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ABSTRACT 

We demonstrate a practical solution to track the 2-D knee angle 

trajectory of a user in real-time using inertial sensors embedded in 

a wearable knee-band wirelessly coupled with a mobile device, by 

mathematically modeling the knee as a hinge joint. We show how 

the bias of gyroscopes can be automatically computed to eliminate 

manual calibration and combined with a computationally simple 

Kalman filter model for tracking the knee-angle on a power-

constrained mobile device.  Finally, we visualize the 2-D knee 

motion trajectory in real-time using an avatar on an Android 

phone. 

Categories and Subject Descriptors 

I.2.9 [Artificial Intelligence]: Robotics --- Kinematics and 

dynamics, Sensors. 

General Terms 

Algorithms, Measurement, Human Factors, Theory. 

Keywords 

Android, Flexion Angle, Motion Tracking, State Estimation 

1. INTRODUCTION 
Continuous motion trajectory tracking of the human body is an 

emerging frontier of research that has applications in healthcare, 

sports medicine, rehabilitation and yoga [1]. Advances in 

miniature and wearable inertial sensors have made it possible to 

quantify, track and characterize body motion in everyday 

ambulatory settings. In particular, gait analysis is used to treat 

individuals with medical conditions affecting their ability to walk 

[2]. In sports biomechanics applications, gait analysis improves 

limb movements of athletes to optimize and enhance their 

performance.  

There are many advantages of using inertial sensors to track 

human motion compared to a camera-based optical marker system 

[3]. The miniature size of inertial measurement units (IMUs) 

enables measurement of full body kinematics by placing them at 

different joints and limbs, without causing hindrance to routine 

living. Inertial sensors do not require controlled laboratories like 

camera-based systems and can be deployed in real-world 

environments, thereby facilitating routine motion monitoring. 

Finally, inertial sensors consume low power which enables 

continuous motion tracking and monitoring for longer durations.  

One promising application is continuous tracking of knee-joint 

motion and trajectory for rehabilitation. Consider a patient who is 

prescribed a sequence of exercise routines to rehabilitate a 

diseased knee. Therapy requires constant supervision by a 

physiotherapist which is not a practical long-term solution and is 

also infeasible in the home. However, using wearable inertial 

sensors coupled with a personal mobile device, the patient can 

track his motion in a home-setting, get continuous feedback on his 

performance, and regularly benchmark practice against a 

prescribed exercise regimen without therapist intervention. Such a 

system can also provide corrective feedback in real-time and can 

help restore ambulation for patients recovering from fractures and 

strokes [4]. 

2. PRIOR WORK 
Prior studies have investigated knee angle tracking using inertial 

sensors assuming rigid-body motion for thigh and shank under 

conditions of 2-D and 3-D motion. Favre et. al. [5] integrated 

angular velocity data obtained from gyroscopes, and corrected the 

knee-angle estimation based on inclination data obtained from 

accelerometers gathered during rest or the constant-velocity 

motion period. Liu et. al [6] proposed a double sensor difference 

algorithm which requires two accelerometers mounted on a rigid 

board for one segment. Using data from accelerometers and 

magnetometers, they perform a 3D orientation study of the lower 

limb segments. Bennet et.al [7] proposed an extended Kalman 

filter model to calculate the walking distance and gait parameters 

by measuring knee angle using gyroscopes and accelerometer. 

Watanabe et. al. [8] use an error-state complimentary Kalman 

Filter to combine measurements from accelerometer and 

gyroscope to calculate an accurate estimate of the knee flexion 

angle. Sen Qiu et. al. [9] use triaxial accelerometer, magnetometer 

and angular rate sensors to calculate orientation quaternion of the 

shank to compute its 3D orientation while walking and transmit 

this data to an XBUS logger for data aggregation and 

communication to pc via Bluetooth. Liu et. al [10] propose a gait 

parameter measurement and a phase detection system. This 

approach uses data from thigh, shank and foot mounted inertial 

sensors and an 8 channel data recorder for logging and motion 

feature extraction algorithms on the PC.  All these studies require 

a manual procedure for gyro bias estimation for input to the 

Kalman Filter. For example, Bennet et.al [7] used an average of 

gyroscope readings under static conditions to estimate the bias for 

an extended Kalman filter model to calculate knee motion 

parameters. Estimation of bias for a gyroscope is challenging, 

especially for low-cost sensors. Usually the user must manually 

calibrate the gyroscope by running static experiments, making the 

solution obtrusive and unattractive for routine use. Moreover, in a 

full-body motion-tracking wearable system, the user is 
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instrumented with many IMUs, each with a tri-axial gyro - 

