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ABSTRACT

The present study investigates the inertial sensor kinemat-
ics obtained at a critical toe-control event, Minimum Toe
Clearance (MTC), to classify different age groups. Fourteen
young and fourteen older adults performed treadmill walk-
ing at their preferred walking speed, wearing a shoe-mount
inertial sensor unit measuring tri-axial acceleration and tri-
axial angular velocities. Three dimensional (3D) position-
time data was obtained using high accurate motion capture
system. MTC timing within a gait cycle (MTCrime), cal-
culated using 3D motion capture data, was used to extract
inertial sensor kinematics at MTC event. Mean and stan-
dard deviation of three inertial sensor acceleration features
and three angular velocity features were compared between
young and older individuals using t-tests. Young adults’
mean anterior-posterior acceleration was greater than older
adults (p=0.002). Further, standard deviations (SD) of all
three accelerations and angular velocity about medio-lateral
axis were greater in Older adults. The inertial sensor kine-
matics obtained at MTCrime were able to classify young
and older adults gait with 91.2% accuracy using a Support
Vector Machine (SVM) classifier. The findings of the present
study suggest that by employing SVM techniques, a portable
inertial sensor system could be used to identify gait degen-
eration due to ageing and has the potential for wider appli-
cations in gait identification for falls-risk minimization.
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As people age, their risk of falling increases and the conse-
quences of a fall are more serious. Worldwide the population
aged more than 60 was estimated to be 688 million in 2006
but is projected to grow to almost two billion by 2050 [9].
From a biomechanical perspective, falls during locomotion
result from different destabilizing events such as tripping,
slipping and loss of balance. Of these falls-related biome-
chanical events, tripping accounts for more than 50% of falls
[13] and a high association between tripping frequency and
falling was reported in community-dwelling older adults [10].

Tripping results directly from unsuccessful toe-ground clear-
ance, primarily during the swing phase of a gait cycle. Pre-
vious research, therefore, focused on examining the lower
limb swing-phase trajectory control, represented by a biome-
chanical event during the mid-swing phase of the gait cycle,
Minimum Toe Clearance (MTC) of young and older pop-
ulations to understand the ageing effects [2,6,8]. Low toe-
ground clearance at MTC (MTCreight ~10-20mm) in addi-
tion to high foot velocity (~4.60 m/s) and a single-foot base
of support poses a significant hazard to locomotion. Fail-
ure to adequately compensate surface height variability by
adjusting clearance at MTC, increases tripping risk. Older
adults maintained their mean MT Cpeign: similar to young
individuals’ [2, 8] but their MTCheigne dispersion, charac-
terized by either the standard deviation (SD) or inter quar-
tile range (IQR) are greater than the young. This greater
stride-to-stride variability in MTCHeigh: observed in older
adults, increases the chances of toe-ground contact while
walking [1,2,8].

Automated recognition of gait degeneration is the first step
in developing different falls-risk minimization applications
in the older, such as early identification of risky gaits, ac-
tive intervention to modify the risky gaits, and monitoring
the progress of treatment outcomes. The present study in-
vestigates accelerometer and angular velocity measurements
obtained from a portable, compact and light-weight iner-
tial sensor system to automatically classify young and older
adults’ gait using Support Vector Machines (SVM). MTC, as
a cyclic event, has two physical characteristics, MTCreight,



Inertial /
Sensor

Figure 1: Rigid body marker set up and inertial sen-
sor attached to distal end of the shoe. The axes of
inertial sensor unit were marked in yellow. The bat-
tery pack and data transmission unit was attached
to the shank.

as discussed above and timing of MTC event, i.e., time of
MTC event occurrence within the gait cycle (MTCrime).
Mills et al. [8] used MTCrime to analyse the lower limb
joint angles at the MTC event to further understand swing
phase biomechanics. Mills et al. [8] reported that older
adults displayed less stance hip extension, greater swing hip
flexion and less stance hip adduction at M T Crime than the
young. Further, greater MTC variability observed in older
was mostly correlated with swing stance ankle adduction-
abduction variability, whereas, for young MTC variability
was mostly correlated with ankle plantar-dorsiflexion vari-
ability [8]. While it is reasonable to suggest that kinematics
obtained from inertial sensor signals at M T Crime, would in-
dicate greater variability in older adults, no previous study
has analysed inertial sensor signals at MTCrime.-

