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Abstract. Important accounts play an important role in guaranteeing the security and 

stability of blockchain trading networks, given that attacking them can increase the risk 

of account theft and disrupt the trade order. Consequently, the identification of  critical 

accounts within blockchain trading networks holds paramount significance. However, 

previous research usually focuses on individual account features while  neglecting the 

impacts of neighbors, leading to biased assessments and inaccurate ranking lists. To 

overcome these limitations, this paper proposes the NDL algorithm to identify critical 

accounts in the blockchain trading networks based on complex network methods. 

Specifically, NDL utilizes degree centrality to compute the attributes of an account itself, 

and employs the shortest paths to calculate the attributes of its neighbors. By 

comprehensively considering the influence of accounts and neighbors, NDL effectively 

distinguishes their importance. Besides, the Susceptible-Infectious-Recovered (SIR) 

model is employed to estimate the transmission potential of accounts. In addition, 

Kendall’s tau correlation coefficient and monotonicity index are employed to assess the 

effectiveness and distinguishability of NDL. After conducting thorough experiments on 

four datasets, the findings demonstrate that NDL outperforms six baseline methods. 

Specifically, NDL significantly enhances the effectiveness of identifying crucial accounts 

and improves the distinguishability of the ranking list. 
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1 Introduction 

Blockchain technology holds tremendous application value and broad developmental prospect. 

It guarantees the transparency and immutability of information, strengthens the security and 

credibility of data, diminishes transaction and trust costs, and facilitates the evolution of the 

digital economy and the refinement of governance systems. Consequently, blockchain is 

regarded as one of the most disruptive innovative technologies in the upcoming decade, 

attracting increasing attention and application on a global scale [1][5].  

The identification of important accounts within blockchain trading networks plays a 

significance role in guaranteeing the security and stability of blockchain networks, reducing 

the risk of account theft and malicious attacks, defending trade order, safeguarding public 

interests, and preventing fraudulent behaviour. Therefore, it is necessary to strengthen the 

identification of important accounts in the blockchain trading network. 

ICBBEM 2024, March 29-31, Wuhan, People's Republic of China
Copyright © 2024 EAI
DOI 10.4108/eai.29-3-2024.2347430



 

 

 

 

 

Complex network methods have found widespread application in the identification of crucial 

accounts within blockchain trading networks, offering insights into revealing the network 

structural characteristics and evolutionary processes from both global and local perspective. 

These methods, grounded in the realm of complex networks, can be broadly classified into six 

main types. (1) The first approach delves into the local network structure to reveal direct 

relationships between nodes, exemplified by metrics like degree centrality [6]. (2) The second 

approach focuses on the global network structure, providing insights into macro properties 

such as betweenness centrality [7] that reflects the network's overarching characteristics. (3) 

The third approach considers the network dynamic, capturing and analyzing the evolutionary 

processes over time, such as VoteRank algorithm [8]. (4) The fourth approach takes account 

of the node location, revealing the core structure of nodes, as exemplified by K-Shell [9]. (5) 

The fifth approach assesses the propagation ability of nodes, measuring their influence or 

effectiveness in information dissemination within a network, such as cascading failure [10]. 

(6) The sixth approach considers node contractility to measure the integration and connectivity 

of nodes within the network topology, as exemplified by the contraction algorithm [11]. In 

addition, complex network methods can also explore the community structure and dynamic 

behavior patterns in the blockchain trading networks, further revealing the associations and 

collaborative relationships between important accounts. These research results will contribute 

to enhancing the security and stability of blockchain treading networks, thereby fostering the 

healthy development of blockchain technology. 

Inspired by the aforementioned research, this paper proposes the NDL algorithm to identify 

critical accounts within blockchain trading networks. Specifically, the NDL algorithm takes 

into account both the attributes of node itself and the characteristics of its neighbors, 

addressing the one-sidedness issues observed in the other research. Experiment results indicate 

that NDL outperforms the baselines in both effectiveness and distinguishability. 

This paper is divided into four distinct segments. The second segment elucidates the 

methodological approach undertaken in this research. The third segment involves the 

execution of comprehensive experiments to assess the effectiveness of the NDL algorithm. 

The fourth and final segment presents the ensuing conclusions. 