rendering manual bias correction for multiple IMUs infeasible. A 

usable knee-trajectory tracking system must be autonomous and 

should not entail any manual calibration requirements. Prior art 

knee motion tracking solutions are not a good fit for ambulatory 

and automatic real-time trajectory tracking of body motion on a 

personal mobile device. They are either computationally 

demanding or require obtrusive user-calibration of the gyroscopes 

[9], or require a special data logger device with WiFi for data 

transmission and post-processing [9,10]. These data loggers and 

aggregators [9,10] are not viable for ambulatory tracking as they 

are cumbersome, unsuited for real-time feedback and expensive.  

Although automated systems for real-time knee motion tracking 

using a personal mobile device are attractive, stringent constraints 

need to be met to realize a practical embodiment. These include a 

user-centric design with no manual calibration for IMU bias, a 

compact Kalman Filter implementation for power efficiency, real 

time data transmission and  processing, efficient computation on a 

mobile device  (e.g. phone or tablet), and rendering the knee 

motion trajectory in real-time on an avatar. 

 

3. CURRENT WORK 
In the present work, we demonstrate a user-friendly solution to 

track 2-D knee motion in real time on a mobile phone using 

IMUs. Our approach consists of: (i) a gyro bias estimation 

algorithm that is automatic and requires no user input whatsoever, 

(ii) a simplified Kalman filter for a mobile implementation that is 

~2X faster than the conventional Kalman filter approach and (iii) 

an android application on a smartphone to track and visualize 

user’s 2-D knee motion in real time. We can thus demonstrate a 

practical embodiment of a real-time knee-angle tracking solution 

on a mobile phone using wearable inertial sensors over Bluetooth 

Low-Energy. 

3.1 Wearable System Configuration 
For knee motion tracking, we capture the movements of the thigh 

and the shank independently, assuming each as a rigid body 

element. We instrument each segment, i.e. the thigh and shank, 

with an IMU as shown in Fig. 1.We also fabricated a conformal 

band that snugly wraps around the knee to resist motion artifacts. 

The band houses two IMU nodes as shown in Fig. 1. The thigh 

sensor node has a microcontroller and a battery that also supplies 

power to the shank sensor node, which is connected via a flexible 

interconnect. Each sensor node has an InvenSense® MPU-9150TM 

inertial measurement unit that consists of a tri-axis accelerometer, 

gyroscope, and magnetometer. We set the digital-output 

accelerometer to provide a full scale range of ±2g. We set the 

digital-output gyroscope to give a full scale range of ±250 

deg/sec. Since we restrict the current study to 2D motion tracking, 

we do not use the magnetometer. The data from both IMUs is 

sampled by the microcontroller using the I2C interface every 

50ms i.e. the sampling frequency is 20Hz. The microcontroller 

transmits the measured data to an android tablet/phone in real-

time over a Bluetooth low energy (BLE) radio link. We evaluate 

our knee-motion tracking solution for walking, flexion and 

cycling activities performed by three users (N=3).  We use a 

mechanical jig with a wooden robotic arm for ground-truth 

measurements and validation. 

 

Figure 1 Wearable System Configuration 

3.2 Mathematical Model for Knee Angle 

Estimation 
To enable accurate tracking of knee motion, we must describe 

several parameters that relate to the instantaneous orientation of 

the user’s limbs. An efficient mathematical model that relates 

these kinematic parameters to the measurements from the inertial 

sensors is the primary contribution of this work. 

We use the instantaneous joint angles as motion parameters. 

Combining these angles with information about user’s segment 

(thigh and shank) lengths, it is possible to extract rich gait 

parameters such as step length, stride length etc. In this study we 

limit our scope to estimating the joint angles using measurements 

from inertial sensors. However, this task is not trivial as inertial 

sensors are prone to random and systematic errors which are 

reflected in the parameters derived from them. Hence, our 

mathematical model must accurately predict joint angles in the 

face of this measurement uncertainty. 

The random noise of the accelerometers contributes to jitter in the 

angle estimates and the non-zero bias of the gyroscope leads to 

integration drift which restricts accurate estimation of angles to 

barely few seconds. Thus, we need a sensor fusion algorithm, 

based on an underlying mathematical model for the system 

dynamics and measurement error, which can mitigate the 

measurement uncertainty of the accelerometer and gyroscope (i.e. 

noise and bias), and at the same time harness their complimentary 

properties (i.e. long-term and short-term stabilities respectively) to 

advantage so as to produce accurate motion parameters. One 

contribution of this work is a Kalman filter model for knee-angle 

estimation in our wearable system configuration. The dynamics of 

sensors are used to determine suitable process and measurement 

model equations that relate the unknown state (i.e. the angles) to 

the measurements.  