2. EXPERIMENTAL METHODS

The experiment was conducted in the Victoria University
Biomechanics Laboratory, Melbourne, Australia. Fourteen
young healthy adults and fourteen older adults aged 65+
with the ability to perform everyday walking for 30 minutes
without a walking aid and having no orthopaedic, respira-
tory and cardiac conditions were recruited. Older adults
also underwent following screening tests: (i) timed up and
go (< 13.5 secs [5], (ii) visual acuity (> 6/12) and (iii) con-
trast sensitivity (Melbourne edge test > 6/15 [7]. A wireless
foot-mount sensor module was employed with 6 degrees of
freedom (DOF) consisting of an accelerometer - ADXL345
and a gyroscope- ITG3200 to measure the distal foot lin-
ear accelerations and angular velocities (Figure 1 A). The
ultra low-powered tri-axis accelerometer had a £16g capac-
ity in full-scale, a sensitivity of 31.2 LSB/g and a maximum
3200 Hz bandwidth. The ITG3200 16 bit digital gyroscope
had a sensitivity of 14.375 LSBs/sec and a full-scale range
of +£2000 °/sec. The sensing unit was powered by a Sony
Ericsson BST-41 Li-Polymer rechargeable Battery with an
energy capacity of 1500 mAh that could transmit 100 Hz
data wirelessly for approximately 11 hours. The embedded
onboard system was implemented on a Freescale Semicon-
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Figure 2: Toe-height over time for a typical gait cy-
cle with an MTC event. At toe-off the toe breaks the
contact with the ground and enters into the swing
phase and at mx2 toe reaches the maximum vertical
clearance. MTCrime is calculated using nyrc, num-
ber of samples from TO event to MTC and ngaitcycies
number of total samples within the gait cycle, de-
fined from one TO to the consecutive TO event.

ductor MCU (8-bit MC9S08SHS8) and Bluetooth 2.0/EDR
communications were used to (Sena ESD200/210) transfer
the sensor data to a computer. A Matlab GUI was written
to communicate and store data from the sensor units.

2.1 Data Collection

All participants completed informed consent procedures ap-
proved by the Victoria University Research Ethics Commit-
tee. A safety harness was worn while walking on the motor-
ized treadmill. A rigid body comprising 3 infra-red emitting
diodes was attached to the distal end of the right shoe and an
imaginary marker was digitized at the lowest distal extrem-
ity of the shoe to represent the toe with respect to the rigid
body (Figure 1). The three-dimensional (3D) coordinates of
the markers were tracked relative to a three dimensional lab-
based reference system. The horizontal plane of the global
coordinate system was the treadmill deck surface, with the
anterior-posterior axis directed in line with the treadmill
belt motion. Custom built shoe-mount sensor unit was also
attached to the distal end of the right shoe and a laptop was
used to collect wirelessly transferred inertial sensor signals.

Participants’ preferred walking speed (PWS) on the tread-
mill was determined by first increasing the treadmill speed
until the participant reported the speed to be uncomfort-
ably fast (fast limit). It was then decreased until reported
to be uncomfortably slow (slow limit). The mean of three
fast and three slow limits was considered as PWS. When
required, participants were given 10-15 minutes familiariza-
tion before determining PWS. Participants walked at PWS
for 5 mins. In first and last 30 s of the trial, participants
did not walk, and the standing duration was used to sync
3D motion capture and foot-mount sensor data (Figure 3).

2.1.1 3D motion capture data

Position-time data from the Optotrak 3D motion capture
system was exported to Visual3D (C-motion, Canada) anal-
ysis software and the raw data were first interpolated to
compensate any occluded signals using a window of up to
10 frames (0.1s). A 4th order zero-lag Butterworth Filter
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Figure 3: Time synchronized 3D motion capture vertical toe-displacement signals and corresponding tri-axial
accelerometers and tri-axial gyroscopes obtained from a typical young participant for 3 complete gait cycles.

* denotes MTC event in 3D motion capture data.

with a cut-off frequency of 12 Hz was then applied to toe
displacement data. Conditioned data were saved as text
files for further processed using in-house developed MAT-
LAB v7.2 scripts (The Mathworks, Natick, MA, USA).

