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Abstract. Smart contracts play a crucial role in blockchain technology, but their writing 

poses risks of vulnerabilities, potentially leading to serious consequences such as financial 

losses and system crashes. To address this, we propose a smart contract vulnerability 

detection method based on VCS and ensemble learning. This method first utilizes 

Vulnerability Candidate Slicing (VCS) technology to extract syntax and semantic features, 

enhancing detection capabilities. Then, it employs Word2vec, FastText, GloVe, and other 

embedding models to transform raw inputs into vector representations, capturing more 

semantic information. Finally, an ensemble learning strategy integrates multiple neural 

network models to improve detection performance and mitigate the limitations of 

individual models. Experimental results demonstrate that this method outperforms other 

advanced tools in the market, providing robust support for ensuring the security and 

stability of blockchain systems. 
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1 Introduction 

In recent years, with machine learning becoming a focal point of research, many researchers 

have attempted to integrate code auditing with machine learning, yielding promising results[1]. 

For instance, Xing et al. proposed a slice matrix method[2], which slices smart contracts, extracts 

fine-grained vulnerability features, and combines machine learning for detection, effectively 

improving audit accuracy and efficiency. Liao et al. introduced a detection model called 

Soliaudit[3], incorporating machine learning and fuzz testing. They utilized Solidity machine 

code as learning features, coupled with fuzz testing to detect reentrancy and overflow 

vulnerabilities, providing a comprehensive perspective on vulnerability detection. Liu et al. 

proposed an S-gram language model[4], utilizing an N-gram-based language model S-gram to 

learn statistical patterns of smart contract tokens and capture advanced semantics for predicting 

potential vulnerabilities. This approach underscores the importance of language modeling and 

static semantic label sets, offering novel insights for improving vulnerability prediction 

accuracy. Zhuang et al. presented a contract graph and graph convolutional neural network 

approach[5], constructing contract graphs, analyzing syntactic and semantic structures, and using 

graph convolutional neural networks for vulnerability detection, better capturing the complex 

structures and relationships of contracts, and enhancing audit comprehensiveness. However, one 

of the challenges faced by these methods is the lack of publicly available datasets, which 

constrains further in-depth research. Therefore, this paper proposes a deep learning-based smart 

contract vulnerability detection technique, converting smart contract opcodes into high-level 
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language code for analysis and study. 

2 Related work 

2.1 Vulnerability Candidate Slicing (VCS) 

VCS (Vulnerability Candidate Slicing) is inspired by the concept of region proposal in object 

detection tasks in the field of image processing and utilizes each region proposal as the minimum 

granularity to train deep learning models for target detection, as shown in Figure 1. Initially, 

smart contracts are partitioned into smaller code segments, namely statements. This aids in 

enhancing the accuracy of vulnerability detection as smaller code units are easier to manage and 

analyze. In the preprocessing stage, VCS candidates are generated using an approach similar to 

region proposal in image processing. These VCS are deemed to contain more vulnerability 

syntax and semantic features, thus enhancing the sensitivity of vulnerability detection. To ensure 

that VCS contain sufficient information for detecting vulnerabilities, dependency control is 

conducted through controlling dependency and data dependency relationships. This ensures that 

VCS not only cover structural features of the code but also encompass information on data flow 

and control flow. Defining vulnerability features is a crucial step, including transaction amount 

values associated with constant calls and constant block values associated with blockchain 

timestamps. These features serve as matching patterns used for identifying reentrancy 

vulnerabilities and time-dependent vulnerabilities. Based on the matched statements, other 

statements related to that statement are obtained by tracking data flow and/or control flow. This 

helps in constructing a more comprehensive VCS, covering potential sources of vulnerabilities. 

VCS construction is the focus of the entire process, where all relevant statements build the final 

VCS used for vulnerability detection. This VCS reflects comprehensive information about 

potential vulnerabilities in the contract. Finally, key points are extracted from the VCS, which 

may contain syntax and semantic information related to vulnerabilities. This information is 

utilized for further analysis and detection, enhancing the understanding and discovery of 

potential vulnerabilities. 
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Figure 1. Deep learning for object detection. 

