
Design and Implementation of a Smart Home
Router based on Intel Galileo Gen 2

Watipatsa W. Nsunza and Xiaojun Hei

Huazhong University of Science and Technology, Wuhan, China, 430074
nsunza@hust.edu.cn,heixj@hust.edu.cn

Abstract. The emerging software defined networking (SDN) has great
potential for enabling novel networking solutions to improve performance
and management of distributed systems such as smart homes. In this
paper, we studied the possible technical development trend of software
defined wireless networking (SDWN) technologies toward the design and
implementation of a smart home router based on the Intel Galileo Gen
2 programmable platform. We instrumented this platform by integrat-
ing various open-source software projects such as OpenWrt into a home
router to support intelligent home wireless networking and provide low-
cost connectivity solutions for the Internet-of-Things using WiFi and an-
other cutting-edge wireless communication technology, “Bluetooth Low
Energy. We conducted a series of experiments on our router and pre-
sented some preliminary results of our smart home network testbed. Our
experiment study may provide empirical experiences into constructing
evolvable and cost-effective software defined smart home routers with a
good trade-off between performance, flexibility and cost.

Key words: Smart Home Router, Intel Galileo Gen 2, OpenWrt, Soft-
ware Defined Networking

1 Introduction

In recent years, a rising number of home appliances have been equipped with
communication, networking and control capabilities to provide more functional
and convenient living environments [13]. Diverse user applications run on these
smart devices and often require network accessibility with a home router to
share a single broadband Internet access link. These home routers should be
programmable in a cost-effective way to enable future evolvable smart home
applications by providing quality-of-service and management interfaces to upper-
layer applications.

Connectivity solutions are highly anticipated to virtualize home systems for
on-demand access and easy management in a cost-effective manner to enable
future evolvable smart home applications by providing quality-of-service and
management interfaces to upper-layer applications. This is partly due to the
Internet of Things (IoT), a massive network of all devices. The number of con-
nected devices has been scaled at over 9 billion in 2017 and is estimated to

TRIDENTCOM 2017, September 28-29, Dalian, People's Republic of China
Copyright © 2018 EAI
DOI 10.4108/eai.28-9-2017.2273386



2 Nsunza and Hei

exceed above 24 billion in the year 2020. The Housing Learning & Improve-
ment Network “Housing LIN” published “SMART HOME - A DEFINITION”
in September 2003 introduced by Intertek in their project DTI Smart Homes
[5]. Intertek defines a smart home as “a dwelling incorporating a communica-
tions network that connects the key electrical appliances and services, and allows
them to be remotely controlled, monitored or accessed”. The term remotely in
this context refers to control both within and outside the smart home environ-
ment. Intertek lists three key elements that make a home “smart”: 1) a smart
home needs an internal network of wire, cable, or wireless devices; 2) it needs
intelligent control from a gateway which manages the systems; 3) a smart home
also needs home automation to link to services and systems outside the home.

The diversity of systems in smart homes is drastically increasing. From home
appliances such as; refrigerators, microwaves, coffee makers, air conditioners and
so on, to exercising equipment, smart watches, alarm clocks, security systems,
lights and many other devices. All kinds of traditional devices are becoming
smart and are designed to access the Internet and become part of the Internet-of-
Things (IoT) [12]. The IoT is a rapidly developing application area which drives
fast evolving technologies. To extend the scope of IoT devices from traditional
network devices like PCs and smart phones to all kind of things such as sensors
in home appliances requires an advanced connectivity solution with intelligent
management. For a wireless sensor operated by coin cell batteries to send small
sizes of data to the Internet, it is critical that it satisfies a certain level of energy
efficiency. Without meeting this requirement, the sensors will fail over a short
period of time. Bluetooth Low Energy (BLE or Bluetooth Smart) [8], is one of the
latest developments in this area for short range communication. It delivers low
power communications, guaranteeing sensors operate well above two years. The
future of smart homes brings all network devices, sensors, and home appliances
to the Internet of Things “IoT” to be accessed or controlled from anywhere. This
will enhance management, security, and provide the family’s necessities at their
fingertips.