Related studies have explicitly incorporated a bias variable as part 

of the Kalman state estimation vector because the gyro bias can be 



dynamically estimated as part of the Kalman filter. When this 

traditional approach to estimating bias is applied to the knee-angle 

estimation problem, it introduces a usability problem since gyro 

bias is calibrated manually a-priori. A second contribution of this 

work is a technique to dispense with the in-run bias estimation by 

pre-processing the sensor readings. This leads to a more efficient 

and usable implementation. 

In the following section, we develop a conventional Kalman filter 

model for knee angle prediction for our wearable system 

configuration. We then describe a modified Kalman filter 

formulation which accurately estimates knee angle without 

including any bias terms in the state vector. This modified filter is 

simpler to implement, provides good accuracy and is well suited 

for a mobile implementation. 

3.2.1 Conventional Kalman Filter Model with bias 

variable in state vector 
We assume rigid-body motion of the knee and restrict this motion 

to the plane of walking only i.e. the sagittal plane. We ignore the 

coronal and transverse plane motions i.e. abduction/adduction and 

internal/external rotations since they do not significantly affect the 

knee flexion angle. We model the knee as a two-link revolute, i.e. 

a hinge joint with flexion as the dominant motion 

Fig. 2 is a schematic representation of a user’s lower limb and its 

stick model equivalent. In the figure, the line segment A-S1-B-S2-

C is the geometric representation of the instantaneous orientation 

of the user’s lower limb. The segments A-S1-B and B-S2-C 

represent the thigh and shank respectively. Point A represents the 

fixed hip joint and point B is the patella. Locations S1 and S2 

represent the inertial sensor nodes on the thigh and shank 

respectively. Conceptually, segment S1-B-S2 represents the 

wearable knee band embedded with the inertial sensors at 

coordinates S1 and S2. 

The instantaneous flexion angle between thigh and shank during 

dynamic motion is calculated as the internal angle ∠ABC (180 −
𝜃2) in Fig. 2. To estimate 𝜃2, we need to first obtain angles 𝜃1, 

which represents angle between thigh and vertical, and angle 𝛼, 

which represents angle between shank and vertical. The 

relationship between these angles can be geometrically deduced as 

below: 

𝜃2 = 𝜃1 − 𝛼           (1) 

In a conventional Kalman filter, the thigh angle 𝜃1 is first 

predicted using thigh gyroscope readings (location S1) and 

corrected by corresponding accelerometer readings. This approach 

enables one to take advantage of the long term stability of the 

accelerometer and the short term stability of the gyroscope. 

A gyroscope sensor reports instantaneous angular rate of rotation 

about its sensitive axes. To find the absolute angle in any rotation, 

the gyro readings are integrated over the duration in which the 

rotation occurs from an initial reference orientation (2D motion). 

However, gyroscopes are affected by a bias error i.e. they give a 

non-zero rate even when stationary. As a result, the knee angles 

calculated using bias-prone gyroscope measurements are 

erroneous and increase linearly without bound, a phenomenon 

referred to as integration drift. Unless the bias is eliminated, the 

gyroscope cannot estimate knee angles accurately. Since the bias 

is a systematic error, a commonly used technique to estimate the 

bias is to sample several measurements over a stationary period 

and take their average. 

 

Figure 2 Schematic of the knee modeled as a hinge joint 

Typically, the gyroscope is left stationary for a short duration, say 

a 20-second period (i.e. number of samples at 20Hz sampling = 

400). The measured samples are averaged to give the bias value as 

in equation (2) below wherein 𝜔𝑠𝑖  is the ith sample of angular rate 

measured by the gyroscope: 

𝛽 =
 𝜔𝑠 𝑖

𝑁
𝑖=1

𝑁
           (2) 

This static bias estimation process assumes that the bias remains 

constant over the run of the experiment and does not include drifts 

in bias caused due to thermal issues, random walk and other bias 

instability errors. The conventional Kalman Filter recursively 

corrects the gyro-bias errors by fusing it with an independent 

estimate of the knee angle derived from accelerometer 

measurements. The gyro bias is included as a separate variable in 

the conventional Kalman model and is updated at every time step 

of the experiment to account for major drifts. The Kalman filter 

recursively calculates the best estimate of the bias at each time 

step and computes the optimal trajectory that has the least error. 

