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ABSTRACT 
Manual muscle testing and its variants have a long history of use 
for classifying muscle strengths. For the first time, inexpensive 
wearable wireless sensors combined with machine learning 
techniques are used to classify different levels of muscle strength, 
which addresses some limitations of the manual method. A mean 
accuracy of 93% was obtained across ten subjects using 
gyroscope and accelerometer data in classifying four distinct 
levels of strengths of the biceps brachii muscle when performing 
muscle contraction under appropriate load. This was reduced by 
2% for accelerometer-only data, thus offering a potentially 
inexpensive and viable solution for testing muscle strength.  
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1. INTRODUCTION 
Muscle strength can be reduced for a number of reasons such as 
the result of a stroke, Parkinson’s disease or bone fracture. 
Patients would be required to undergo a regime of rehabilitation to 
improve their muscle strength. Muscle testing is important to 
calibrate the strength and track improvements in movement during 
the treatment. Accurate assessment of muscle strength is therefore 
central in determining the course of treatment by physiotherapists. 
The two common techniques for muscle testing are Manual 
Muscle Testing (MMT) and Handheld Dynamometry (HHD). 
MMT is a popular choice amongst physiotherapists where the 
equipment cost of the dynamometer is an issue. However, MMT 
has been criticised for its seeming lack of objectivity as the 
physiotherapist’s strength is said to influence the assessment [1]. 
It has been suggested that MMT is more reliable when assessing 
heavy impairment, but equipment-based testing is preferred in the 
cases of moderate or mild levels of impairment [1].  

This paper proposes a wireless sensor-based approach to test 
muscle strength accurately and objectively. The method uses an 
Orient speck [2], which combines a tri-axial gyroscope, 
accelerometer and magnetometer with wireless networking 

capabilities. The sensor data is analysed and supervised machine 
learning methods are applied to classify four distinct levels of 
muscle strength of the biceps brachii. Ten healthy subjects 
simulated these four levels of muscle strength by performing the 
muscle contraction under the application of an appropriate load. 
We present results obtained using a k-nearest neighbour classifier 
model, firstly on individual datasets corresponding to the subjects, 
and then on an aggregated dataset, in order to address issues of 
subjectivity. The features (four) in the dataset(s) were constructed 
using the gyroscope and accelerometer data. We show further that 
it is possible to use only the accelerometer data, with a small 
reduction (2%) in the classification performance.  

2. BACKGROUND AND RELATED WORK 
In MMT, the examiner (therapist) assigns a numerical (integer) 
grade between 0 and 5 to a muscle, based on the results of muscle-
specific test procedures using the criteria listed in Table 1: 

Table 1: Criteria for assigning different grades in MMT. 

Grade Description Criterion 

0 No Activity Muscle is completely inert on 
palpitation or visual inspection. 

1 Trace Activity Detection of contractile activity 
but no resulting movement. 

2 Poor Full range of motion (ROM) only 
in a horizontal plane. 

3 Fair Full range of motion (ROM) 
against the effect of gravity.  

4 Good Full ROM against gravity and 
test position is held under 

minimum resistance 

5 Normal Full ROM against gravity and 
test position is held under 

maximum resistance. 

  

Muscle testing has been applied in practice for around one 
hundred years [3], and can be traced back to the pioneering work 
of Wilhelmine G. Wright [4] and Robert W. Lovett [5]. This paper 
reports the first use of wireless inertial sensors to classify muscle 
strength and addresses the known deficiencies of manual muscle 
testing. Previous work using wireless sensors in this domain has 
focused mainly on fatigue detection [6][7].
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Figure 2: Sample Plots of Accelerometer data along Y-axis (left) and Gyroscope data along Z-axis (right) against time steps during 

the simulation of different muscle qualities.

3. METHODOLOGY 
3.1 Data Collection 
 

 
Figure 1: Placement of the Orient speck (left) during elbow 

flexion (right). 
This work has focused on the different strength (weakness) levels 
of the biceps (bicep brachii), and therefore the motion studied was 
elbow flexion against gravity (Figure 1, right). The ten able-
bodied subjects (5 female and 5 male) were in turn instructed to: 
“Sit up straight with the (dexterous) arm stretched out by your 
side and fingers pointing to the ground. The palm should be facing 
out. Close your grip (or hold the weight). Perform (or attempt) a 
smooth elbow flexion ending with your forearm touching your 
shoulder.” An Orient speck was placed on the forearm (Figure 1, 
left) of the subject as close to the palm as possible, which is the 
point with the greatest degree of freedom with the hand behaving 
as a Class III lever and the elbow acting as the fulcrum. The four 
distinct muscle strength levels simulated by each subject have 
been described in Table 2, which correspond to MMT grades 
ranging between 2+ and 5 (Table 1).  