The introduction of open-source hardware and software platforms has en-
abled rapid developments in various technologies. Open licenses and source codes
support collaborative projects between independent developers and companies
which has increased the design scope of hardware and software developments
once impossible for a single company to maintain over a long period. Multiple
developers collaborate to inspect Open systems and examine security holes and
other hardware and software related issues which results in rapid technology
developments. The Intel Galileo Gen 2 platform evaluated in this paper is a typ-
ical system based on open-source hardware and software technologies inspired
by the Arduino project. It is designed to expand the the functionality of the
Arduino Uno R3 from the Arduino shield ecosystem to the Linux environment
through PC standard I/O ports. This provides a simple and most cost-effective
development environment when compared to other closed platforms with similar
specifications.



Watipatsa W. Nsunza 3

In this paper, we studied the design and implementation of a smart home
router on Intel Galileo Gen 2, to support intelligent home wireless networking
and provide connectivity solutions for IoT using WiFi and BLE. More related
video clips and source codes of our project can be found for reference at [9].

The organization of this paper is as follows: In Section 2 we present our
system design. Section 3 describes the testbed implementation. In Section 4,
we conducted a series of experiments to evaluate the system performance, and
Section 5 concludes this paper and outlines some future work.

2 Testbed Design

Fig. 1: A proposed software-defined edge-cloud network architecture.

2.1 Wireless Networking

We’ve developed our system firmware on top of “OpenWrt”, a set of Open-
source Linux libraries for enabling networking on embedded systems. The design
scope of our smart home router incorporates the latest developments in trending
wireless communication technologies. IEEE 802.11 is a set of media access control
(MAC) and physical (PHY) specifications for implementing a wireless local area



4 Nsunza and Hei

network “WLAN” (also known today as WiFi). This technology operates in the
900 MHz and 2.4, 3.6, 5, and 60 GHz communication frequency bands. WiFi has
become the most dominant networking technology of this age, with applications
in computers, smart phones, and other bandwidth sensitive networking devices.
WiFi technology is built on top of the IEEE 802.11a, 802.11b/g/n, and 802.11ac
wireless communication standards. The current generation of WiFi “802.11ac”
is a dual band wireless technology. It supports multiple connections at once and
operates at the 2.4 and 5 GHz WiFi frequency bands. 802.11ac is also backward
compatible with 802.11b/g/n wireless devices and supports data bandwidth rates
up to 1300 Mbps when operating at 5 GHz and 450 Mbps at a 2.4 GHz frequency.
Fig. 1 illustrates our proposed software-defined edge-cloud network architecture.
In this architecture, our smart home router becomes the network gateway for
both WiFi and BLE home systems.

IEEE 802.15.4 “Low Rate WPAN” (BLE) is designed for low data rate appli-
cations to efficiently manage battery consumption. This allows battery powered
sensors in a Smart Home to operate for months or even years depending on their
period of activity. It is a low complexity wireless standard with specifications
also on both Layer 1 (PHY) and Layer 2 (MAC). BLE is highly adopted and an
anticipated solution for connecting IoT devices. The restriction of the data com-
munication topology at point-to-point, limited range of communications, and
the lack of IP support make it less attractive for Internet of Things applications.
The Bluetooth Special Interest Group SIG standardized the Internet Protocol
Support Profile “IPSP” with IPv6 support between devices over Bluetooth Low
Energy “6LowPan” [2]. The next problem arises due to the short range and re-
stricted topology in BLE. A mesh networking protocol for multi-hop support is
needed to overcome these limitations.

2.2 BLE Mesh Protocols

SIG formed a Bluetooth Smart Mesh Working Group in February 2015 which
joined with Cambridge Silicon Radio “CSR” to create a global standard for
Bluetooth Smart mesh[2]. The working group officially adopted profiles in 2016
and introduced “CSRmesh”. This is a flood mesh protocol that utilizes the non-
connectible advertisements in BLE for transmitting data to individual devices,
groups, sub-groups, or all devices. CSRmesh uses the simple mechanisms of flood
mesh and can communicate on a scale of up to 64,000 devices or groups per net-
work. The flood mesh routing protocol does not need to maintain a routing table
which gives CSRmesh a setup time close to zero. To support a mesh topology
in BLE, CSRmesh chose a multi-layered approach built on top of BLE. This
reduces the size of data payload per individual broadcasts [2, 3]. CSRmesh is
not an open protocol. The specifications for this protocol show that it uses flood
routing methods to connect BLE devices.

