
Research on Smart Contract Vulnerability Detection

Technology Based on VCS and Ensemble Learning

Shouhan Wei

Corresponding author: 1289382022@qq.com

Jiangxi University of Science and Technology, China

Abstract. Smart contracts play a crucial role in blockchain technology, but their writing

poses risks of vulnerabilities, potentially leading to serious consequences such as financial

losses and system crashes. To address this, we propose a smart contract vulnerability

detection method based on VCS and ensemble learning. This method first utilizes

Vulnerability Candidate Slicing (VCS) technology to extract syntax and semantic features,

enhancing detection capabilities. Then, it employs Word2vec, FastText, GloVe, and other

embedding models to transform raw inputs into vector representations, capturing more

semantic information. Finally, an ensemble learning strategy integrates multiple neural

network models to improve detection performance and mitigate the limitations of

individual models. Experimental results demonstrate that this method outperforms other

advanced tools in the market, providing robust support for ensuring the security and

stability of blockchain systems.

Keyword: Smart contract; Vulnerability detection; Deep learning; Ensemble learning

1 Introduction

In recent years, with machine learning becoming a focal point of research, many researchers

have attempted to integrate code auditing with machine learning, yielding promising results[1].

For instance, Xing et al. proposed a slice matrix method[2], which slices smart contracts, extracts

fine-grained vulnerability features, and combines machine learning for detection, effectively

improving audit accuracy and efficiency. Liao et al. introduced a detection model called

Soliaudit[3], incorporating machine learning and fuzz testing. They utilized Solidity machine

code as learning features, coupled with fuzz testing to detect reentrancy and overflow

vulnerabilities, providing a comprehensive perspective on vulnerability detection. Liu et al.

proposed an S-gram language model[4], utilizing an N-gram-based language model S-gram to

learn statistical patterns of smart contract tokens and capture advanced semantics for predicting

potential vulnerabilities. This approach underscores the importance of language modeling and

static semantic label sets, offering novel insights for improving vulnerability prediction

accuracy. Zhuang et al. presented a contract graph and graph convolutional neural network

approach[5], constructing contract graphs, analyzing syntactic and semantic structures, and using

graph convolutional neural networks for vulnerability detection, better capturing the complex

structures and relationships of contracts, and enhancing audit comprehensiveness. However, one

of the challenges faced by these methods is the lack of publicly available datasets, which

constrains further in-depth research. Therefore, this paper proposes a deep learning-based smart

contract vulnerability detection technique, converting smart contract opcodes into high-level

ICBBEM 2024, March 29-31, Wuhan, People's Republic of China
Copyright © 2024 EAI
DOI 10.4108/eai.29-3-2024.2347453

language code for analysis and study.

2 Related work

2.1 Vulnerability Candidate Slicing (VCS)

VCS (Vulnerability Candidate Slicing) is inspired by the concept of region proposal in object

detection tasks in the field of image processing and utilizes each region proposal as the minimum

granularity to train deep learning models for target detection, as shown in Figure 1. Initially,

smart contracts are partitioned into smaller code segments, namely statements. This aids in

enhancing the accuracy of vulnerability detection as smaller code units are easier to manage and

analyze. In the preprocessing stage, VCS candidates are generated using an approach similar to

region proposal in image processing. These VCS are deemed to contain more vulnerability

syntax and semantic features, thus enhancing the sensitivity of vulnerability detection. To ensure

that VCS contain sufficient information for detecting vulnerabilities, dependency control is

conducted through controlling dependency and data dependency relationships. This ensures that

VCS not only cover structural features of the code but also encompass information on data flow

and control flow. Defining vulnerability features is a crucial step, including transaction amount

values associated with constant calls and constant block values associated with blockchain

timestamps. These features serve as matching patterns used for identifying reentrancy

vulnerabilities and time-dependent vulnerabilities. Based on the matched statements, other

statements related to that statement are obtained by tracking data flow and/or control flow. This

helps in constructing a more comprehensive VCS, covering potential sources of vulnerabilities.

