
Spark Platform Based Video Transcoding

Yunyu Liu and Jinpeng Yuan*

School of Computer and Information, Qiannan Normal University for Nationalities,
558000, Duyun, Guizhou Province, China

18285470037@139.com

Abstract. The HTML5 based videos play an important role in promoting the
communication on national culture with the rapid development of the mobile
internet. However, considering that the HTML5 based videos support Theora,
H.264 and MPEG4 video coding formats only and there are various existing
video formats on national culture, it is needed to conduct fast conversion on
video files so as to adapt to HTML5 video labels. Therefore, a Spark platform
based transcoding system is proposed in this article. The HDFS is adopted for
storage, and the RDD (Resilient Distributed Dataset) and FFMPEG of Spark are
utilized for distributed transcoding. It conducts detailed discussion on segmen-
tation strategy for the distributed storage of videos, and makes comparisons on
the thought of the MapReduce and that of the RDD. In addition, it proposes the
RDD programming framework based distributed transcoding scheme. Ac-
cording to the comparisons on time consumed for transcoding between the
MapReduce framework and the Spark framework with the same size of file
block and cluster, compared with the MapReduce transcoding, the time used for
transcoding of the Spark framework can be reduced by 25%.

Keywords: Spark; FFMPEG; MapReduce; video transcoding.

1 Introduction

Video transmission and interaction on mobile terminals have been widely applied due
to the emerging video websites. However, due to different network environments and
video coding formats, special video transcoding is necessary so as to adapt to the
requirements on environment of mobile terminals. In conventional practice, a single
server is adopted for video transcoding, but it costs the server very long time in
condition of large video files.

2 Current Situations

Video transcoding means converting the video stream after compressed encoding to
another video stream [1], so as to adapt to different network bandwidths, terminal
processing capacities and demands of different users [1]. With the development in
high-definition videos, the size of a video file is increased to dozens of G from several

TRIDENTCOM 2017, September 28-29, Dalian, People's Republic of China
Copyright © 2018 EAI
DOI 10.4108/eai.28-9-2017.2273775

hundred of MB, and higher requirements on storage capacity of video files and
transcoding servers are proposed so as to adapt to mobile terminal devices.

At present, there are the following four transcoding modes [2-5]:
(1) The stand-alone mode: It conducts transcoding to videos with a single

transcoding server. It transmits videos to the transcoding server for transcoding, to
return to the video after transcoding. This mode has the advantage of easy realization;
however, the time used for transcoding is limited by the performance of the
transcoding server, and it is not applicable to transcoding tasks with high concurrency.

(2) The distributed mode: Multiple transcoding machines are adopted at the same
time for transcoding of a video file. The video file is segmented on the video source,
and each segment is transmitted to corresponding transcoding machine, which are
combined into a video file after transcoding, to return the video file [6]. This mode
has the advantage of parallel transcoding with low time cost, and it is applicable to
transcoding tasks of high concurrency; but it has complicated transcoding steps, with
problems such as segmentation and combination.

(3) The cloud based mode: The storage and calculation capabilities of cloud are
utilized for transcoding of video files. For example, the S3 (Simple Storage Service)
server of Amazon is adopted by Grio [6] for storage of video files and the EC2
(Elastic Compute Cloud) is utilized for transcoding. In which, an instance of EC2 is in
charge of the transcoding task of a video file.

(4) The distributed system based Hadoop platform [7] is adopted for transcoding;
the HDFS of the Hadoop platform is utilized for storage and the thought of the
MapReduce and the FFMPEG are utilized for video transcoding [8].

The HDFS (Hadoop Distributed File System) storage mechanism of the Hadoop
framework is adopted for storage of video files, and the Spark based RDD (Resilient
Distributed Dataset) and FFMPEG are utilized for distributed transcoding in this
article, so as to achieve faster transcoding for massive video files.

3 Spark and FFMPEG

FFMPEG is the leading multimedia framework, able to decode, encode, transcode,
mux, demux, stream, filter and play pretty much anything that humans and machines
have created. It supports the most obscure ancient formats up to the cutting edge. No
matter if they were designed by some standards committee, the community or a
corporation. It is also highly portable: FFmpeg compiles, runs, and passes our testing
infrastructure FATE across Linux, Mac OS X, Microsoft Windows, the BSDs, Solaris,
etc. under a wide variety of build environments, machine architectures, and
configurations [9].