An open-source wireless mesh protocol “BLEmesh” [7] benefits from oppor-
tunistic routing. In this proof of concept, Hyun et al. proved that opportunistic
flooding has higher efficiency. The experiments demonstrate that if any interme-
diate node receives a packet sent by the source, it is captured. The probability



Watipatsa W. Nsunza 5

of at least one node receiving the packet is 0.79, thus, approximately 1.27 broad-
casts are required for the packet to reach any of the intermediate nodes. Adding
the additional broadcasts performed to the packet transmission from the inter-
mediate nodes to the destination node, 2.27 broadcasts in total are needed. Using
a flood routing protocol, the source node similarly has 1.27 packet broadcasts,
however the broadcasts from the three intermediate nodes total up to 1.2. The
sum of the two broadcasts adds up to 2.47, so the proposed methods in BLEmesh
shows that opportunistic flooding will produce optimal results.

We’ve designed a low energy solution to help balance network traffic by
managing low bandwidth exchanges between “6LowPan” enabled devices over a
separate channel. BLE support packages can be configured with newer versions
of Linux above “kernel 3.17”. “OpenWrt” provides the basic support packages
for enabling “6LowPan” [1]. Once the BLE packages are enabled on our router,
the system can be optimized to dynamically switching between BLE and WiFi
for low and high Bandwidth communications depending on the stability of the
power supply. An added function to this feature is the given ability to provide
networking in the home during a power outage and serving in regions with non-
stable power sources by adjusting the bandwidth respective to the efficiency of
the power supply. This will improve connectivity in Smart Homes. Our router
implementation is still in the early stages and BLE features have not yet been
realized on our Intel Galileo Gen 2 platform. It has been included in this research
document to serve as a reference for our future implementations.

2.3 Software Defined Networking

To efficiently manage network traffic from an extensible number of connected
IoT devices, we integrated “OpenFlow” into our smart home router. OpenFlow
is an Open-source Software Defined Networking (SDN) protocol that controls
the data forwarding layers of routing [10]. SDN is a systematic shift in the
networking architecture where the network control forwarding rule is disabled
leaving the data forwarding layers fully programmable. This change in control
provides opportunities for applications at the upper layers to seize control of the
underlying network allowing them to treat the network as a logical or virtual
entity enabling programmability [10].

OpenFlow is the first influential implementation of SDN [11]. OpenFlow is
embedded on a central gateway such as a smart home router which downloads
networking control instructions from an SDN controller to manage the network.
This central unit operates as the brain of the entire network and takes charge
of all packet forwarding decisions determined on a per-flow basis. All network
devices are virtualized in OpenFlow which allows the OpenFlow controller to
easily manage and configure each network device under a unified protocol.

Quality-of-Service (QoS) network control scripts can be extended onto an
SDN controller and improve the multimedia delivery of an embedded OpenFlow
Controller. QoS improves the overall quality of network performance, in terms
of error rates, bandwidth, throughput, transmission delay, availability, jitter and
other performance issues. QoS has been interlinked with network virtualization.



6 Nsunza and Hei

With this elaborated testbed design, we have made our efforts to develop an
open source platform for analyzing the performance of new SDN protocols to
interconnect multiple communication technologies and other open source SDN
projects for optimizing network performance and security.

3 Testbed Implementation

a: Intel Galileo Gen2 b: Galileo Linux Firmware

c: Firmware Development

Fig. 2: Testbed firmware development

Intel Galileo Gen 2 (Fig. 2a) is a development board based on the Intel
QuarkSoC X1000 application processor with a 32-bit architecture. We developed
a firmware (Fig. 2b) for this system based the OpenWrt “Trunk” source code
with “Linux kernel 3.8.13, a minor update of kernel 3.8.7 based on the uClibc
library. To build the OpenWrt packages, the initial step is to install OpenWrt
dependencies on the build system. The build system for this project was a Linux



Watipatsa W. Nsunza 7

Ubuntu 14.04 LTS distribution running on an Intel Core2 Duo HP Pavilion Dv6-
1000 computer. All packages were installed using command lines in the Linux
Shell Terminal.

Once the initial packages for building an OpenWrt Image are installed, the
OpenWrt configuration menu can be accessed from the Linux Shell as shown
in Fig. 2c. The configuration menu presents a variety of Linux source packages
that can be built into the system firmware including Ethernet, WiFi and BLE
support drivers. Instructions for selecting packages are made available in this
menu. We’ve also configured custom Linux packages into the firmware image
including OpenFlow. A firmware build requires at least 10GB of free disk space.
We loaded the firmware for Galileo with support for Ethernet, PCI, and USB to
enable the Network and Wireless interfaces on our device.