The inclusion of the bias variable in the state vector is required for 

high accuracy trajectory tracking seen in many applications such 

as satellite, missile tracking. Since gyroscope bias values change 

from run to run, the bias estimation must be done every time 

before a user begins to track her motion i.e. before the knee angles 

can begin to be computed. This manual calibration is impractical 

for everyday use. In section 3.2.2, we demonstrate an automatic 

bias estimation algorithm that closes this gap. 

3.2.1.1 Calculating thigh angle 𝜃1 
We implement two Kalman Filters, one to estimate the thigh angle 

𝜃1 and second, to estimate knee angle 𝜃2. We calculate 𝜃1  by 

fusing the thigh angles computed independently from gyroscope 

and accelerometer sensors. In Fig. 2, the gyro mounted in location 

S1 provides angular rate 𝜔𝑠1 and measures the rotation of the 

thigh about hip joint A. The sensitive axis of the gyro at location 

S1 is the one that is perpendicular to the plane of rotation i.e. its 𝑥 

axis. By convention we assume counterclockwise rotations as 

positive. The gyroscope measured angular rate, 𝜔𝑠1 can be 

written as a sum of the true angular rate of the thigh 𝜔𝑝1 and a 

bias value specific to the gyroscope i.e. 𝛽1 (3).  

𝜔𝑠1 = 𝜔𝑝1 + 𝛽1            (3) 

We integrate 𝜔𝑝1 to calculate 𝜃1as in (4): 

𝜃1 =  𝜔𝑝1 𝑑𝑡           (4) 

Substituting the value of 𝜔𝑝1 from (3) in (4): 

𝜃1 =  (𝜔𝑠1 − 𝛽1)𝑑𝑡          (5) 



We implement integration procedure (5) in a discrete-time 

Kalman Filter [19-20] described later in equations (9-10). To 

obtain an independent estimate of thigh angle 𝜃1, we use the 

accelerometer as an inclinometer/tilt sensor [11]. Note that the 

accelerometer can be used as a tilt sensor only under the 

assumption of slow physical motion of the associated limb i.e. 

when the net magnitude of motion contributed acceleration is 

negligible. Referring to Fig. 2, note that 𝑎1𝑦  and 𝑎1𝑧  are the 

normal and tangential accelerations (with reference to thigh) 

reported by the accelerometer at location S1. These readings are 

relative to the sensor frame, i.e. the local reference frame that 

supports the inertial sensor. We calculate the angle 𝜃1 𝑎𝑐𝑐 , defined 

as the thigh angle using an inverse tangent function (6): 

𝜃1𝑎𝑐𝑐
=  𝑡𝑎𝑛−1 𝑎1𝑦

𝑎1𝑧
                (6) 

The thigh angle 𝜃1 𝑎𝑐𝑐  is prone to noise because of the 

susceptibility of the accelerometer to impact and jitter. To 

eliminate this noise, we fuse the knee angle estimate from the 

accelerometer with that of the gyroscope (5) via a Kalman Filter. 

Consider the generalized state space representation of the Kalman 

Filter (7): 

𝒙𝒌+𝟏 =  𝐴𝒙𝒌 +  𝐵𝒖𝒌 + 𝑤𝑘  

𝒛𝒌 =  𝐻𝒙𝒌 +  𝑣𝑘            (7) 

Wherein, 

𝒙𝒌  is the state vector at time instant 𝑘 

𝒖𝒌  is an input control vector 

𝑤𝑘   is the process noise 

A     is the state transition matrix 

B     is the input control matrix 

𝒛𝒌   is the observation made at time instant 𝑘  

H    is the measurement/observation matrix  

𝑣𝑘    is additive measurement noise 

 

The Kalman Filter assumes that the process noise and 

measurement noise random processes 𝑤𝑘  and 𝑣𝑘  are uncorrelated, 

white-noise processes with covariance matrices 𝑄 and 𝑅. We can 

write: 

𝐸 𝑤𝑘𝑤𝑘
𝑇   =  𝛿𝑖𝑗 𝑄 

𝐸 𝑣𝑘𝑣𝑘
𝑇   =  𝛿𝑖𝑗 𝑅 

𝐸 𝑤𝑘𝑣𝑘
𝑇 =  0 

𝐸(𝑣𝑘𝑤𝑘
𝑇)   =  0          (8) 

where 𝐸 is the expectation operator and 𝛿 is the Kronecker Dirac 

Delta Function 𝛿𝑖𝑗 = 1 when 𝑖 = 𝑗, else 𝛿𝑖𝑗 = 0. 𝑄 is the process-

noise covariance matrix and 𝑅 is the measurement noise 

covariance matrix. The algorithm of the generalized Kalman Filter 

is shown in Fig. 3 [12]. 