Apache Spark is a fast and general-purpose cluster computing system. It provides
high-level APIs in Java, Scala, Python and R, and an optimized engine that supports
general execution graphs. It also supports a rich set of higher-level tools
including Spark SQL for SQL and structured data processing, MLlib for machine
learning, GraphX for graph processing, and Spark Streaming. Spark applications run
as independent sets of processes on a cluster, coordinated by the SparkContext object
in your main program (called the driver program). Specifically, to run on a cluster, the

SparkContext can connect to several types of cluster managers (either Spark’s own
standalone cluster manager, Mesos or YARN), which allocate resources across
applications. Once connected, Spark acquires executors on nodes in the cluster, which
are processes that run computations and store data for your application. Next, it sends
your application code (defined by JAR or Python files passed to SparkContext) to the
executors. Finally, Spark Context sends tasks to the executors to run [10].

Fig. 1. Spark Distributing Computing Work Flow

4 System Architecture

As shown in Figure 2, this system is composed by WebServer, MySQL database and
Spark cluster. WebServer is in charge of receiving users’ request, storing the files
uploaded by users to the file system and invoking the Spark cluster for conversion and
storage of videos.

Fig. 2. System Architecture Diagram

The users’ request on transcoding is processed by the system with the following
steps:

(1) Users deliver their request through http to WebServer, which receives video
files and acquires information such as the format and size of the files.

(2) WebServer submits video files to the video segmentation node, which segments
video files into independent playable video files, and then submits to hdfs for
distributed storage.

(3) Spark cluster conducts distributed transcoding to the distributed file.
(4) Completion on transcoding: After the end of the transcoding, a piece of record

(path, name and format of the source file as well as those of the object file) is inserted
into the mysql database. Webserver returns the record to the user.

(5) The users then download the object file after transcoding from the file system.

5 Segmentation Strategy for Distributed Storage of Videos

The Hadoop system stores a file with numerous data blocks. Both the MapReduce
platform and the Spark platform conduct video transcoding in a concurrent way.
Considering of the nonstructural data of video files, there is a correlation between
frames in videos, and the simple storage of files into Hadoop may lead to damage to
the data information of video files. Therefore, the FFMPEG is utilized firstly for
undamaged segmentation, with the size of that of the HDFS block such as 64MB. The
size of the video file is generally not the integral multiple of that of HDFS blocks. If
the size of the last file is less than that of the HDFS block, it is combined with the
previous file. In this way, it is available to reduce the quantity of tasks during
concurrent transcoding, so as to improve the performance of the system.

6 The Spark based Scheme

Compared with the MapReduce programming model [11-12], the Spark provides
more flexible DAG (Directed Acyclic Graph) programming model, as shown in
Figure 3, which includes not only conventional map and reduce interfaces but also
filter, flatMap and union operation interfaces, achieving more flexible and convenient
video transcoding of the Spark. The logic for the Spark video transcoding business is
as shown in Figure 6. It is available to simplify 11 MapReduces to a Spark operation
through the DAG programming model of the Spark. The Spark segments the video
transcoding process into 3 stages, each of which includes multiple tasks of concurrent
execution. The data among stages is transmitted through shuffle. Finally, it is only
needed to read and write HDFS once. It eliminates 9 times of HDFS read-write by
reducing HDFS read-write by 80%. It applies for needed executor resources to yarn
after the start of the park operation, and all the stages operate in a way of thread by
sharing executors. Compared with the MapReduce mode, the Spark mode reduces the
times for application for resources by nearly 90%. Considering that RDD (Resilient
Distributed Dataset) model is utilized for video transcoding, the middle data is stored
in a way of RDD, which is stored in contents of slave nodes, reducing the times for
disk read-write during the computational process.

Fig. 3. Directed Acyclic Graph

7 Experimental Results and Analysis

This article constructs 5 sets of virtual machines in an environment of a server with 6-
core CPU, 64 GB internal storage, 6TB hard disk through the virtualized software
VMware vSphere. The uniform configuration of the virtual machine is listed as
follows: 4-core CPU, 8GB internal storage, 500 GB hard disk, CentOS 6 64-bit
operating system. The role of the virtual machine is as shown in Table 1.

7.1 Experimental Enviroment

Table 1. Node Roles.

IP address Node roles
192.168.2.170 Namenode, resourcemanager, Master
192.168.2.171 Namenode, Datanode, resourcemanager, NodeManager, worker
192.168.2.172 Datanode, NodeManager, worker
192.168.2.173 Datanode, NodeManager, worker
192.168.2.174 Datanode, NodeManager, worker
The data adopted in the experiment is that of mov format of 3.02GB, with the

following size and quantity of segmentation:

Table 2. Size of segmentation.