3.1 Network Support

Network interfacing can be implemented on top of OpenWrt to provide Internet
access by installing the required packages, driver, and configuration for the in-
terface. OpenWrt provide instructions on enabling peripheral devices and other
support packages for specific router architectures. OpenWrt and Linux develop-
ers have both contributed to support a number of peripheral devices. Since Intel
Galileo is not officially supported by OpenWrt, by identifying the the peripheral
interfaces on the board, we successfully installed the required drivers for the
Ethernet, Wireless, and USB devices. Supported module drivers are available
from the configuration menu.

Networking can be enabled for both WiFi and Ethernet by logging in the
router via the Shell terminal in the firmware. Intel Galileo is a switch-less device
since it only has one Ethernet interface “eth0”. To enable networking, we create
a “lan” interface under the Network configuration file of the firmware “/etc/con-
fig/network” to bridge all Ethernet interfaces together and set network address-
ing protocols as shown in Fig. 3b. We also enabled IPv6 addressing on the host
by configuring “dhcp6c” not to request prefix delegation which prevents the AP
from rejecting basic IPv6 addresses.

3.2 Wireless Support

We built the firmware and configured a wireless access point (WAP) based on
an Atheros AR9380 PCI Card (supported by the “kmod-ath9k” driver) and
the Netgear N150 WiFi Adapter (supported by the “kmod-rtl8192cu” Realtek
chipset driver) available under the OpenWrt Wireless Drivers. Next, we config-
ured the Wireless interface. Similarly after sourcing the Wireless Configuration
file “/etc/config/wireless”, we set some parameters for the WiFi AP (Fig. 3a).
The configuration file requires values for the WiFi-device and wifi-iface on each
AP. The AR9380 PCI Card interfaced on our router has 3 separate antenna
channels and can support multiple APs. For this project we’ve only evaluated
the configuration of one access point. We set the configuration of the wifi-device



8 Nsunza and Hei

under “radio0” with properties for the PCI card such as the “path” to connected
bus line, number of operational “channels”, network bandwidth “modes”, etc.
Using the parameters set for radio0, we set the device option for the wifi-iface
and routed the option network of our WiFi AP to the lan Network interface. We
set the interface mode as a WiFi AP and set the parameters for the WiFi network
ID and authentication. This creates a “wlan0” wireless interface. The firewall
also needs to be disabled to avoid blocking external devices from accessing the
connection, the “psk2” encryption set is enough security for this network.

a: WAP Configuration b: Network Interface

c: OpenFlow inband d: OpenFlow out of band

Fig. 3: Module configuration

3.3 BLE Support

In order to add BLE support for Intel Galileo Gen 2, we’re currently upgrad-
ing the Linux kernel on Galileo from v3.8.7 to the latest official release v3.18
“Chaos Calmer”. This presents a challenge due to limited resources as we’re
managing a few other projects and the current Intel QuarkSoC X1000 board
support packages are only running on Kernel v3.14. The detailed steps for up-
grading the Galileo Kernel will not be included in this research document. The
following steps are theoretical and are for information purposes only to guide in
future implementations of Bluetooth Low Energy (BLE) on Intel Galileo Gen2
and other platforms. The BLE implementation procedures in this section are



Watipatsa W. Nsunza 9

supported by another project we’ve completed recently and a few implementa-
tions in the OpenWrt community based on the “ASUS RT-N16” router and an
“x86 64 Virtual Box” [1].

Linux Kernel 3.18 and above supports the following steps for enabling Blue-
tooth Low Energy “6LowPan” support on the Intel Galileo Smart Home router.
This depends on a Bluetooth Support tool “bluez” consisting of the “bluez-utils”
Bluetooth utilities and “bluez-libs” Bluetooth library packages. Other dependen-
cies include “kmod-6lowpan”, “kmod-bluetooth”, “kmod-bluetooth 6lowpan”
and USB support drivers; “kmod-usb-core, “kmod-usb-ohci”, and “kmod-usb2”.
Once all support packages are installed onto the firmware, the bluez tool enables
establishing Bluetooth Smart connections using an IPv6 stack in the software.
The Intel Galileo router currently has been interfaced with a Bluetooth Smart
dongle “CSR 4.0” (by Cambridge Silicon Radio) through a USB connection.