Each subject demonstrated five instances of elbow flexion for 
each level (20 in total for each subject), by picking a suitable 
resistance in the form of weights - R0, R1, R2 and R3 – depending 
upon their individual strengths, which would allow them to match 
the description of muscle strength levels N, G, F and P, 
respectively: 

R0 = 0 àNo resistance, and R1 < R2 < R3. 

Table 2: Description of the four levels of muscle strength. 

Class Name Description 

N Normal Full and smooth ROM against gravity.  

G Good Full ROM against gravity with a little 
difficulty. 

F Fair Full ROM against gravity with 
considerable difficulty. 

P Poor Partial (incomplete) ROM against 
gravity. 

 

3.2 Data Analysis 
A representative example of the accelerometer readings along the 
Y-axis and gyroscope readings along Z-axis is presented in Figure 
2. There is a central region common to both the plots, which has a 
characteristic ‘U’ shape.  

In case of the accelerometer data (Figure 2, left), there are 
undulations displayed as changes in the slope of the graph due to 
subsequent increase and decrease (or vice versa) in the 
acceleration due to gravity. During this full range of motion, the 
alignment of the Y- axis of the accelerometer changes from 90° to 
0°, and then from 0° to 90° with respect to the vertical, i.e., 
direction of the gravitational force. Therefore, at the starting 
position of this motion, the gravitational force acting upon the Y-
axis of the accelerometer is 0 as it is perpendicular to the vertical; 
it reaches its peak at the half-way point when the forearm is 
perpendicular to the upper arm along the elbow joint, as in this 
case the Y-axis of the accelerometer is along the vertical. In 
general, we observe different degrees of change in the slope at 
points in the plot (Figure 2, left) for the four muscle qualities. The 
direction of the slope changes more frequently and the value of 
the slopes is greater (on average) when simulating greater muscle 
weakness. On increasing the resistance, the subject faces greater 
difficulty in completing the motion and this is manifested in jerky 
movements with frequent accelerations and decelerations. The 
slope at the individual points of the accelerometer readings also 
changes direction more frequently and the rate of change of 
accelerometer readings (the slopes at individual points) is also 
greater on increasing the resistance, which corresponds to 
simulating greater level of muscle weakness. Therefore, the 
behaviour of the slope is an important factor for characterising 
different levels of muscle strength.  



The gyroscope data along the Z-axis (Figure 2, right), also reveals 
information of relevance. An important observation was that the 
value of the minima (global) of the curves is inversely 
proportional to the muscle strength.  

3.3 Features for Classification 
Average smoothness of acceleration (JC): This was measured as 
the mean of the absolute value of the derivatives in the 
accelerometer readings at each time step for the motion. This 
metric, the jerk cost, was computed as follows:  

JC = 1
n

accli
read − accli−1

read

i=1

n

∑      (1) 

Directional changes in the slope (SC): The number of changes 
in direction of the derivative of the accelerometer readings in 
subsequent time steps where there was a change in acceleration 
was recorded. This was then divided by the number of time steps 
so that the value remained independent of the duration of motion. 

Minimum value of the accelerometer readings (MA): In order 
to minimise the impact of noise on this feature, the five lowest 
accelerometer readings in the motion were identified and this 
feature was computed as its average.  

Accelerometer reading at the end point (DP): This recorded the 
accelerometer reading at the last time step in the motion. In order 
to guard against the effect of noise, DP was defined as the mean 
of the last 5 accelerometer readings.  

Range of Motion Indicator (ROM): The features MA and DP 
had the potential to detect partial range of motion based on the 
analysis of the data:  the former for partial range of motion below 
90°, and the latter for cases beyond 90°. They were first 
normalised and then combined into a binary feature, ROM, which 
served as an indicator for full range of motion, and was set as 
follows: 

ROM=
1     DP > 0.5 or MA < 0.5
0                otherwise
!
"
#

$
%
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   (3) 

The rationale for these conditions was that the normalised value of 
MA should be high and that of DP should be low on completing 
the full range of motion. Setting the threshold at a value of 0.5 
also guarded against noise in the data. The replacement of the two 
features, MA and DP, with ROM ensured that we did not overfit 
to the noise present in these features. 

Minimum value of the gyroscope reading (MinG): As the name 
suggests, the feature noted the minimum value across the 
gyroscope readings in the motion inspired by the specific 
observations made in Figure 2 (right). It was calculated exactly 
the same way as MA to guard against  noise in the sensor data. 

In summary, four features were constructed for the classification 
task. Three (SC, JC and ROM) of them were calculated using the 
accelerometer readings only, whereas the gyroscope readings 
were used to determine MinG. All of these features were 
normalised prior to their use in classification. 