MTC is found in the characteristic vertical displacement
trough between Toe-off (TO) and mx2 (Figure3). Once
MTC was identified within the 3D motion capture data,
MTCrime was calculated as a percentage of total number
of samples within a gait cycle using the formula:

MTCrime = —2T€_ 4100 (1)

Ngaiteycle

where nasre is number of samples from a toe-off (TO) event
to MTC, and ngaitcycie is number of total samples within the
gait cycle, defined from one toe-off to the consecutive toe-off
event (Figure 2).

2.1.2 Inertial Sensor Signal Processing

Three dimensional acceleration measurements obtained from
the IMU were respectively foot acceleration along the medio-
lateral axis (AccX), anterior-posterior axis (AccY) and lon-
gitudinal axis (AccZ) (Figure 3). Foot angular velocity about
the medio-lateral axis (AngVelX), anterior-posterior axis

(AngVelY) and longitudinal axis (AngVelZ) were measured
using gyroscope. Both accelerometers and gyroscopes sig-
nals were high-pass filtered forward and reverse using a 2nd
order Butterworth filter (cut-off frequency 1 Hz [6]) to en-
sure zero phase shift and to remove any sensor drift. Volt-
age outputs (V) of the IMU sensor were converted to SI
(Standard-International) units using sensitivity scaling fac-
tor:

e Accelerometer (acc): 9.812 % Ve * 31.2/1000

e Gyroscope (gyro): Vgyro/14.375

Toe-off event in the inertial sensor signals were represented
by the maximum medio-lateral toe angular velocity [11]. In-
ertial sensor signals and 3D positional data were then syn-
chronised using toe-off events. Calculated MTCrim. was
then used to extract inertial sensor kinematics. In gait cy-
cles which did not show an MTC event, participant-specific
mean M 7T Crime, calculated over multiple gait cycles which
showed an MTC event, was used to extract inertial signal
kinematics for further analysis.

2.2 Data Analysis



Mean and standard deviation (SD) were calculated for each
inertial signal kinematics (3 accelerometer signals and 3 gy-
roscope signals) extracted at MTCrim. for both Young and
Older separately. Six mean and six SD values between Young
and Older were statistically compared using t-test with sig-
nificance set at .05.

2.2.1 Support Vector Machine (SVM)

Support vector machines (SVMs) [14,15,17] are binary clas-
sifiers based on Vapnik’s structural risk minimisation the-
ories [17] which achieves a trade-off between empirical risk
(training set error) minimisation (ERM) and regularisation
to avoid the problem of overfitting. Moreover, by using the
kernel trick the SVM is able to overcome the so-called curse
of dimensionality [3,4,12,16].

The SVM approximates the relation between input param-
eters x € R and class labels y using a function of the
form:

gx) =w'e(x)+b

where ¢ : R — R% is the feature map into a dg - di-
mensional feature space given a-priori, w € R the weight
vector and b € R the bias. Given a training set of N pairs
(x:,y:) the weight vector w and bias b are chosen to solve
the primal training problem:
min R (w,b) = tw'w+$ 3 &
w,b i€ELy
such that: wle(x;) +b <y, +& Vi€ Zy (2)
ngo(xi)—i—bei—&VieZN
& >0VieZn

The first term in the cost R is a regularisation term included
to minimise overfitting, while the second term is a measure
of empirical risk (i.e. training set error). The parameter
C € R* controls the trade-off between risk minimisation
and regularisation.

In practice, rather than solving the primal (2) directly the
dual form of (2) is solved [15], namely:

minQ (w,b)= 3 > Ko~ 3 ai

1,JELN 1€ELN
such that: —% <a; < % Vi € Zn 3)
> iy =0
i€

where K;; = K (xi,%x;) and K (x,y) = @7 (x) ¢ (y) is the
kernel function.