The above modules enable probing of the CSR dongle. We can then set
the the PSM (Protocol/service multiplexer) channel to detect the CSR HCI
device. This creates an HCI interface “hci0” for receiving advertisements from
nearby 6LowPan enabled devices. The discovered BLE devices are listed in the
Shell terminal using the “hcitool lescan” command. To connect to a specific
device on the discovery list we echo a “connect” command containing the device
IPv6 address. This requires IPv6 address support on both the router and the
BLE device. The “hcitool con” command allows us to verify the connections
established.

To test the IPv6 protocol on the connected device, the ping command is
used to access the IP address of the device. To obtain the IP address requires a
simple conversion of the BLE device MAC address. The IPv6 address of MAC
“00:DD:F6:FF:20:DD” is calculated using the link-local prefix “fe80” which gives
the IPv6 address “fe80::2DD:F6ff:feFF:20DD”. The “ping6” command is used to
ping the BLE device followed by the “%bt0” value to reference the bt0 interface
for link-local addresses. Ensure that the btx device appears using the “hcitool
con”. Also verify whether the L2CAP CoC connection is successfully initiated
and an IPv6 link to the bt“X” (X=variable) has been created to the connection
interface using the “ifconfig bt0” command.

The connection procedures for BLE on the Smart Home router can be con-
figured to automatically connect to devices in a Smart Home on control basis of
the Smart Home router or manually from other control devices.

3.4 OpenFlow Setup

The following are the procedures for implementing OpenFlow v1.3 on the Intel
Galileo Gen 2. OpenFlow is an external Linux package. To port this package into
OpenWrt we created symbolic links of the files and packages to the root directory
and the packages directory of the OpenWrt source code; see the official website
of this project [9] for more detailed steps.

There are three configuration files for OpenFlow, the network interface config-
uration “eth0” in Section 3.1 and the wireless interface configuration file “wlan0”
in section 3.2. On most OpenWrt configurations, wireless support is disabled by



10 Nsunza and Hei

default and can be enabled through command line or by setting the “option dis-
abled” bit under wlan0 configuration file to “0”. The OpenFlow configuration file
is placed under “/etc/config/openflow”. The OpenFlow network protocol can be
configured manually to link an SDN Controller for auto-synchronization of flow
entries with new classifications. Our SDN controller is still under development
so we will not demonstrate the function and effect of an SDN controller in this
research document. We will however describe the parameters for connecting an
OpenFlow enabled router to an SDN controller. More details are available on
the project website.

Fig. 3d shows the OpenFlow outband control switch configuration. The op-
tion “dp” in this configuration defines the flow data path, and option “ofports”
are the available ports on the OpenFlow switch (or router). Option “ofctl” is
the remote controller for the network which will later take the IP address of our
SDN controller. The “mode” value changes between “inband” or “outofband”,
this refers to the exchange control between the controller and the forwarding
devices. “Out-of-Band” control links to external networks using separate Ether-
net ports for linking forward devices to the controller and for exchanging control
traffic, while “In-Band” controllers use the same links for both data and control
traffic.

Fig. 3c shows the inband control configuration for OpenFlow. In inband con-
trol, option “ipaddr” is the IP address configuration for the OpenFlow router,
“netmask” is also the netmask configuration for the router. The option “gate-
way” is the IP address of the forwarding device for the network. Our Smart Home
router performs both the control and forwarding role using In-Band mode. A vir-
tual interface can also be added for inband control named “tap0” with a specified
IP address and gateway route, the PC also needs to be configured with the sub-
net mask in order to reach this virtual interface through any OpenFlow port.
This configuration can be tested by connecting the PC to any of the OpenFlow
enabled ports, after configuring the Ethernet interface we can “ping” and/or
telnet to the specified interface. Inband control doesn’t allow routing dns and
dhcp requests/replies from or to the virtual local-port (tap0), it instead requires
statically setting the ipaddr option of the router using an IP address instead of
URL for the controller.

3.5 QoS Setup

The QoS package can be installed on the Galileo Smart Home router using two
methods. It can be installed by selecting the package in the OpenWrt configu-
ration, or simply by installing it through command line in the OpenWrt Shell
terminal on Galileo. We describe the steps for the second method in this research
paper.

The “qos-scripts” package can be installed with the “opkg install” command
in the shell terminal. Once the package is installed, the QoS configuration can be
found under the “/etc/config/qos” directory in the firmware. After configuring
the file, we can issue the script to improve the network performance using the
“start” and “enable” commands in the “/etc/init.d/qos” module.



