependent on centralized platforms, while central-

ized IoT networks will face the following challenges: (1) data stored in centralized servers may 

reveal personal privacy. (2) data stored in a centralized cloud lacks reliability and traceability, 

is at risk of being deleted or tampered with. (3) with the exponential growth of device number 

in IoT, centralized servers will lead to large delays when processing a large number of end-to-

end communications, which will. 

Recently, blockchain technology has been regarded as the main candidate technology for IoT 

decentralization [3]. In recent years, blockchain technology has received broadly attention jue 

to its decentralization, immutability and traceability. The data stored on the blockchain needs to 

be jointly maintained by the whole network, which can effectively transfer value between nodes 

that lack trust [4]. Moreover, through blockchain technology, applications that used to be able 
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to run only through trusted third-party platforms can now run in a distributed way [5], enabling 

the market to become a highly decentralized autonomous marketplace. 

Numbers of related works form the support and provide a great deal of inspiration for this paper. 

(1) Research on the classification and consensus algorithm of blockchain 

Blockchain technology can be divided into public chain, consortium blockchain and private 

chain according to node participation, and can be divided into licensed chain and unlicensed 

chain according to different permissions [6]. In [7], aiming at the shortcomings of dispersed 

privilege management, difficult business expansion, centralized reading and writing, and weak 

transactionality among multiple contracts in complex application scenarios, a multi-blockchain 

collaboration scheme of consortium chain for complex application scenarios is proposed. 

Consensus algorithms are crucial in blockchain technology, by using these algorithms, consor-

tium blockchains are able to reduce communication costs while improving privacy and main-

taining data immutability [8]. However, traditional algorithms (i.e. PBFT) have problems such 

as high complexity and poor scalability. Hence, BFT algorithms have been proposed, such as 

the high-performance and scalable BFT algorithm proposed in [9] and the component-layer al-

gorithm based on PBFT proposed in [10]. 

(2) Research on data sharing methods based on blockchain technology 

Data sharing in the IoT domain faces unique challenges, among which blockchain-based data 

sharing methods are strong candidates to address these challenges due to their decentralized, 

tamper-proof, and traceability features. Smart contracts, especially on the Ethernet platform, 

offer new possibilities for automated data processing and transactions between IoT devices [11]. 

They allow IoT big data to circulate without relying on centralized cloud platforms, thus en-

hancing the potential value of the data. Literature [12] developed a blockchain-based big data 

sharing framework, designed a low computational complexity collaborative proof-based con-

sensus mechanism, and a filtering and offloading scheme for blockchain transactions to signif-

icantly reduce the storage overhead. 

(3) Research on distributed secure data sharing based on blockchain and federated learning 

As an innovative approach in the field of machine learning, federated learning allows multiple 

nodes to train models together without sharing the original data, which protects the data privacy 

of the participating nodes [13]. When federated learning is combined with blockchain technol-

ogy, it enables distributed and secure sharing of data. In [14], authors design a blockchain-au-

thorized secure data sharing architecture that transforms the data sharing problem into a machine 

learning problem by merging privacy-preserving federated learning. Further studies verified the 

feasibility and practical application benefits of implementing the federated learning architecture 

on blockchain for data sharing in decentralized environments [15].  

2 Structure and logic 

This paper has made innovative achievements in three aspects: blockchain performance evalu-

ation, distributed data sharing, and the incentive of miner data collection. The simulation results 

of multi-blockchain performance, the data sharing architecture combining federated learning 



 

and reputation mechanism, and the blockchain consensus mechanism based on coalition for-

mation game provide new ideas for the performance improvement of the blockchain system, 

data sharing and the innovation of consensus algorithm. The logical architecture of this paper is 

shown in Figure 1 below: 

 

Fig.1. Article logical architecture. 

3 Implementation and simulation analysis 

3.1 Single & multi-blockchain Performance Simulation and Evaluation 

The design of blockchain can adopt single blockchain or multi-blockchain architecture. Single 

blockchain architecture has only one main chain, and all nodes jointly maintain the same ledger. 

The multi-blockchain architecture consists of multiple parallel subchains, each of which can 

have its own independent ledger and consensus mechanism. As the number of nodes and trans-

action volume increase, the performance of a single blockchain will be limited. In contrast, the 

multi-blockchain architecture has better scalability. It allows each application to be assigned a 

separate subchain based on different business requirements. Each subchain can process transac-

tions in parallel and then interact with each other through cross-chain communication protocols. 