2.2 Model Integration 

To accurately identify vulnerabilities, neural network models should understand Vulnerability 

Candidate Slices (VCS) from multiple perspectives in order to comprehensively capture 

vulnerability patterns. Combining global and local considerations contributes to successfully 

recognizing fragile contracts, enhancing the model's comprehensiveness and accuracy. While 



Convolutional Neural Networks (CNNs)[7] and Recurrent Neural Networks (RNNs)[6] perform 

well in processing sequential data, they have limitations in learning global dependencies due to 

restrictions on path length. The computational cost and limitations on path length constrain these 

models to handle relatively independent paths only, imposing additional restrictions on the 

model. In contrast, Transformers allow the model to learn potential patterns from a holistic 

perspective without being restricted by path length, enabling better capture of global 

dependencies and enhancing the accuracy of vulnerability detection. 

CNN, RNN, GRU, and Bi-GRU models transmit information to edges with different weights, 

and pass the initial vectorized nodes 𝑚1
𝑡   and edge lists [𝑚1

𝑡 , 𝑚2
𝑡 , … , 𝑚𝐻

𝑡 ]  to CNN and other 

models. For each sub-path, the output of CNN, RNN, and similar models will be the transformed 

path vulnerability probability 𝑀𝑡, represented as: 

𝑀𝑡 = ([𝑚1
𝑡𝐶 , 𝑚2

𝑡𝐶 , … , 𝑚𝐻
𝑡𝐶], [𝑚1

𝑡𝑅 , 𝑚2
𝑡𝑅, … , 𝑚𝐻

𝑡𝑅], … ) (1)
Where H represents the number of VCS for each sample. To learn the implicit dependencies of 

sequences, this method treats all nodes in the overall path of a sample as a sequence and passes 

it to a transformer to learn the vectorized representation of the overall path [𝑚1
𝑙 , 𝑚2

𝑙 , … , 𝑚𝐻
𝑙 ]. 

Removing connecting edges forces the model to more effectively learn long-range dependencies 

as it no longer relies on the influence of distant node calls. Leveraging multi-head self-attention 

mechanisms, the model's transformed final node representation contracts the global 

vulnerability probability 𝑀𝑙, represented as: 

𝑀𝑙 = [𝑚1
𝑙 , 𝑚2

𝑙 , … , 𝑚𝐻
𝑙 ]                           (2) 

Then, the result vector representations of each model are fed into a multi-layer perceptron, and 

this layer is used to assign weights to the models [𝑛1
𝑡 , 𝑛2

𝑡 , … , 𝑛𝐻
𝑡 ]. For CNN, RNN, and similar 

models, the computed aggregated score 𝑁𝑡 is obtained for each sub-path, represented as: 

𝑁𝑡 = [𝑛1
𝑡 , 𝑛2

𝑡 , … , 𝑛𝐻
𝑡 ] ∈ 𝑅𝐻                 (3) 

For the Transformer, the aggregated score 𝑁𝑙 is computed for the entire path, represented as: 

𝑁𝑙 ∈ 𝑅|𝐻|                                (4) 

During the training process, all vulnerability scores are passed through a softmax layer to obtain 

the vulnerability probabilities for all paths, and cross-entropy loss is calculated. 

One of the main objectives of this paper is to improve the accuracy and robustness of a single 

model by integrating the learning from multiple models. Therefore, the integration structure in 

this paper adopts five mainstream neural network models, including CNNs, RNNs, GRUs, Bi-

GRUs, and Transformers. Such an integration structure design enables the model to learn 

vulnerability patterns from different perspectives, increasing the comprehensiveness of the 

model, as shown in Figure 2. Each model has its unique advantages and characteristics, and 

through integration, their advantages can be utilized comprehensively to enhance the 

performance of the vulnerability detection system. 

To increase the diversity of sub-classifiers, different sub-classifiers are used, each focusing on 

learning different aspects of vulnerability patterns. This diversity helps improve the model's 

learning ability because each sub-classifier can capture different features of vulnerability 

patterns. By introducing sub-classifiers with different structures and algorithms, the model can 

better adapt to the diversified vulnerability features. 

During the inference stage, users can input the vectorized data into the pretrained models to 

obtain recognition results. Specifically, in this paper, the vectorized code graphs are input into 



these five trained models, and then transformed path representations 𝑀𝑡  and 𝑀𝑙  are output. 