Watipatsa W. Nsunza 11

3.6 summary

Due to the present issue in upgrading the Kernel of our router, we’ve also not
performed any OpenFlow and QoS performance tests on our Intel Galileo Gen 2
router. A full performance test will be evaluated on this router once our work is
completed. OpenFlow and QoS tests on other successful architectures however
demonstrate that good results can be achieved on the router.

4 Performance Evaluation

Fig. 4: Galileo Benchmark Testing Topology

In this section, we evaluate the performance on the WiFi implementation
on our Smart Home router. The results demonstrate the minimum, average,
and maximum throughput measurement of TCP and UDP traffic based on a
ratio of packets per unit time measured in bit/sec (bps) during data transfers
from sender to receiver on a single WiFi AP. Fig. 4 shows our “benchmark”
evaluation setup. A benchmark testing topology consists of one router connected
to the Internet and a singular access point. To setup the evaluation, we use the
“Iperf ” network bandwidth measurement tool on our “Linux Ubuntu” system.
Two systems running Iperf were connected via a single access point and the
performance is analyzed based on transmission rates over the wireless access
point. The “LAN” interface on Intel Galileo was wired to a “50 Mbps” Internet
connection via Ethernet and the systems were both linked to the WiFi access
point, one as a server and the other as the client on Iperf. The data was analyzed
on a local network from the client “receiver” end, at distinct 50 second testing
phases each with approximately 100MB of data.

On a TCP connection, throughput can be affected by the upper and lower
limits of the system windows, in-charge of controlling the amount of data pass-
ing through a network at a given instance. The Window size is determined by
the Operating System (OS) of a device. Similarly the throughput on a UDP
connection can be affected by the Buffer size of the system. Iperf can tune TCP
and UDP connections by increasing the packet buffer or window size [6]. Smaller



12 Nsunza and Hei

sized windows provide poor performance on a TCP connection, but a smaller
buffer size provides optimal performance on UDP. The idea is to adjust the
Buffer and Window size to directly improve network performance on a physical
level. Fig. 5 illustrates the TCP performance of our router for different window
sizes, performed at distinct 50 second testing phases.

0 5 10 15 20 25 30 35 40 45 50

Time (s)

9

10

11

12

13

14

15

16

T
h
ro

u
g
h
p
u
t 
(M

b
p
s
)

85.3K

128K

256K

416K

TCP Window

Fig. 5: TCP performance

TCP is not reliable for real-time applications, UDP is more efficient for ap-
plications such as Voice over IP (i.e. Skype), which don’t require precision, but
timely deliveries instead. This means that the throughput on a UDP transmis-
sion is naturally faster than that on a TCP connection. Since UDP is designed
for real-time applications, a major problem arises due to packet or datagram loss.
A single missing packet means the entire datagram is declared void and requires
retransmission which affects the entire performance. It is much safer to transfer
smaller sized packets to a larger buffer. To evaluate the Router performance on
a UDP connection, using Iperf, we tune the buffer and datagram (packet) size
simultaneously as shown in Fig. 6 and Table 1.

4.1 Data Analysis

Table 1 provides a summary of our routers TCP and UDP performance. The
default UDP packet (annotated “D”) was set at “1470” bytes and then tuned
to “32768” bytes to evaluate the performance of small and large UDP buffers.
The default TCP Window is set at “85.3K” while the default UDP buffer is set
at “208K”. The results demonstrate that small packets do not efficiently utilize
a larger UDP buffer and large packets also overwhelm a small buffer, which
increases Jitter levels and decreases performance due to packet loss. The best
UDP performance was achieved at “15.9Mbps” on a “416K” buffer with a “32K”
packet size, which resulted in increased Jitter but no packet losses. The TCP
performance was however non-stable since the protocol is designed to assure
delivery at a cost to the performance. The average TCP throughput is measured
at “12.6Mbps”.