We formulate the discrete time version of equations (3-5) that 

relate thigh angles 𝜃1, thigh gyroscope angular rate 𝜔𝑠1 and bias 

𝛽1 below  in equation (9). The time steps 𝑘 + 1 and 𝑘 refer to the 

current and previous values of time step where 𝑘 ∈  ℕ  : 

𝜃1𝑘+1 = 𝜃1𝑘 +  𝜔𝑠1 − 𝛽1 𝑑𝑡 

𝛽1𝑘+1
= 𝛽1𝑘

          (9) 

 

 

Figure 3 Kalman Filter algorithm 

We rewrite above equations as a state space representation (10): 

 
𝜃1

𝛽1
 
𝑘+1

=  
1 −𝑑𝑡
0 1

  
𝜃1

𝛽1
 
𝑘

+  
𝑑𝑡 0
0 0

  
𝜔𝑠1

0
 
𝑘

                     (10) 

This (eq. 10) defines the process model for the Kalman Filter to 

determine 𝜃1. Separately, we derive a measurement model (see eq. 

7) for the knee angle 𝜃1 𝑎𝑐𝑐  using the accelerometer 

measurements. Based on (6), we can write: 

𝑧 = 𝜃1𝑎𝑐𝑐 =  𝑡𝑎𝑛−1 𝑎1𝑦

𝑎1𝑧
        (11) 

Formulating equation (11) using the generic measurement model 

in (7), we find that: 

 The measurement vector  𝑧 = 𝜃1 𝑎𝑐𝑐  

 The measurement/observation matrix  𝐻 = [1 0] such 

that 𝐻 ∗ 𝒙 =  1 0 ∗  
𝜃1

𝛽1
 = 𝜃1 

We initialize error covariance matrix (12) 𝑃0 = 𝐿 ∗ 𝐼2 where 

𝐼2 the 2 x 2 identity matrix and 𝐿 is a large number (1000 for our 

case). We choose this value empirically so that the Kalman filter 

iterations start with a high measurement uncertainty and converge 

towards reduced uncertainty as 𝑃 gets recursively updated by the 

algorithm.   

𝑃 =  
1000 0

0 1000
         (12) 

The off-diagonal terms of the error covariance matrix are zero as 

the state variables 𝜃1 and 𝛽1 are uncorrelated. Likewise, the 

process noise covariance matrix 𝑄 (13) is a 2 x 2 block diagonal 

matrix [12-13]:  

𝑄 =  
𝜎𝜃 0
0 𝜎𝛽

 =  10−4 0
0 10−6        (13) 

The parameters 𝜎𝜃  and 𝜎𝛽  are r.m.s noise parameters of angle 

estimate using gyroscope and are empirically determined based on 

the noise susceptibility of 𝜃 on gyroscope angular rates. We 

selected and tuned these parameters for least error in our models 

[12-13]. Likewise, the measurement noise covariance matrix 𝑅  in 

the generalized Kalman Filter in Fig. 3 represents the root mean 

square (r.m.s) of the noise in angles predicted using the 

accelerometer. Based on the measurement model, the 𝑅 matrix 

contains a single element 𝜎𝑟 . Its value is the variance of the angles 

calculated using raw accelerometer measurements which, in our 

experiments was found to be to be 10-3. 



3.2.1.2 Calculating knee angle 𝜃2 
We likewise estimate 𝜃2  by fusing the gyroscope and 

accelerometer readings via a Kalman Filter. Let 𝜔𝑠2 be the 

angular rate reported by the gyroscope on the shank at location 

S2.  In this case, the gyro at location S2 reports the sum of the 

actual angular rates of the shank 𝜔𝑝2 and thigh 𝜔𝑝1. 
Furthermore, the shank gyro is corrupted by its own bias value 𝛽2. 