The simulation leverages the Fisco Bcos blockchain framework, an open-source blockchain 

platform tailored for enterprise-grade applications. It is designed to provide a consortium block-

chain ecosystem with high-performance transaction processing capabilities, which can handle 

up to thousands of transactions per second, as well as enhanced privacy features through its 

support of group signature and zero-knowledge proof technologies. The system is configured 

on a physical computer with specifications including a 2.3GHz Intel i7 CPU, 8GB RAM, and 

the Ubuntu 18.04 operating system. Within this environment, both single blockchain and multi-

blockchain architectures are set up for comparative analysis. The single blockchain is comprised 

of four nodes, whereas the multi-blockchain architecture includes three parallel blockchains, 

each with a quartet of nodes, enabling parallel transaction processing.  The Fisco Bcos platform 

utilizes a modified version of the Practical Byzantine Fault Tolerance (PBFT) consensus algo-

rithm, which is well-suited for consortium blockchains where node identities are known and a 

high transaction throughput is required. Furthermore, the performance metrics, including trans-

action throughput and average transaction latency of both architectures, are rigorously evaluated 

using Hyperledger Caliper, a benchmarking tool that provides a standard for assessing block-

chain performance across different blockchain systems. In this simulation, the transaction 



 

throughput is defined as the rate at which valid transaction are committed by the blockchain 

system under test during unit time. The average latency is defined as the average time taken for 

a transaction's effect to be usable across the network. The average latency contains the time 

from the point that it is submitted by the transaction node to the point that the result is widely 

available in the network. 

 

Fig. 2. Throughput as function of number of transactions. 

 

Fig. 3. Average latency as function of number of transactions. 

Figure. 2 shows the throughput as function of the number of transactions considering the single 

blockchain and multi-blockchain. As the number of transactions increases, the throughput of the 

multi-blockchain system continues increasing, reaching approximately 125 million TPS at 

10,000 transactions, meanwhile, single blockchain only reached 70 million TPS, represents a 

79% improvement in the transaction processing capacity of the multi-blockchain structure. In 

the process of increasing the volume of multi-blockchain transactions, despite fluctuations, the 

TPS highly remained between 125 million and 150 million. In contrast, although the throughput 

of a single blockchain system also increased initially, it basically stabilized at about 70 million 

TPS, demonstrating its limitations. Comparing the two architectures, the throughput of the 

multi-blockchain is basically maintained at 2 to 3 times that of the single blockchain, highlight-

ing its superior scalability when handling larger volumes of transactions.  

Figure. 3 depicts the average latency as function of the number of transactions. From Figure. 3, 

the multi-blockchain consistently maintains lower latency than the blockchain across the entire 

range of transactions tested. For instance, when transaction volume reaches 200,000, the single 

blockchain exhibit an average latency of 2.25 seconds, whereas the multi-blockchain system 

maintains a lower latency of about 1.5 seconds. The increase in latency is modest for the multi-



 

blockchain system, even as the transaction volume grows, which accentuates its efficiency in 

managing high transaction loads. 

The detailed inspection of two figures above provides empirical evidence of the multi-block-

chain architecture's aptitude for sustaining high performance metrics. The multi-blockchain not 

only surpasses the single blockchain in throughput by a substantial margin but also maintains 

lower transaction latencies, thereby offering a compelling solution for systems requiring robust 

scalability and efficiency. 

3.2 Data Sharing Architecture 

When it comes to data sharing between IoT devices, the data owner may not want to share the 

raw data with other devices, because malicious devices can spread the data collected by other 

devices to the network without permission. Federated learning is a burgeoning machine learning 

scheme, aiming at tackling the problem of data island while preserving data privacy., in which 

nodes can train models locally based on the original data, and only need to share parameters of 

the local model without sharing the original data during data sharing. The introduction of fed-

erated learning into data sharing in the IoT allows smart devices in the IoT to share data without 

compromising data privacy. When two data sets have more overlapping user features and less 

overlapping users, they will be divided horizontally (i.e. the user dimension), and part of data 

with the same user features but not exactly the same users is extracted for training. 

 

Fig. 4. A data sharing system based on horizontal federated learning and consortium blockchain. 