Watipatsa W. Nsunza 13

0 5 10 15 20 25 30 35 40 45 50

Time (s)

10

12

14

16

18

20

T
h
ro

u
g
h
p
u
t 
(M

b
p
s
)

208K "D"

128K

256K

416K

UDP Buffer

Fig. 6: UDP performance

Table 1: PERFORMANCE SUMMARY

Window/Buffer TCP Max UDP Max UDP Jitter (avg.) Packet loss %
(Mbps) (Mbps) (ms) (lost/total)

85.3K 13.6 N/A N/A N/A
128K 13.6 15.6 22.73 85/2879 (3%)
208K “D” N/A 15.9 5.87 1514/65362 (2.3%)
256K 13.6 15.7 27.01 1/ 2863 (0.035%)
416K 14.2 15.9 27.64 0/ 2951 (0%)

4.2 Summary

The results show that the software switch in “OpenWrt” needs much optimiza-
tion in order to achieve optimal performance for both TCP and UDP. The system
experienced minimal packet losses though the overall performance fluctuated
during transmissions on various specifications. Performance Tests for the Intel
Galileo Gen 2 Smart Home router are still being analyzed as the system contin-
ues developing. The above tests demonstrate the most basic analysis. Due to the
current progress, much testing was not done on the proposed router. As research
and development on this project progresses, more tests will be taken to analyze
the router functionality.

5 Conclusion

In this paper, we design and implement of a smart home router based on the
Intel Galileo Gen 2 programmable platform. All the proposed subjects have been
addressed with as much detail as possible for information purposes to encourage
more research on modern technologies and to support the development of smart
homes and technology for the Internet of Things. More comprehensive evalua-
tion experiments remain to be accomplished on this smart home testbed. In the



14 Nsunza and Hei

future, we plan to extend our study to analyze the performance of our router
implementation in a smart home scenario on both “WiFi” and “BLE” interfaces
using an optimized SDN protocol. In addition, it is also very important to ex-
amine the performance optimization issues for high-density WiFi networks when
smart home routers are co-located in the proximity [4].

Acknowledgment

This work was supported in part by the National Natural Science Foundation of
China (No. 61370231), and in part by the Fundamental Research Funds for the
Central Universities (No. HUST:2016YXMS303).

References

1. IPv6 over Bluetooth smart (low energy). https://wiki.openwrt.org/doc/howto/
bluetooth.6lowpan. Accessed: 2016-05-30.

2. Smart mesh for the smart home. http://cwbackoffice.co.uk/docs/Rick\

%20Walker.pdf. Accessed: 2016-05-30.
3. CSRmesh wiki. http://wiki.csr.com/wiki/CSRmesh. Accessed: 2016-05-30.
4. Y. Gao, L. Dai, and X. Hei. Throughput optimization of multi-BSS IEEE 802.11

networks with universal frequency reuse. IEEE Transactions on Communications,
65(8):3399–3414, Aug 2017.

5. Smart home a definition. http://www.housingcare.org/downloads/kbase/2545.
pdf. Accessed: 2016-05-30.

6. iPerf - the network bandwidth measurement tool. https://iperf.fr/iperf-doc.
php. Accessed: 2016-05-30.

7. H. S. Kim, J. Lee, and J. W. Jang. BLEmesh: A wireless mesh network protocol
for bluetooth low energy devices. In 2015 3rd International Conference on Future
Internet of Things and Cloud, pages 558–563, Aug 2015.

8. J. Nieminen, C. Gomez, M. Isomaki, T. Savolainen, B. Patil, Z. Shelby, M. Xi,
and J. Oller. Networking solutions for connecting bluetooth low energy enabled
machines to the Internet of things. IEEE Network, 28(6):83–90, Nov 2014.

9. Watipatsa W. Nsunza. Design and implementation of a smart home router. http:
//itec.hust.edu.cn/~kenyon22/FYP_2016.html.

10. Open networking foundation (ONF), software defined networking: the new norm
for networks. https://www.opennetworking.org/images/stories/downloads/

openflow/wpsdn-newnorm.pdf. Accessed: 2016-05-30.
11. N. McKeown T. Anderson H. Balakrishnan G. Parulkar L. Peterson J. Rexford S.

Shenker and J. Turner. OpenFlow: enabling innovation in campus networks. SIG-
COMM Comput. Commun. Rev., 8(2):69–74, 2008.

12. Smart homes: Past, present, and future. http://www.wiredupinstallation.com/
smart-home-business-technology/smart-homes-past-present-and-future/.
Accessed: 2016-05-30.

13. Tausif Zahid, Fouad Yousuf Dar, Xiaojun Hei, and Wenqing Cheng. An empirical
study of the design space of smart home routers. In Proceedings of the 14th Inter-
national Conference on Inclusive Smart Cities and Digital Health (ICOST), pages
109–120, 2016.