Subsequently, vulnerability scores 𝑁𝑡  and 𝑁𝑙  are calculated. The specific formulas are as 

follows: 

𝑁𝑡 =

∑
𝑁𝑖

𝑡

∑ 𝑁𝑖
𝑡𝐻

𝑖=1

∙ 𝑁𝑖
𝑡𝐻

𝑗=1

𝐻
; 1 ≤ 𝑖; 𝑗 ≤ 𝐻               (5)

 

Finally, the prediction results are aggregated using a weighted average method to compute the 

vulnerability score for each sample contract. 𝑁𝑒𝑛 = 0.5 × 𝑁𝑡 + 0.5 × 𝑁𝑙 . If the resulting 

vulnerability score exceeds a threshold of 0.5, the corresponding contract is considered 

vulnerable. Integrating multiple methods is technically straightforward but is not merely 

additive; it often yields effective results in practice.[10] 
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Figure 2. Integrated structure of neural network model. 

3 Model Building 

In this chapter, the design and implementation of the smart contract vulnerability detection 

method based on Vulnerability Candidate Slices (VCS) and ensemble learning are introduced, 

along with the construction of a new dataset. Inspired by the concept of region proposal 

extraction in object detection tasks for images, this detection method divides smart contracts 

into smaller code segments (i.e., statements), generating vulnerability candidate slices during 

the preprocessing stage of the framework. Several popular embedding models, including 

Word2vec, FastText, and GloVe, are then used to convert raw inputs (such as code tokens) into 

vectors acceptable by neural network models. Finally, five neural network models are integrated 

using ensemble learning methods. During the experimental stage, this paper adopts n-fold cross-

validation, dividing the acquired smart contract dataset into n mutually exclusive subsets to 

enhance the performance of deep learning models in vulnerability detection tasks. Figure 3 

illustrates the overall design of the proposed method. Both the training and testing stages 

comprise three main steps: the first step involves the extraction of smart contracts using the VCS 

method[11], the second step is a modular approach including different types of word embedding 



models for code embedding, and the third step involves training or predicting them, and 

aggregating the results of the five different neural network models to output the final decision. 
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Figure 3. Smart contract vulnerability detection framework of VCS and integrated learning. 

4 Experimental Analysis and Comparison 

To better utilize the split dataset, this paper divided all data into two parts, with a ratio of 8:2, 

resulting in two subsets: 80% for training data and 20% for testing data. One of the main 

objectives of the deep learning-based vulnerability detection tool proposed in this paper is to 

overcome the limitations of rule-based static analyzers. Four static tools, Oyente, Slither and 

Smartcheck[12], were used as benchmarks to demonstrate the improvements brought by this 

approach. Two experiments were designed: error evaluation, vulnerability detection, and 

comprehensive strategy assessmen[13]. 

4.1 Error Appraisal 

Table 1 presents the results of error evaluation for different models under combinations of 

vulnerable and non-vulnerable contracts. The experiments employed five-fold cross-validation. 

Based on these results, an important observation can be made. The combined error evaluation 

of the method integrating VCS and ensemble learning is 2.118%. This indicates that the method 

can provide more accurate vulnerability information even with a small training set. Comparing 

with other individual neural networks such as Transformer+VCS (3.318%) and CNN+VCS 

(6.288%), it can be observed that combining different knowledge learned by different neural 

networks helps improve the vulnerability prediction generalization of any single model. 

Table 1. Error evaluation. 

 
RNN+ 

VCS 

CNN+ 

VCS 

GRU+ 

VCS 

Bi-GRU+ 

VCS 

Transformer+ 

VCS 

Ensemble+ 

VCS 

CV1 4.412 10.771 4.992 2.736 1.773 1.972 

CV2 3.992 7.411 2.339 2.846 1.973 1.933 

CV3 9.876 2.379 13.221 9.172 4.334 1.644 

CV4 3.776 7.768 2.205 3.998 3.275 2.035 



CV5 4.667 3.112 1.775 7.741 5.239 3.006 

Overall 5.344 6.288 4.906 5.298 3.318 2.118 

4.2 Vulnerability Detection 

To determine whether our framework can detect different types of smart contract vulnerabilities, 

we evaluated five deep learning models in separate datasets for reentrancy and time dependency 

vulnerabilities. As shown in Table 2, the five deep learning models combined with VCS can 

detect these vulnerabilities to some extent, but the overall performance of individual deep 

learning models is poor. Among them, the CNN+VCS model achieved a P-value of 88.89% on 

the reentrancy vulnerability dataset, significantly higher than other individual models. 