Thus, we can express the sensor reported angular rate as (14): 

𝜔𝑠2 = 𝜔𝑝1 + 𝜔𝑝2 + 𝛽2        (14) 

We integrate 𝜔𝑝2 to calculate 𝜃2  as in (15): 

𝜃2 =   𝜔𝑝2 𝑑𝑡         (15) 

𝜃2 =    𝜔𝑠2 − 𝜔𝑝1 − 𝛽2 𝑑𝑡       (16) 

Substituting the value of 𝜔𝑝1 from (3) in (16) we have (17): 

𝜃2 =  (𝜔𝑠2 − 𝜔𝑠1 −  𝛽2  + 𝛽1  )𝑑𝑡  (17) 

The discrete time implementation of (17) is expressed as:  

𝜃2𝑘+1 = 𝜃2𝑘 +  𝜔𝑠2 − 𝜔𝑠1 + 𝛽1 − 𝛽2 𝑘  𝑑𝑡                           (18) 

𝛽2𝑘+1
= 𝛽2𝑘

     (19) 

We cast equation (19) in the state-space representation to comply 

with the Kalman filter model (7) below: 

 
𝜃2

𝛽2
 
𝑘+1

=  
1 −𝑑𝑡
0 1

  
𝜃2

𝛽2
 
𝑘

+  
𝑑𝑡 0
0 0

  
(𝜔𝑠2 − 𝜔𝑠1 + 𝛽1)

0
 
𝑘

       (20) 

This completes the process model for 𝜃2. We now derive the 

measurement model for 𝜃2 . We do not have a direct estimate of 

𝜃2 from the accelerometer at location S2 because 𝜃2  does not 

represent the tilt of the shank with respect to the vertical. The tilt 

of the shank with the vertical is denoted as 𝛼 (Fig. 2) and is 

obtained in equation (21) from accelerometer readings 𝑎2𝑦  and 

𝑎2𝑧  at location S2 which represent normal and tangential 

accelerations (with reference to shank). 

𝛼 = 𝑡𝑎𝑛−1 𝑎2𝑦

𝑎2𝑧
        (21) 

Eq. 22 shows the relation between angles 𝜃1, 𝜃2 and 𝛼. We obtain 

angle θ2 based on the readings of accelerometer at locations S1 

(i.e. θ1) and S2 (i.e. 𝛼).  

𝜃2𝑎𝑐𝑐 = 𝜃1𝑎𝑐𝑐 − 𝛼𝑎𝑐𝑐 = 𝑡𝑎𝑛−1 𝑎1𝑦

𝑎1𝑧
− 𝑡𝑎𝑛−1 𝑎2𝑦

𝑎2𝑧
     (22) 

Thus, we obtain an independent estimate of angle 𝜃2 using 𝜃1 and 

𝛼 from the accelerometer. Referring to the Kalman Filter equation 

(7), we can see that: 

 The measurement vector is 𝑧 = 𝜃2𝑎𝑐𝑐  

 The measurement/observation matrix is 𝐻 = [1 0] such that 

𝐻 ∗ 𝒙 = [1 0] ∗  
𝜃2

𝛽2
 = 𝜃2 

The error covariance matrix, the process covariance matrix and 

measurement covariance matrix are initialized with the same 

values as in (12) and (13).  

The conventional Kalman filter described above assumes that the 

bias is known a-priori, and uses it within the Kalman algorithm. 

This estimation procedure has the disadvantage of being user-

unfriendly because it requires a manual calibration to determine 

the bias prior to use in the wearable system. In the next section, 

we overcome this limitation. 

3.2.2 Kalman filter with automatic de-biasing 
We formulate an alternate Kalman filter model in which we 

remove the gyro-bias variable from the state vector in Kalman 

filter.  We automatically compute the gyro bias and subtract this 

estimate from the gyroscope measurements prior to using them in 

the Kalman filter. This approach reduces the dimension and 

computational complexity of Kalman Filter implementation and is 

a better fit for continuous trajectory tracking using constrained 

battery-powered device such as a phone. Despite the pre-

processing overhead for de-biasing along with a simplified 

Kalman filter, the overall computational complexity is less than 

the conventional Kalman method, as we will demonstrate later.  

Fig. 4 shows our automatic gyro bias estimation algorithm. It 

assumes that the bias is dominated by a static component 

(constant term) and variations due to drift and random walk errors 

are relatively small. This assumption would be appropriate in 

practice for non-critical daily tracking applications. We then 

approximate the bias using the DC component (constant term) of 

the Fourier transform of the gyroscope measurement under 

arbitrary activity. When the user initiates an activity, our 

algorithm uses the first 1000 gyroscope samples to estimate the 

bias. Every sample of the angular rates acquired after this window 

of 1000 samples is used for angle estimation in the Kalman filter. 