The trained machine may be written in terms of the dual
variables as:

9(x) = sgn( > @K (xi,x) +b)

i€ZN

In the present study the inertial sensor signal features ex-
tracted at MTCrime were normalized to zero mean, unit
variance (subtract the mean, divide by the SD) before test-
ing with Support Vector Machine (SVM) to classify Young
and Older gaits. Data from both young and older partici-
pants were randomized and one third of data was used to
as the training set and the rest was used to test the model

Table 1: Mean and SD of inertial sensor kinematics
obtained at MTCrim. for Young and Older adults.
* denotes significant difference between Young and

Older adults
Inertial Sensor Feature

at MTCrime Young Older P
AccX mean -1.23 -1.59 0.682
AccY mean 2.17 0.36 0.002*
AccZ mean -0.22 -0.77 0.376

GyroX mean -324.94 | -297.62 | 0.150

GyroY mean 41.27 34.66 0.678

GyroZ mean 1.18 -0.28 0.953
AccX SD 2.08 2.73 0.006*
AccY SD 1.07 1.92 0.005*
AccZ SD 1.69 2.15 0.014*
GyroX SD 14.60 | 23.39 | 1073«
GyroY SD 20.17 20.12 0.984
GyroZ SD 24.56 28.09 0.168

performance. Linear, and Gaussian RBF with g = 1e-3,
3e-3, le-2, ..., 100, 300) were examined. All the extracted
inertial sensor features were used for classification and then
only the inertial sensor signals which showed significant dif-
ference between the Young and the Older in the t-tests were
used for classification.

1. Linear kernel: K (x,y) =x"y.

2. RBF kernel: K (x,y) = exp (-2 HX*YHQ) (where
o € RM).

3. RESULTS

Figure 3 shows time synchronized 3D motion capture ver-
tical toe-displacement data and inertial sensor signals ob-
tained from foot-mount sensor system. Table 1 presented
mean and SD of 3 accelerometer features and 3 gyroscope
features extracted at MTCrim. for Young and Older sep-
arately. Only one mean was different between Young and
Older, i.e., AccZ, sagittal planar vertical acceleration, was
significantly greater in Young than Older. Standard devi-
ations of all three acceleration signals and angular velocity
about medio-lateral axis (GyroX) of Older were significantly
greater than the Young (Figure 4). Other inertial sensor sig-
nals distributions characterised by mean and SD were not
different between Young and Older.

When only the features that showed statistical differences
were fed into the SVM classifiers, the best classification ac-
curacy was obtained with linear kernel was 52.65% and with
RBF 83.6%. Gaussian RBF Kernel g was 0.9. When all six
inertial sensor kinematics were used the accuracy improved
to 92.1% with the RBF kernel.

4. DISCUSSION

The present study examined the inertial sensor kinemat-
ics obtained at MTCrime for both young and older. As
older adults generally show greater variability in gait re-
lated biomechanical parameters such as stride-width, stride
length, and most importantly MTC, it was expected that
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Figure 4: M7TCpeign: distribution of Young and
Older and a sample of distribution with (GyroX)
and without (GyroZ) a significant different between
the age groups

the inertial sensor kinematics obtained at MT'Crime should
also reflect such age-related biomechanical differences.

The study revealed that four of six inertial sensor kinemat-
ics obtained at critical toe-trajectory control event, MTC,
were different between young and older, characterised either
by mean or SD. Acceleration in the anterior-posterior axis
(AccY) was significantly lower for Older than Young. The ef-
fect on anterior-posterior inertial kinematics could be possi-
bly due to walking speed different between Young and Older.
Older adults (0.46 m/s) walked slower than the Young (0.53
m/s), however the difference in walking speed was not signif-
icantly different (p=0.07). The greater AccY at MTCrime,
therefore, was not only due to walking speed difference, but
also possibly due to ageing effects. Variability of all three ac-
celeration measurements obtained at M T Crime was signifi-
cantly greater for Older than the Young. Further, variability
of angular velocity about medio-lateral axis was also greater
for Older. In consistent with literature, MT Cheigns distri-
bution showed in Figure 4 also revealed greater variability
in Older adults than Young. Greater variability in inertial
sensor kinematics at MTCrime revealed reduced precision
in low-limb trajectory control. The present study, there-
fore suggests that the three dimensional acceleration mea-
surements and medio-lateral gyroscope reading at M T Crime
could be used to differentiate older and young gaits. In the
present study MTCrime was calculated using 3D motion
capture to extracted kinematics at critical toe-trajectory
control event, MTC. In future work, however, MTCr;ime
could be obtained directly from intertial sensor kinematics

by detecting the 2™¢ peak (minimum) medio-lateral angu-
lar velocity, GyroX (Figure3). Further, in the future study,
different classifiers such as Naive Bayes and logistical regres-
sion could be compared against SVM with cross-validation
scheme.