2 Method 

There are two approaches to model blockchain trading networks, including transaction-based 

method and account-based method. In the transaction-based approach, transactions are 

abstracted as nodes, and users are represented as edges. In the account-based method, accounts 

are treated as nodes, and the fund flows are depicted as edges. In this paper, we adopt the 

account-based method to model the blockchain trading network, which is described as 

 𝐺 = (𝑉, 𝐸),   (1) 

where 𝑉 = {𝑣1,𝑣2,. . . , 𝑣𝑁} is the set of nodes, 𝑣𝑖 is the account, 𝑁 is the number of nodes, 𝐸 =

{𝑒𝑖𝑗|𝑣𝑖 ⋂ 𝑣𝑗 , 𝑣𝑖 ≠ 𝑣𝑗}  is the set of edges, 𝑒𝑖𝑗  denotes fund flow between account 𝑣𝑖  and 

account 𝑣𝑗 . 



 

 

 

 

 

The influence of node within the blockchain trading network depends on the attributes of node 

itself and the characteristics of its neighbors. Firstly, for each node 𝑖 ∈ 𝐺, we use the degree 

centrality to represent the influence of itself, namely 

 𝛩(𝑖) = 𝑘𝑖/𝑁 − 1,   𝛥(𝑖) = (𝛩(𝑖))2,     (2) 
where 𝑘𝑖 is degree of node 𝑖. Secondly, we compute the attributes of neighbors, including the 

degree centrality and the number of shortest paths, namely 

 𝛷(𝑗) = (𝛩(𝑖) + 𝛥(𝑖)) × (𝛩(𝑗) + 𝛥(𝑗))/𝑔𝑖𝑗
2 ,  (3) 

The sum of attributes of neighbors is denoted as 𝛯(𝑖), namely 
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Thirdly, we compute the influence of node 𝑖 according to its first-order neighbors, namely 
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where 𝛤(𝑖) is the set of first-order neighbors. The pseudo-code of NDL is shown in Algorithm 

1. 

Algorithm 1 The NDL Algorithm 

Input: blockchain trading network 𝐺 = (𝑉, 𝐸) 

Output: the influence scores of all nodes 

1:  for  𝑖 ∈ 𝑉  do 

2:         𝛩(𝑖) = 𝑘𝑖/𝑁 − 1←Get the degree centrality for node 𝑖 in 𝐺 

3:         𝛥(𝑖) = 𝛩(𝑖)2←Get the square of degree centrality for node 𝑖 in 𝐺 

4:  end for 

5:  for  𝑖 ∈ 𝑉  do 

6:        for 𝑗 ∈ 𝑉  do    

7:              𝑔𝑖𝑗←Calculate the quantity of shortest paths between node 𝑖 and node 𝑗 

8:              𝛷(𝑗) = (𝛩(𝑖) + 𝛥(𝑖)) × (𝛩(𝑗) + 𝛥(𝑗))/𝑔𝑖𝑗
2←Get the product of node 𝑖 and node 𝑗 

9:              𝛯(𝑖)+= 𝛷(𝑗)←Get the sum of attributes 𝛷 of neighbors on node 𝑖 

10:       end for 

11：end for 

12:  for  𝑖 ∈ 𝑉  do 

13：    for 𝑗 ∈ 𝛤(𝑖)  do   

14:           𝛺(𝑖)+= 𝛯(𝑗)←Get the quantity of influence ∑ of first-order neighbors on node 𝑖 

15:       end for 

16：end for 

17:  for  𝑖 ∈ 𝑉  do 

18：    for 𝑗 ∈ 𝛤(𝑖)  do   

19:           𝑁𝐷𝐿(𝑖)+= 𝛺(𝑗)←Get the quantity of influence 𝛺 of first-order neighbors on node 𝑖 

20:       end for 

21：end for 

22：return the influence scores of all nodes based on NDL 



 

 

 

 

 

3 Experiment 

3.1 Evaluation Metrics 

(1) Kendall’s correlation coefficient (𝜏)is utilized to assess the effectiveness ability of NDL. 

Assuming 𝑋 and 𝑌are two ranking lists with length 𝑁𝐿, select the i-th element to form a pair 

(𝑥𝑖 , 𝑦𝑖). If 𝑥𝑖>𝑥𝑗 and 𝑦𝑖>𝑦𝑗 or 𝑥𝑖<𝑥𝑗 and 𝑦𝑖<𝑦𝑗, (𝑥𝑖 , 𝑦𝑖)is a concordant pair. Otherwise, (𝑥𝑖 , 𝑦𝑖) 

is a discordant pair except when 𝑥𝑖=𝑥𝑗 and 𝑦𝑖=𝑦𝑗. The definition of 𝜏 is 
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where 𝑁𝑐 and 𝑁𝑑 are the quality of concordant pairs and discordant pairs, respectively. The 

larger the values of 𝜏, the better the effectiveness ability of the algorithm. 