VCS construction is the focus of the entire process, where all relevant statements build the final

VCS used for vulnerability detection. This VCS reflects comprehensive information about

potential vulnerabilities in the contract. Finally, key points are extracted from the VCS, which

may contain syntax and semantic information related to vulnerabilities. This information is

utilized for further analysis and detection, enhancing the understanding and discovery of

potential vulnerabilities.

Image dataset

Extract region proposals

Vector

reprsentations

Deep Learning

models

Target obiect

Figure 1. Deep learning for object detection.

2.2 Model Integration

To accurately identify vulnerabilities, neural network models should understand Vulnerability

Candidate Slices (VCS) from multiple perspectives in order to comprehensively capture

vulnerability patterns. Combining global and local considerations contributes to successfully

recognizing fragile contracts, enhancing the model's comprehensiveness and accuracy. While

Convolutional Neural Networks (CNNs)[7] and Recurrent Neural Networks (RNNs)[6] perform

well in processing sequential data, they have limitations in learning global dependencies due to

restrictions on path length. The computational cost and limitations on path length constrain these

models to handle relatively independent paths only, imposing additional restrictions on the

model. In contrast, Transformers allow the model to learn potential patterns from a holistic

perspective without being restricted by path length, enabling better capture of global

dependencies and enhancing the accuracy of vulnerability detection.

CNN, RNN, GRU, and Bi-GRU models transmit information to edges with different weights,

and pass the initial vectorized nodes 𝑚1
𝑡 and edge lists [𝑚1

𝑡 , 𝑚2
𝑡 , … , 𝑚𝐻

𝑡] to CNN and other

models. For each sub-path, the output of CNN, RNN, and similar models will be the transformed

path vulnerability probability 𝑀𝑡, represented as:

𝑀𝑡 = ([𝑚1
𝑡𝐶 , 𝑚2

𝑡𝐶 , … , 𝑚𝐻
𝑡𝐶], [𝑚1

𝑡𝑅 , 𝑚2
𝑡𝑅, … , 𝑚𝐻

𝑡𝑅], …) (1)
Where H represents the number of VCS for each sample. To learn the implicit dependencies of

sequences, this method treats all nodes in the overall path of a sample as a sequence and passes

it to a transformer to learn the vectorized representation of the overall path [𝑚1
𝑙 , 𝑚2

𝑙 , … , 𝑚𝐻
𝑙].

Removing connecting edges forces the model to more effectively learn long-range dependencies

as it no longer relies on the influence of distant node calls. Leveraging multi-head self-attention

mechanisms, the model's transformed final node representation contracts the global

vulnerability probability 𝑀𝑙, represented as:

𝑀𝑙 = [𝑚1
𝑙 , 𝑚2

𝑙 , … , 𝑚𝐻
𝑙] (2)

Then, the result vector representations of each model are fed into a multi-layer perceptron, and

this layer is used to assign weights to the models [𝑛1
𝑡 , 𝑛2

𝑡 , … , 𝑛𝐻
𝑡]. For CNN, RNN, and similar

models, the computed aggregated score 𝑁𝑡 is obtained for each sub-path, represented as:

𝑁𝑡 = [𝑛1
𝑡 , 𝑛2

𝑡 , … , 𝑛𝐻
𝑡] ∈ 𝑅𝐻 (3)

For the Transformer, the aggregated score 𝑁𝑙 is computed for the entire path, represented as:

𝑁𝑙 ∈ 𝑅|𝐻| (4)

During the training process, all vulnerability scores are passed through a softmax layer to obtain

the vulnerability probabilities for all paths, and cross-entropy loss is calculated.

One of the main objectives of this paper is to improve the accuracy and robustness of a single

model by integrating the learning from multiple models. Therefore, the integration structure in

this paper adopts five mainstream neural network models, including CNNs, RNNs, GRUs, Bi-

GRUs, and Transformers. Such an integration structure design enables the model to learn

vulnerability patterns from different perspectives, increasing the comprehensiveness of the

model, as shown in Figure 2. Each model has its unique advantages and characteristics, and

through integration, their advantages can be utilized comprehensively to enhance the

performance of the vulnerability detection system.