For longer duration activities, we envision that the bias may need 

to be automatically re-estimated periodically to compensate for 

any drift errors. Since the bias is computed in real time, we de-

bias the gyro signal by subtracting the DC component from the 

raw measurements acquired subsequently. We have empirically 

validated our assumption on the nature of bias by demonstrating 

that our algorithm is able to predict knee angle trajectories 

accurately. 

 

Figure 4 FFT based automatic gyroscope de-biasing algorithm 

Using the de-biased gyroscope signal, we then formulate a 

Kalman filter that directly uses a clean gyro signal as input 

without any bias term in the state vector. The dimension of the 

state vector is now unity instead of two (in a conventional model), 

and the corresponding state transition, error covariance and 

process noise covariance matrices are of size 1x1 instead 2x2. The 

state estimation equations for the thigh angle are as follows: 

𝜃1𝑘+1 = 𝜃1𝑘 + 𝜔𝑝1 𝑑𝑡  

𝑧 = 𝜃1𝑎𝑐𝑐               (23) 

In this model, the state vector is 𝑥 = 𝜃1𝑘  , the state transition 

matrix is 𝐴 = 1, the control input matrix is 𝐵 = 𝑑𝑡, the control 

input vector is 𝑢 = 𝜔𝑝1, the measurement vector is 𝑧 = 𝜃1𝑎𝑐𝑐  and 

the measurement/observation matrix is 𝐻 = 1. Similarly, we 

formulate the shank angle model as follows: 

𝜃2𝑘+1
= 𝜃2𝑘

+  𝜔𝑝2 − 𝜔𝑝1 𝑘𝑑𝑡  

𝑧 = 𝜃2 = 𝜃1𝑎𝑐𝑐 − 𝛼𝑎𝑐𝑐                             (24) 

The state transition matrix 𝐴, the control input matrix 𝐵 and the 

measurement matrix 𝐻 are same as for 𝜃1 above. The state vector 

is 𝑥 = 𝜃2𝑘 , the control input vector is 𝑢 = 𝜔𝑝2 − 𝜔𝑝1 and the 

measurement vector is 𝑧 = 𝜃2 . 

This simplified Kalman Filter works for the auto de-biasing 

scheme because the actual bias value is always close to the in-run 

bias. Since the in-run bias is not updated at every time step in this 
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approach (in contrast to the conventional Kalman Filter 

formulation, see section 3.2.1), the computed trajectory may not 

be optimal (in the Kalman sense) and will depend on the extent to 

which the in-run bias diverges from the actual bias. This 

approach, however, has that additional advantage that it allows 

periodic re-computation of the current in-run bias in real-time to 

correct drifts.  If we were to instead use the static bias estimate 

(eq. 2) in this simplified Kalman filter formulation, the resultant 

angle estimate would progressively drift from reality. 

Furthermore, the use of static bias is impractical because the bias 

value cannot be dynamically updated on-the-fly in the middle of 

an activity. 

 

4. RESULTS AND DISCUSSIONS 

We first examine whether the bias can be approximated by the DC 

component of the Fourier transform of real-time gyroscope 

measurements for a user-friendly motion tracking design.  Next, 

we assess the efficacy of our simplified Kalman filter model in 

comparison to the conventional Kalman filter for walking, flexion 

and cycling activities. Finally, we demonstrate automatic knee 

trajectory tracking using an avatar on a mobile phone use our 

modified Kalman filter algorithm.  

To determine if our FFT algorithm is effective for gyro-bias 

estimation, we use static calibration bias as a reference (eq. 2). To 

assess whether the bias value is sensitive to activity type, we 

compute the bias for the three activities. To determine the right 

sampling window size for a reliable and consistent bias estimate, 

we also assessed the behavior of bias for different window sizes. 

In Fig. 5, the x-axis is the sample window size and the y-axis is 

the predicted bias estimate using the FFT method proposed in 

Section 3.2.2. The orange, blue and purple curves indicate FFT 

estimated bias values for flexion, walking and cycling activities. 

The static bias estimated using the standard averaging method is 

~0.81deg/s which is indicated by green horizontal line in Fig. 5. 

For a sampling window size greater than ~1000 samples, the bias 

estimate remains practically unchanged across the three activities. 