This study constructs a data sharing architecture based on horizontal federated learning and 

federated chaining. The system model is shown in Figure. 4. The proposed data sharing system 

framework includes three entities: data owner (DO), data analyst (DA), and data consumer 

(DC). When DC has a request for data analysis service, DC will make a request for data analysis 

service to DA. DA will purchase data information from DO based on DC's request for data 

analysis service. For security reasons, DOs do not want to disclose their raw data. DOs will 

respond based on DA's purchase information, for example, whether they are willing to partici-

pate in this global training or not, and then DA selects some reasonable DOs from the DOs who 

are willing to share data (the selection can be based on the reputation value). Based on horizontal 

federated learning, the steps of data sharing between the selected DOs and DA are shown below: 

(1) DOs selected by DA will compute the training gradient locally, mask the gradient selection 

with encryption, differential privacy or secret sharing techniques, and send final result to DA. 



 

(2) DA performs secure aggregation without any knowledge of any DOs' data. The DA then 

sends the aggregated results back to the DOs. 

(3) DOs update their respective models with the decrypted gradients. 

Then iterate through the above steps until the loss function converges, completing the whole 

training process. After DA obtains the final model parameters, it sends the model parameters to 

DCs, completing a data analysis service transaction. DA pays the corresponding fees based on 

the contributions of DOs, and at the same time, DA charges DCs for the data analysis service. 

Transactions between DOs and DAs and between DAs and DCs are recorded on the blockchain. 

The consortium blockchain network has received widespread attention for its advantages such 

as low cost, good scalability and short latency. In this paper, consortium blockchain is used, and 

all entities involved in the transaction must be licensed. DAs act as consensus nodes to package 

the transaction and reach a consensus across the network, and the consensus nodes that add 

blocks at the same time are rewarded. 

In addition, previous simulation experiments on multi-blockchain architecture have demon-

strated its significant advantages in improving transaction throughput and reducing latency. No-

tably, multi-blockchain architecture also offers benefits for data privacy and security by allow-

ing the configuration of flexible data access rights and privacy protection schemes for different 

subchains. This approach not only meets the reasonable data sharing needs within the consor-

tium blockchain but also strictly limits the access scope of sensitive data, achieving a balance 

between privacy protection and business collaboration. Furthermore, multi-blockchain architec-

ture ensures that the failure of a single subchain will not affect the operation of the entire con-

sortium blockchain, thus enhancing the availability and robustness of the blockchain network. 

Considering factors such as inter-chain isolation, flexible privacy protection mechanisms, and 

distributed fault-tolerance capabilities, multi-blockchain architecture collaborative federated 

learning is likely to be a preferred option for empowering consortium blockchains to achieve 

further optimization of data security and privacy protection. 

3.3 Coalition Formation Game Formulation 

In the blockchain network, miner nodes maintain the normal operation of the blockchain by 

participating in the consensus mechanism, and have the opportunity to obtain a certain consen-

sus reward in return. However, as the scale of the blockchain network continues to expand, the 

difficulty for miner nodes to obtain consensus rewards is also continuously growing. In order to 

increase the probability of obtaining rewards, miner nodes can provide more valuable data for 

the blockchain network by actively participating in the collection of sensory data, so as to en-

hance their contribution. At the same time, miner nodes can also form a coalition with other 

miner nodes to share the sensing tasks, so as to obtain economies of scale and further increase 

the probability of winning the award. Aiming at the above problems, this paper proposes a 

blockchain consensus mechanism based on coalition formation game. In addition, a merge-and-

split algorithm is proposed. 

In the considered blockchain network, there exist M miner nodes and the set of miners is denoted 

as M = {1, 2, ..., m, ..., M}. The cooperation of miners choosing reliable workers is modelled as 

a non-transferable utility (NTU) coalition formation game, denoted as G = {M, Π, u}, where Π 

is a coalition partition of M and u is a utility function. Each miner selects several workers by 

their reputations, The number of workers selected by miner m is denoted as |Wm| the set of 



 

workers selected by miner m is denoted as Wm= {Wm,1, Wm, 2, ..., Wm, w, ...Wm, |Wm|}, where Wm, 

w is the identity number of the w-th worker selected by miner m. 