To increase the diversity of sub-classifiers, different sub-classifiers are used, each focusing on

learning different aspects of vulnerability patterns. This diversity helps improve the model's

learning ability because each sub-classifier can capture different features of vulnerability

patterns. By introducing sub-classifiers with different structures and algorithms, the model can

better adapt to the diversified vulnerability features.

During the inference stage, users can input the vectorized data into the pretrained models to

obtain recognition results. Specifically, in this paper, the vectorized code graphs are input into

these five trained models, and then transformed path representations 𝑀𝑡 and 𝑀𝑙 are output.

Subsequently, vulnerability scores 𝑁𝑡 and 𝑁𝑙 are calculated. The specific formulas are as

follows:

𝑁𝑡 =

∑
𝑁𝑖

𝑡

∑ 𝑁𝑖
𝑡𝐻

𝑖=1

∙ 𝑁𝑖
𝑡𝐻

𝑗=1

𝐻
; 1 ≤ 𝑖; 𝑗 ≤ 𝐻 (5)

Finally, the prediction results are aggregated using a weighted average method to compute the

vulnerability score for each sample contract. 𝑁𝑒𝑛 = 0.5 × 𝑁𝑡 + 0.5 × 𝑁𝑙 . If the resulting

vulnerability score exceeds a threshold of 0.5, the corresponding contract is considered

vulnerable. Integrating multiple methods is technically straightforward but is not merely

additive; it often yields effective results in practice.[10]

CNN

Transformer

RNN

GRU

Bi-GRU

0.5 Probability

Figure 2. Integrated structure of neural network model.

3 Model Building

In this chapter, the design and implementation of the smart contract vulnerability detection

method based on Vulnerability Candidate Slices (VCS) and ensemble learning are introduced,

along with the construction of a new dataset. Inspired by the concept of region proposal

extraction in object detection tasks for images, this detection method divides smart contracts

into smaller code segments (i.e., statements), generating vulnerability candidate slices during

the preprocessing stage of the framework. Several popular embedding models, including

Word2vec, FastText, and GloVe, are then used to convert raw inputs (such as code tokens) into

vectors acceptable by neural network models. Finally, five neural network models are integrated

using ensemble learning methods. During the experimental stage, this paper adopts n-fold cross-

validation, dividing the acquired smart contract dataset into n mutually exclusive subsets to

enhance the performance of deep learning models in vulnerability detection tasks. Figure 3

illustrates the overall design of the proposed method. Both the training and testing stages

comprise three main steps: the first step involves the extraction of smart contracts using the VCS

method[11], the second step is a modular approach including different types of word embedding

models for code embedding, and the third step involves training or predicting them, and

aggregating the results of the five different neural network models to output the final decision.

Smart Contracts

Dataset

Extract VCS

(Vulnerability Candidate

Slice)

RNN

GRU

Bi-GRU

CNN

Transformer
Encoding

Intergrating

Predictiong

FastText

Word2vec

Glove

Figure 3. Smart contract vulnerability detection framework of VCS and integrated learning.

4 Experimental Analysis and Comparison

To better utilize the split dataset, this paper divided all data into two parts, with a ratio of 8:2,

resulting in two subsets: 80% for training data and 20% for testing data. One of the main

objectives of the deep learning-based vulnerability detection tool proposed in this paper is to

overcome the limitations of rule-based static analyzers. Four static tools, Oyente, Slither and

Smartcheck[12], were used as benchmarks to demonstrate the improvements brought by this

approach. Two experiments were designed: error evaluation, vulnerability detection, and

comprehensive strategy assessmen[13].

4.1 Error Appraisal

Table 1 presents the results of error evaluation for different models under combinations of

vulnerable and non-vulnerable contracts. The experiments employed five-fold cross-validation.

Based on these results, an important observation can be made. The combined error evaluation

of the method integrating VCS and ensemble learning is 2.118%. This indicates that the method

can provide more accurate vulnerability information even with a small training set. Comparing

with other individual neural networks such as Transformer+VCS (3.318%) and CNN+VCS

(6.288%), it can be observed that combining different knowledge learned by different neural

networks helps improve the vulnerability prediction generalization of any single model.