The bias for a 1000 sample window is within 5% of the static bias 

value. This result suggests that a good enough estimate of the bias 

can be calculated in real-time paving the way to a much improved 

user experience (since no manual calibration is required). At 20Hz 

sampling frequency, the 1000 sample window size corresponds to 

50 seconds of measurement time, implying that the trajectory of 

the user should be tracked continuously 50s after the activity is 

initiated to automatically ascertain the gyro-bias. We now 

evaluate the effectiveness of our simplified Kalman filter 

formulation by comparing against the conventional Kalman filter 

model as a baseline. Fig. 6 shows the results of predicted knee 

angle trajectories for cycling, flexion and walking activities for a 

user. The graphs in Fig. 6 show the flexion knee angle i.e. 

(180 − 𝜃2 in Fig. 3) against time for the simplified Kalman filter 

as well as for the convention Kalman filter. The static gyro bias 

value for the conventional model (refer to eq. 2) are 0.83 deg/s 

and -0.5 deg/s for the thigh and shank IMUs respectively.  

The bias values automatically estimated by the FFT algorithm are 

0.94 deg/s and -0.55 deg/s. For flexion and cycling, the angle 

predicted by our modified Kalman filter has a maximum- error of 

just 1.8 degrees relative to the conventional Kalman filter. For 

walking, the maximum error for the predicted angle is 3.7 deg. 

For vigorous activities, we expect this error to increase due to 

higher motion artifact in dynamic movements and increased 

sensor movement relative to the thigh/shank. For this set of 

experiments, our modified Kalman Filter model predicts the knee 

angle trajectory well and is an especially good fit for full-body 

tracking solutions that use multiple gyroscopes each needing 

calibration for bias.  

 

 

Figure 5 Sensitivity of estimated bias to sample window size 

 

 

Figure 6 Knee angle profiles for cycling, flexion and walking  

To quantify the computational benefits of our simplified Kalman 

filter model, we estimated the execution time in MATLAB (Table 

1) and found that the simplified model runs ~2X faster than the 

conventional model without any significant loss of accuracy even 

when taking into consideration the de-biasing logic in the 

simplified Kalman filter algorithm. This demonstrates how knee 

angle can be tracked in real-time without any user calibration 

while simultaneously reducing computational load, enhancing 

battery life on a mobile device. 



Table 1 Comparison of Conventional and Simplified KF 

models 

Parameter 
Conventional 

Kalman Filter 

Our Simplified 

Model 

Process 

Model 

 
𝜃1

𝛽1
 
𝑘+1

=  
1 −𝑑𝑡
0 1

  
𝜃1

𝛽1
 
𝑘

+  
𝑑𝑡 0
0 0

  
𝜔𝑠1

0
 
𝑘
 

𝜃𝑘+1 = 𝜃𝑘 + 𝜔𝑑𝑡 

Measurement 

Model 
𝑧 = 𝜃1𝑎𝑐𝑐  

𝐻 = [1 0] 
      𝑧 = 𝜃1𝑎𝑐𝑐  

𝐻 = 1 

State Vector 

Dimensions 
2 1 

Run time in 

MATLAB 
2X 1X 

 

Finally, we demonstrate automatic knee trajectory visualization 

via an avatar animation on a mobile-phone. Using the motion 

parameters estimated by the state estimation algorithm, we created 

an animation of the lower limb of the user in the sagittal plane. 

Figure 8 shows an avatar that tracks the knee-angle in real-time. 

To ensure a smooth rendering of the user’s motion, the avatar gets 

updated every 50ms on the mobile phone. 

 

 
Figure 5 Snapshots of a user’s leg and simultaneous motion 

tracking by our application. 

This work has the following limitations: Our mathematical model 

is based on the assumption that the knee can be modeled as a 

perfect hinge joint, which, in reality, is not the case.  Further, this 

model assumes that the anatomical axes and the axes of the sensor 

frame are perfectly aligned, which is not true. We have not 

quantified the errors resulting from such approximations. This 

requires the use of an optoelectronic camera based system as an 

independent ground truth to quantify the accuracy of our 

algorithms and calibration to account for the misalignment of 

sensor and anatomical axes. Further, this approach does not 

readily scale to other joints such as the shoulder because of these 

assumptions. We have not evaluated the suitability our technique 

for noisy signals under highly dynamic conditions such as those in 

sports monitoring applications.  

5. CONCLUSIONS 

We have demonstrated a practical embodiment of a real-time knee 

motion tracking solution on a phone using a smart wearable knee 

band instrumented inertial sensors. Our approach offers a user 

friendly alternative to a complex camera based motion tracking 

system. We achieve this by combining an automatic gyro de-

biasing technique with a computationally efficient Kalman Filter 

algorithm.  
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