For miner m, the utility function is established as equation (1), 

 um = Pm × R - Cm - ξm × Tm (1) 

Pm denotes the probability of miner m obtaining the consensus reward, R denotes the total 

amount of rewards given by the blockchain network, Cm denotes the communication overhead 

of miner m in forming the coalition, ξm denotes the unit power overhead of miner m in executing 

the perceptual task, and Tm denotes the time of miner m in performing the perceptual task. The 

utility of miner m consists of three parts: consensus reward gain, coalition formation overhead 

and execution of perceptual task overhead. By joining the coalition, miners can share the sensing 

task, reduce Tm, and increase the award probability Pm, but the formation of the coalition itself 

will also bring the communication overhead Cm. Therefore, how to balance these three factors, 

and build the optimal coalition structure, becomes a challenge faced by each miner node. 

The rules of merge and split are given as follows: 

Merge rules: For any two coalitions, if the new coalition formed by merging them can increase 

the utility of at least one miner without reducing the utility of other miners, perform merge, 

following the Pareto order. Specifically, for two coalitions G1 and G2, if the merged coalition 

G0 satisfies: for at least one miner o' in G0, uG0(o) > max{uG1(o), uG2(o)}, and for all other 

miners o', uG0(o') ≥ max{uG1(o'), uG2(o')}, then merge is performed. 

Split rules: For any coalition, check whether there exists a split such that the new coalition 

combination Pareto after the split is better than the original coalition. If such a split exists, per-

form a split. Specifically, for a coalition G0, if there exists a division of G0 {G1, G2, ..., Gk} 

such that for at least one coalition Gi in the division, the utility uGi(o) of at least one miner o in 

Gi is higher than uG0(o), and the utility uGi(o') of all other miners o' in Gi is not lower than 

uG0(o'), then the split is performed. 

Algorithm: Coalition formation algorithm for miners in the proposed model: 

Input: Player set M = {1, 2, ..., m, ..., M}. Workers selected by miners Wm= {Wm,1, Wm,2, ..., 

Wm, |Wm|}, 1≤ m ≤ M; 
Output: The coalition with the highest coalition utility; 

1: Initialization: The initial partition of miners Π0, where all the miners are disjoint. Each miner 

selects several workers; 

2: Each coalition computes coalition utility according to utility function (1); 

3: Merge mechanism: The Coalition G1 tries to merge with G2 based on the merge rule; 

4: Split mechanism: The Coalition G0 tries to split based on the split rule; 

5: Until: Merge and split iteration terminates, and the final coalition partition is obtained; 

6: Return: The coalition with the highest coalition utility. 

The algorithm keeps performing merge and split until no more Pareto improvements can be 

made, i.e., a Dhp-stable division is reached. The algorithm outputs the coalition division when 

a Dhp-stable division is reached as a stable solution of the game. 

The proposed consensus mechanism, based on coalition formation game theory, significantly 

enhances the performance and incentive structure of blockchain networks for IoT information 



 

management. By encouraging miners to actively collect and contribute valuable sensory data, 

the algorithm improves the overall efficiency and reliability of the blockchain system. The 

mechanism incentivizes miners to provide high-quality data and form coalitions with other min-

ers to share sensing tasks, optimizing resource allocation and increasing their chances of obtain-

ing consensus rewards. The merge-and-split algorithm ensures that miners can efficiently form 

stable and optimal coalitions, maximizing their utilities by balancing factors such as reward 

gain, formation overhead, and execution costs. This innovative consensus mechanism promotes 

active data contribution, enables collaborative mining, and facilitates efficient coalition for-

mation, ultimately enhancing the quality and quantity of data available on the blockchain net-

work. As a result, the performance, reliability, and value of the blockchain system for IoT in-

formation management are significantly improved. 

4 Conclusions 

This paper investigates the application of blockchain technology in IoT data sharing and con-

sensus algorithms from an information management perspective. The following conclusions are 

drawn: (1) compared with single blockchain, multi-blockchain systems can process transactions 

more efficiently with lower latency; (2) the data sharing architecture combining horizontal fed-

erated learning and coalitional chaining can realize secure and efficient data sharing in the In-

ternet of Things; (3) the consensus mechanism based on coalitional gaming can effectively in-

centivize miners to participate in the perception task, and improve the quality of data . Future 

work can further explore the optimal performance of the data sharing architecture, the combi-

nation of multi-chain and federated learning, and the fairness and robustness of the federation 

game model. 
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