(2) Monotonicity index (𝑀𝐼)  is utilized to evaluate the distinguishing ability of the NDL 

algorithm. The definition of 𝑀𝐼 is 
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where 𝑋 is the sorted list with length 𝑁𝐿, α is the sorted value. The larger the values of 𝑀𝐼, the 

better the distinguishing ability of the algorithm.  

3.2 Baselines 

(1) Degree Centrality (DC) [6]. The DC algorithm considers that nodes with a greater number 

of neighbors will have significant influence. 
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where 𝑘𝑖 is the degree of node i.  

(2) Between Centrality (BC) [7]. The BC algorithm considers that nodes occupying pivotal 

hub positions will exert important influence. 
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where 𝑔𝑢𝑣
𝑖  is the number of shortest paths passing through node 𝑖. 

(3) VoteRank (VR) [8] . The vital spreaders are determined by the VoteRank algorithm based 

on voting scores, which will not join in the subsequent voting. The VoteRank algorithm has 

five process. Firstly, the voting score and the quality of votes for each node is 0 and 1, 

respectively. Secondly, each node and its neighboring nodes will conduct another round of 

voting to determine their voting scores. Thirdly, the vital spreader is selected based on the 



 

 

 

 

 

voting scores.  Fourthly, the voting power of nodes supporting the vital spreader will diminish. 

Fifthly, repeat steps two through four until multiple spreaders are obtained. 

(4) H-Index (HI) [12] .  
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where 𝑘𝑗𝑥
 is the degree of node 𝑗𝑥, H is an operator, (𝑘𝑗1

 ,𝑘𝑗2
 ,...,𝑘𝑗𝑘(𝑖)

) is a set, HI(i)>0 is the 

highest integer that is less than or equal to 𝑘𝑗𝑥
, 𝑥 = 1,2, . . . , 𝑘𝑖. 

(5) GLS [13].  
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where com(i, j) is the number of common neighbors. 

(6) RAS [14]. 
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where node v is virtual and connects to all nodes. 

3.3 SIR Model 

The Susceptible-Infectious-Recovered (SIR) model is a mathematical framework used to 

analyze how infectious diseases spread within populations. Specifically, “S” represents nodes 

in a susceptible state, “I” indicates nodes in an infected state, and 'R' signifies nodes in a 

recovered state. 𝜃is the infection rate, which represents the probability of each susceptible 

node being infected after contact with the infected node. 𝛽 is the recovery rate, which 

represents the probability of an infected node transitioning to the recovered state. The 

infection probability threshold c is   
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In this paper, we utilize a variable parameter 𝜁 to change the infection rate 𝜃, i.e., 𝜃 = 𝜁 × 𝜃𝑐. 

3.4 Datasets 

Numerous studies have consistently shown that the degree distribution of blockchain trading 

networks follow a power-law distribution 𝑃(𝑘) = 𝑘−𝛾  [15]. This phenomenon is attributed to 

the presence of preferential attachment and cumulative advantage in blockchain trading 

networks. This observation indicates that, within the network, the majority of nodes exhibit 

small degrees, while a minority of nodes possess larger degrees. Most nodes tend to engage in 

transactions with only a few others, whereas a small subset of nodes actively participates in 



 

 

 

 

 

transactions with a larger number of nodes. In this paper, we leverage the Barabási-Albert 

(BA) network to generate four blockchain transaction networks, aiming to verify the 

effectiveness and distinguishability. The statistical indicators of four datasets are shown in 

Table 1, in which 𝑀 is the number of edges, 𝜌 is the network density, <k> is the average 

degree, 𝑘𝑚𝑎𝑥  is the largest degree, 𝐶 is the average clustering coefficient, AS is the degree 

assortativity, HE is the degree heterogeneity. 

Table 1. The statistical indicators of four blockchain transaction networks. 