Size of segmentation/MB Quantity of segmentation
64 48

128 24

256 12

Table 3. Video parameters before and after the transcoding.

Video type Video size Video
format coding

Bit rate Resolution

Input video 3.02GB mov 6972 2560*1600
Output video 476MB MPEG-4 782 1280*720

Fig. 4. Size of Segmentation

7.2 Experimental analysis

The time consumed for video transcoding with the FFMPEG tool on a single node is
totally 2280s. On the nodes of 4 sets of ApplicationMaster, in condition of the
segmentation size of 64MB, it consumes the time of 1600s with the MapReduce. It
consumes 1200s on the 4 workers on the spark platform with the segmentation size of
64MB, which is significantly less than that of the MapReduce. The time consumed by
Spark is the least with the segmentation size of 128MB. The segmentation size of
256MB consumes more time than that of 128MB, but is still less than that of the
MapReduce. Based on the experimental result, the Spark operates faster than
MapReduce, with the following main reasons:

(1) It has quicker start-up time for the task; Spark is a fork-out thread while MR is
the start-up of a new process;

(2) It achieves faster shuffles; the Spark stores the data in the disk only during
shuffle while MapReduce does not;

(3) It achieves faster workflow: The typical MapReduce workflow is composed by
many MapReduce tasks, the data interaction among which is realized through data
persistence to the disk. The Spark supports DAG and pipelining, and it is available to
not store the data in the disk in condition of without shuffle.

During the transcoding with the Spark platform, the time consumed for the
segmentation of 128MB is less than that of 256MB, with the following main reason:
With the data size of certain degree, the data needed to be loaded into the internal
storage during the same operation moment is only a subset of the whole data, and
certain time is needed for disc read-write during the process.

8 Conclusion

A distributed scheme with Hadoop based data storage and Spark transcoding mode is
proposed in this article. According to experimental results, it saves 25% of time for
transcoding when utilizing the Spark platform of 4 sets of worker node cluster than
that of application Master of the same nodes. It greatly improves the transcoding
efficiency. However, there is a disadvantage in this scheme: it is needed to wait until
the end of all the rdds during the reduce stage, which leads to time damage. Aiming at
this disadvantage, it is necessary to start the combination between adjacent video
segments immediately after the end of the processing to further improve the
transcoding efficiency in the future.

Acknowledgements. This work is supported by the Joint Funds of Department of
Science & Technology of Guizhou Province (No.qiankehe LH[2015]7725) and the
Natural Science Research Project of Education Department of Guizhou Province
(No.qianjiaohe KY[2015]348).

References

1. Ahmad I, Wei XH, Sun Y, Zhang YQ. Video Transcoding: An Overview of Various
Techniques and Research Issues. IEEE Trans. on Multimedia, 2005,7(5).

2. Barlas G. A Taxonomy and DLT-based analysis of Cluster- based Video Trans/Encoding.
14th Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing, PDP 2006,388−395.

3. Cardellini V, Colajanni M, Lancellotti R, Yu PS. A distributed architecture of edge proxy
servers for cooperative trans- coding. The 3rd IEEE Workshop on Internet Applications,
2003,66-70.

4. Guo JN, Bhuyan L. Load Sharing in a Transcoding Cluster. Distributed Computing, 2003,
835.

5. Sambe Y, Watanabe S, Yu D, Nakamura T. Distributed video transcoding and its application
to grid delivery. Proc. ITC-CSCC2003, 2003, 921-924.

6. Grio African American Breaking News and Opinion, http://www.thegrio.com/.
7. Borthakur D. The Hadoop Distributed File System: Architecture and Design.

http://hadoop.apache.org/core/ docs/current/hdfs_design.html, 2007.
8. Yang Fan and Shen Qiwei. Video Transcoding of the Distributed Hadoop Platform.

Computer Systems & Applications, 2011, 20 (11).
9. Project Description[EB/OL], http://www.ffmpeg.org
10. http://spark.apache.org
11. The Apache Hadoop project. http://Hadoop. apache. org/.
12. Dean J, Ghemawat S. MapReduce: Simplied Data Pro- cessing on Large Clusters. Proc. of

OSDI’04: 6th Sympo- sium on Operating System Design and Implemention, San Francisco,
CA, Dec. 2004.