Table 1. Error evaluation.

RNN+

VCS

CNN+

VCS

GRU+

VCS

Bi-GRU+

VCS

Transformer+

VCS

Ensemble+

VCS

CV1 4.412 10.771 4.992 2.736 1.773 1.972

CV2 3.992 7.411 2.339 2.846 1.973 1.933

CV3 9.876 2.379 13.221 9.172 4.334 1.644

CV4 3.776 7.768 2.205 3.998 3.275 2.035

CV5 4.667 3.112 1.775 7.741 5.239 3.006

Overall 5.344 6.288 4.906 5.298 3.318 2.118

4.2 Vulnerability Detection

To determine whether our framework can detect different types of smart contract vulnerabilities,

we evaluated five deep learning models in separate datasets for reentrancy and time dependency

vulnerabilities. As shown in Table 2, the five deep learning models combined with VCS can

detect these vulnerabilities to some extent, but the overall performance of individual deep

learning models is poor. Among them, the CNN+VCS model achieved a P-value of 88.89% on

the reentrancy vulnerability dataset, significantly higher than other individual models.

Additionally, using the baseline method, the F1 scores of all models were around 70% for time

dependency vulnerabilities, with the RNN model achieving the highest F1 score of 78.66% and

the Transformer+VCS model achieving the highest P-value of 85.53%. In summary, deep

models can automatically learn semantic knowledge from the vector representations of Solidity

source code to detect different types of vulnerabilities, especially time dependency

vulnerabilities. One possible reason is that samples of time dependency vulnerabilities have

more distinguishable syntax or semantic features. This result demonstrates the potential

application of deep learning in smart contract vulnerability detection, indicating that deep

learning models have indeed learned some vulnerability features.

The article also compared the integrated models with individual models, further demonstrating

the effectiveness of the five neural network models after integration. From Table 2, it is evident

that our integrated model outperforms the baseline method in detecting both types of

vulnerabilities[14]. Significant improvements were observed across all metrics: in detecting

reentrancy vulnerabilities, the integrated model showed an increase of 0.77% in F1 score and

0.24% in P-value. In detecting time dependency vulnerabilities, the integrated model exhibited

an average increase of 0.24% in F1 score and 1.46% in P-value.

Table 2. Results evaluation table of four neural network models and integrated network models.

Vulnerability

type

RNN+

VCS

CNN+

VCS

GRU+

VCS

Transformer+

VCS

Ensemble+

VCS

Reentrant

vulnerability

P% 69.23 88.89 70.23 75.19 89.99

F1% 69.08 72.73 72.58 75.66 76.43

Time-

dependent

vulnerability

P% 84.61 65.12 84.45 85.53 85.77

F1% 78.66 76.35 78.33 73.93 80.12

4.3 Comprehensive Strategy Evaluation

To evaluate the effectiveness of the integrated method, we compared it with state-of-the-art

smart contract vulnerability detection methods from two categories. We selected three other

methods, including Smartcheck, Securify, and Oyente, which do not utilize deep learning

models[15].

Table 3 presents the test results. Among the three traditional methods without a deep learning

phase, Oyenete achieved an F1 score of 54.12% in reentrancy vulnerability detection, while

Slither achieved an F1 score of 50.75% in timestamp dependency vulnerability detection, both

of which are relatively low. This is because these methods primarily detect these two types of

vulnerabilities by rudimentary checks of whether statements contain call.value/block.

Compared to methods based solely on graph neural networks, the ensemble learning-based

method largely outperformed the aforementioned state-of-the-art methods. In this method, the

F1 score for detecting reentrancy vulnerabilities was 74.63%, an improvement of 0.32% over

the graph neural network-based method and an improvement of 20.51% over the Oyenete-based

method, performing the best among traditional methods. The F1 score for detecting timestamp

dependency vulnerabilities was 78.12%, higher than the four aforementioned methods. These

findings reveal the significant potential of the VCS-based and ensemble learning-based method

for smart contract vulnerability detection.