 𝑁 𝑀 𝜌 <k> 𝑘𝑚𝑎𝑥 𝐶 AS HE 

Dataset-1 200 396 0.0198 3.960 26 0.0919 -0.2147 2.0731 

Dataset-2 500 996 0.0079 3.984 64 0.0470 -0.1335 2.4314 

Dataset-3 1000 1996 0.0039 3.992 92 0.0243 -0.0952 2.8684 

Dataset-4 2000 3996 0.0019 3.996 94 0.0142 -0.0741 2.8595 

3.5 Results 

Firstly, we verify the distinguishability of the NDL algorithm on the four datasets. As shown 

in Table 2, these quantities are accurate to six decimal places. The MI values of the NDL 

algorithm is the largest, indicating that the nodes in the sorted list generated by NDL exhibit 

nearly distinct positions. It is worth noting that nodes with the same sorting position may 

cause conflicts in the datasets, as they are treated as identical entities. The NDL algorithm 

achieves an accuracy of 99.9% in distinguishing node sorting positions, enhancing the 

intuitiveness of evaluating node influence. 

Table 2. The monotonicity indices of six baselines and the NDL algorithm on the four datasets. The 

parameters are 𝛽=1, 𝜁=2. The monotonicity index of NDL is the largest.  

 DC BC HI GLS VR RAS NDL 

Dataset-1 0.485998 0.991876 0.203632 0.999498 0.033897 0.992877 0.999699 

Dataset-2 0.480030 0.997517 0.209423 0.999888 0.024340 0.993693 0.999936 

Dataset-3 0.483021 0.999508 0.204447 0.999968 0.029658 0.993851 0.999976 

Dataset-4 0.490216 0.999824 0.227401 0.999978 0.051778 0.994367 0.999994 

 

Secondly, we verify the effectiveness of NDL across the datasets. As depicted in Figure 1, the 

x-axis is 𝜁 used to adjust the infection rate 𝜃, while the y-axis is the Kendall’s correlation 

coefficient 𝜏.The red column represents the performance of the NDL algorithm, exhibiting the 

highest accuracy. This indicates that the NDL algorithm performs better than the baselines, 

including degree centrality, betweenness centrality, H-Index, GLS, VoteRank and RAS. The 

reason is that the baselines, such as betweenness centrality and H-Index, have one-sidedness 

issues, leading to inaccurate ranking lists. Similarly, baselines like GLS and RAS have not 

fully explored the contributions of node neighbors. In contrast, the NDL algorithm takes a 

comprehensive approach by considering the influence of both nodes and their neighbors. It 

leverages degree centrality to calculate the attributes of node itself and utilizes shortest paths 

to compute the attributes of its neighbors, thereby generating an accurate ranking list. 



 

 

 

 

 

 

Fig. 1. The Kendall’s tau correlation coefficients are calculated to verify the effectiveness of six 

baselines and NDL on the four datasets, with varying infection probability. The parameter is 𝛽=1. The 

red column represents the performance of the NDL algorithm, with the highest accuracy. 

Thirdly, we compare the execution time of six baselines and NDL on the datasets. Table 3 

shows the running time of NDL is moderate. The reason is that the NDL algorithm need to 

calculate the shortest paths. We will optimize the algorithm to reduce the running time in the 

future. 

Table 3. The running time of six baselines and NDL on four datasets. The parameters are 𝛽=1, 𝜁=2. 

 DC BC HI GLS VR RAS NDL 

Dataset-1 0.000001 0.048001 0.000001 0.007989 0.011996 0.000001 0.418334 

Dataset-2 0.015590 0.328090 0.000001 0.015620 0.140613 0.000001 3.908138 

Dataset-3 0.050220 1.577959 0.000001 0.046855 0.874907 0.000001 19.57481 

Dataset-4 0.062000 11.82943 0.005000 0.172071 10.00058 0.006921 114.7484 

4 Conclusion 

In this paper, we propose the NDL algorithm to identify important accounts in the blockchain 

trading networks based on complex network methods. In contrast to previous studies, NDL 

takes a more comprehensive consideration of the influence of accounts and their neighbors. 

Specifically, NDL utilizes degree centrality to compute the attributes of account itself, and 



 

 

 

 

 

employs the shortest paths to compute the attributes of its neighbors. Besides, the SIR model 

is utilized to assess the propagation effectiveness of each account. To assess the effectiveness 

and distinguishability of NDL, two metrics of Kendall’s tau correlation coefficient and 

monotonicity index are introduced. By conducting extensive experiments on four datasets, the 

results indicate that NDL outperforms the six baseline methods, exhibiting the highest values 

of Kendall’s tau correlation coefficient and the values of monotonicity index reach 99.9%. It 

indicates that NDL can produce a list with superior effectiveness and distinguishability. In 

addition, the running time of NDL is moderate. NDL holds significant application values, 

serving as a crucial foundation for identifying important accounts within blockchain trading 

networks and contributing to their security and stability. 
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