Additionally, using the baseline method, the F1 scores of all models were around 70% for time 

dependency vulnerabilities, with the RNN model achieving the highest F1 score of 78.66% and 

the Transformer+VCS model achieving the highest P-value of 85.53%. In summary, deep 

models can automatically learn semantic knowledge from the vector representations of Solidity 

source code to detect different types of vulnerabilities, especially time dependency 

vulnerabilities. One possible reason is that samples of time dependency vulnerabilities have 

more distinguishable syntax or semantic features. This result demonstrates the potential 

application of deep learning in smart contract vulnerability detection, indicating that deep 

learning models have indeed learned some vulnerability features. 

The article also compared the integrated models with individual models, further demonstrating 

the effectiveness of the five neural network models after integration. From Table 2, it is evident 

that our integrated model outperforms the baseline method in detecting both types of 

vulnerabilities[14]. Significant improvements were observed across all metrics: in detecting 

reentrancy vulnerabilities, the integrated model showed an increase of 0.77% in F1 score and 

0.24% in P-value. In detecting time dependency vulnerabilities, the integrated model exhibited 

an average increase of 0.24% in F1 score and 1.46% in P-value. 

Table 2. Results evaluation table of four neural network models and integrated network models. 

Vulnerability 

type 
 

RNN+ 

VCS 

CNN+ 

VCS 

GRU+ 

VCS 

Transformer+ 

VCS 

Ensemble+ 

VCS 

Reentrant 

vulnerability 

P% 69.23 88.89 70.23 75.19 89.99 

F1% 69.08 72.73 72.58 75.66 76.43 

Time-

dependent 

vulnerability 

P% 84.61 65.12 84.45 85.53 85.77 

F1% 78.66 76.35 78.33 73.93 80.12 

4.3 Comprehensive Strategy Evaluation 

To evaluate the effectiveness of the integrated method, we compared it with state-of-the-art 

smart contract vulnerability detection methods from two categories. We selected three other 



methods, including Smartcheck, Securify, and Oyente, which do not utilize deep learning 

models[15]. 

Table 3 presents the test results. Among the three traditional methods without a deep learning 

phase, Oyenete achieved an F1 score of 54.12% in reentrancy vulnerability detection, while 

Slither achieved an F1 score of 50.75% in timestamp dependency vulnerability detection, both 

of which are relatively low. This is because these methods primarily detect these two types of 

vulnerabilities by rudimentary checks of whether statements contain call.value/block.  

Compared to methods based solely on graph neural networks, the ensemble learning-based 

method largely outperformed the aforementioned state-of-the-art methods. In this method, the 

F1 score for detecting reentrancy vulnerabilities was 74.63%, an improvement of 0.32% over 

the graph neural network-based method and an improvement of 20.51% over the Oyenete-based 

method, performing the best among traditional methods. The F1 score for detecting timestamp 

dependency vulnerabilities was 78.12%, higher than the four aforementioned methods. These 

findings reveal the significant potential of the VCS-based and ensemble learning-based method 

for smart contract vulnerability detection. 

Table 3 Results compared with the three advanced methods. 

Vulnerability 

type 
 Smartcheck Slither Oyenete Ensemble+VCS 

Reentrant 

vulnerability 

P% 33.72 35.13 54.12 74.63 

F1% 28.31 43.31 51.14 74.65 

Time-

dependent 

vulnerability 

P% 49.12 50.75 47.23 83.74 

F1% 34.99 40.12 37.52 78.12 

5 Conclusion 

The article primarily introduces an intelligent contract vulnerability detection technique based 

on Vulnerability Candidate Slices (VCS) and ensemble learning. This method utilizes VCS 

technology to capture more syntax and semantic features of vulnerabilities, thereby enhancing 

the sensitivity of vulnerability detection. Several popular embedding models, including 

Word2vec, FastText, and GloVe, are employed to convert raw inputs (such as code tokens) into 

vectors acceptable by neural network models. Finally, ensemble learning is utilized to integrate 

five neural network models. During the experimental stage, the article adopts n-fold cross-

validation, dividing the acquired smart contract dataset into n mutually exclusive subsets to 

enhance the performance of deep learning models in vulnerability detection tasks. In the analysis 

of experimental results, the article summarizes and analyzes the results from three aspects: error 

evaluation, vulnerability detection, and comprehensive strategy evaluation. The conclusion 

drawn is that this method outperforms other advanced detection tools in detecting reentrant 

vulnerabilities and timestamp vulnerabilities 
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