Table 3 Results compared with the three advanced methods.

Vulnerability

type
 Smartcheck Slither Oyenete Ensemble+VCS

Reentrant

vulnerability

P% 33.72 35.13 54.12 74.63

F1% 28.31 43.31 51.14 74.65

Time-

dependent

vulnerability

P% 49.12 50.75 47.23 83.74

F1% 34.99 40.12 37.52 78.12

5 Conclusion

The article primarily introduces an intelligent contract vulnerability detection technique based

on Vulnerability Candidate Slices (VCS) and ensemble learning. This method utilizes VCS

technology to capture more syntax and semantic features of vulnerabilities, thereby enhancing

the sensitivity of vulnerability detection. Several popular embedding models, including

Word2vec, FastText, and GloVe, are employed to convert raw inputs (such as code tokens) into

vectors acceptable by neural network models. Finally, ensemble learning is utilized to integrate

five neural network models. During the experimental stage, the article adopts n-fold cross-

validation, dividing the acquired smart contract dataset into n mutually exclusive subsets to

enhance the performance of deep learning models in vulnerability detection tasks. In the analysis

of experimental results, the article summarizes and analyzes the results from three aspects: error

evaluation, vulnerability detection, and comprehensive strategy evaluation. The conclusion

drawn is that this method outperforms other advanced detection tools in detecting reentrant

vulnerabilities and timestamp vulnerabilities

References

[1] Cheng, Jieren, et al. "DDoS Attack Detection via Multi-Scale Convolutional Neural Network."

Computers, Materials & Continua 62.3 (2020).

[2] Xing, Cipai, et al. "A new scheme of vulnerability analysis in smart contract with machine

learning." Wireless Networks (2020): 1-10.

[3] Liao, Jian-Wei, et al. "Soliaudit: Smart contract vulnerability assessment based on machine

learning and fuzz testing." 2019 Sixth International Conference on Internet of Things: Systems,

Management and Security (IOTSMS). IEEE, 2019.

[4] Liu, Chao, et al. "Reguard: finding reentrancy bugs in smart contracts." Proceedings of the 40th

International Conference on Software Engineering: Companion Proceeedings. 2018.

[5] Zhuang, Yuan, et al. "Smart contract vulnerability detection using graph neural networks."

Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on

Artificial Intelligence. 2021.

[6] Graves, Alex, et al. "A novel connectionist system for unconstrained handwriting recognition."

IEEE transactions on pattern analysis and machine intelligence 31.5 (2008): 855-868.

[7] Xie, Lingxi, and Alan Yuille. "Genetic cnn." Proceedings of the IEEE international conference on

computer vision. 2017.

[8] Jiao, Zhenyu, Shuqi Sun, and Ke Sun. "Chinese lexical analysis with deep bi-gru-crf network."

arXiv preprint arXiv:1807.01882 (2018).

[9] Falender, Carol A., et al. "Defining competencies in psychology supervision: A consensus

statement." Journal of clinical psychology 60.7 (2004): 771-785.

[10] Ding, Yangruibo, et al. "VELVET: a noVel Ensemble Learning approach to automatically locate

VulnErable sTatements." 2022 IEEE International Conference on Software Analysis, Evolution and

Reengineering (SANER). IEEE, 2022.

[11] Zhuang, Yuan, et al. "Smart contract vulnerability detection using graph neural networks."

Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on

Artificial Intelligence. 2021.

[12] Fynn, Enrique, Alysson Bessani, and Fernando Pedone. "Smart contracts on the move." 2020 50th

Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE, 2020.

[13] So, Sunbeom, et al. "Verismart: A highly precise safety verifier for ethereum smart contracts." 2020

IEEE Symposium on Security and Privacy (SP). IEEE, 2020.

[14] Cheng, Jieren, et al. "DDoS Attack Detection via Multi-Scale Convolutional Neural Network."

Computers, Materials & Continua 62.3 (2020).

[15] Fynn, Enrique, Alysson Bessani, and Fernando Pedone. "Smart contracts on the move." 2020 50th

Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE, 2020.