The SVM classification with RBF kernel outperformed lin-
ear SVM classifier in differentiating young and older gaits us-
ing these inertial sensor kinematics obtained at MTCrime.
The SVM was, however, performing better when all six fea-
tures were fed into the system than using only the fea-
tures which showed statistically significant difference be-
tween young and older adults.

5. CONCLUSION

The present study showed that the inertial sensor kinemat-
ics obtained at MTCrime were characteristically different
between young and older adults. Further the study demon-
strated that these inertial sensor kinematics at MTCrime
could be used to automatically classify young and older
adults’ gait with the aid of SVMs. These findings are sig-
nificant in suggesting that the inertial sensors could be em-
ployed in clinical or research studies to differentiate older
gaits in a non-laboratory setup while performing everyday
tasks.

6. REFERENCES

[1] R. S. Barrett, P. M. Mills, and R. K. Begg. A
systematic review of the effect of ageing and falls
history on minimum foot clearance characteristics
during level walking. Gait & Posture, 32(4):429-435,
2010.

[2] R. Begg, R. Best, L. Dell’Oro, and S. Taylor.
Minimum foot clearance during walking: Strategies for
the minimisation of trip-related falls. Gait € Posture,
25(2):191-198, 2007. doi:
10.1016/j.gaitpost.2006.03.008.

[3] N. Cristianini and J. Shawe-Taylor. An Introductino to
Support Vector Machines and other Kernel-Based
Learning Methods. Cambridge University Press,
Cambridge, UK, 2005.

[4] R. Herbrich. Learning Kernel Classifiers: Theory and
Algorithms. MIT Press, 2002.

[5] M. B. V. Iersel, R. P. C. Kessels, B. R. Bloem,

A. L. M. Verbeek, and M. G. M. Olde Rikkert.
Executive functions are associated with gait and
balance in community-living elderly people. The
Journals of Gerontology Series A: Biological Sciences
and Medical Sciences, 63(12):1344-1349, 2008.

[6] D. T. H. Lai, R. Begg, and M. Palaniswami. Svm
models for diagnosing balance problems using
statistical features of the mtc signal. International
Journal of Computational Intelligence € Applications,
7(3):317, 2008.

[7] S. R. Lord and J. Dayhew. Visual risk factors for falls
in older people. Journal of the American Geriatrics
Society, 49(5):508-515, 2001.

[8] P. M. Mills, R. S. Barrett, and S. Morrison. Toe
clearance variability during walking in young and
elderly men. Gait & Posture, 28(1):101-107, 2008. doi:
10.1016/j.gaitpost.2007.10.006.

[9] W. H. Organization. Who global report on falls



[10]

[11]

[12]

[13]

prevention in older age, 2007.

M. J. Pavol, T. M. Owings, K. T. Foley, and M. D.
Grabiner. Gait characteristics as risk factors for falling
from trips induced in older adults. Journals of
Gerontology - Series A Biological Sciences and
Medical Sciences, 54(11):M583-M590, 1999.

A. M. Sabatini, C. Martelloni, S. Scapellato, and

F. Cavallo. Assessment of walking features from foot
inertial sensing. Biomedical Engineering, IEEE
Transactions on, 52(3):486-494, 2005.

J. Shawe-Taylor and N. Cristianini. Kernel Methods
for Pattern Analysis. Cambridge University Press,
2004.

C. Sherrington, S. R. Lord, and C. F. Finch. Physical
activity interventions to prevent falls among older
people: update of the evidence. Journal of Science &

(14]

(15]

(16]

(17]

Medicine in Sport, 7(1 Supplement):43-51, 2004.

A. Smola. Regression estimation with support vector
learning machines. Master’s thesis, Technische
Universitdt Miinschen, 1996.

A. Smola and B. Scholkopf. A tutorial on support
vector regression. Technical Report NeuroCOLT?2
Technical Report Series, NC2-TR-1998-030, Royal
Holloway College, University of London, UK, October
1998.

I. Steinwart and A. Christman. Support Vector
Machines. Springer, 2008.

V. Vapnik, S. Golowich, and A. Smola. Support vector
methods for function approximation, regression
estimation, and signal processing. In Advances in
Neural Information Processing Systems, volume 9,
pages 281-187. MIT Press, 1997.