3.4 Classifier Model 
The implementation of k-Nearest Neighbour (k-NN) classifier in 
the Weka tool [10] (known as ‘iBk’ [9]) was used to perform the 
classification task using the features constructed from the sensor 
data. As a non-parametric classifier, k-NN does not require  strong 
assumptions about the underlying data distributions. These models 
are known to be more flexible in comparison to their parametric 
counterparts [8]. This aspect ensured that a lower bias was 
introduced by not making subject-specific assumptions about the 
data and consequently made the analysis of the results more 
coherent. This model was computationally inexpensive as well, 
thanks to the low dimensionality of the data. 

4. RESULTS 
The mode of evaluation was set to 10-fold cross validation for all 
the cases as it is a robust way of assessing classification 
performance. The area under the receiver operating characteristic 
(ROC) curve and the F-measure along with classification accuracy  
(Table 3). The ROC Area reflects the classification performance 
without regard to class distribution and error costs [9]. A high 
value of F-measure (harmonic mean of precision and recall) 
indicates high values of both Recall and Precision that are useful 
measures of performance.  

4.1 Individual Results 
Table 3: Classification Results using four features. 

Subj. Instances k Accuracy F-
measure 

ROC 
Area 

1 19 (N:5,G:4,F:5,P:5) 3 100% 1 1 
2 18 (N:5,G:4,F:4,P:5) 3 94.44% 0.94 0.99 
3 18 (N:4,G:5,F:5,P:4) 3 100% 1 1 
4 17 (N:3,G:4,F:5,P:5) 1 94.12% 0.94 0.96 
5 17 (N:3,G:4,F:5,P:5) 1 82.35% 0.82 0.82 
6 19 (N:5,G:4,F:5,P:5) 3 94.74% 0.95 0.96 
7 17 (N:3,G:5,F:4,P:5) 1 82.35% 0.82 0.90 
8 19 (N:4,G:5,F:5,P:5) 3 94.74% 0.95 1 
9 20 (N:5,G:5,F:5,P:5) 3 95% 0.95 1 

10 18 (N:3,G:5,F:5,P:5) 1 88.89% 0.88 0.89 

  

The results for the ten subjects are presented in Table 3: the total 
number of instances in the dataset and their distribution across the 
4 classes, Normal (N), Good (G), Fair (F) and Poor (P), are 
detailed in the second column. Four features were used for the 
classification task, namely, SC, JC, ROM and MinG. The value of 
parameter k for the k–NN classifier used in each case is reported 
in the third column. The F-Measure and ROC Area reported in 
each case are the weighted averages across the classes weighed by 
the number of instances in the class. A mean classification 
accuracy of 92.6 ± 6.3% was obtained in this case. 

4.1.1 Assessing the contribution of the Gyroscope 
The gyroscope data was used to construct only one feature in the 
dataset – MinG, and its impact on the classification performance 
was evaluated by removing this feature and measuring the 
classification  performance based on the other three features. A 
mean accuracy of 90.8 ± 8.7% across the ten subjects was 
obtained. A detailed study of the results revealed that using only 



the accelerometer data improved the classification performance 
for three subjects and did not impact the results for another three. 
However, the mean accuracy decreased slightly (1.78%) when the 
gyroscope data was not used. This is a price worth paying given 
that the gyroscope is usually an order of magnitude more 
expensive in terms of its price and power consumption. Therefore 
the rest of the results in this paper do not use the ‘MinG’ feature. 

4.2 Classification on the Full Dataset 

 
Figure 3: Plot of log F-Measure (y-axis) against k. 

The lack of objectivity has been one of the main criticisms of 
MMT. In order to address this issue, results are presented in this 
subsection for classification on the ‘full’ dataset formed by 
aggregating the data from the 10 subjects, resulting in 182 
instances. A systematic search of the state space was conducted to 
set the value of k for the k-NN classifier. Figure 3 shows the effect 
of k on performance and justifies the choice of k = 15. We 
obtained a classification accuracy of 88.46%. The weighted F-
measure and weighted ROC Area were 0.89 and 0.96, 
respectively.  

Table 4: Confusion Matrix 

classified è N G F P 

N 38 2 0 0 

G 0 32 13 0 

F 0 6 42 0 

P 0 0 0 49 

 
5. CONCLUSION 
The results have highlighted the potential of using the Orient 
specks for testing muscle strength objectively and accurately. We 
were able to classify the four levels of muscle strength (weakness) 
with approximately 93% accuracy across the 10 subjects when 
using both gyroscope and accelerometer data. The use of 
accelerometer data alone resulted in a modest dip of only 2% in 
the classification performance. Thus, a 3-axis accelerometer with 
wireless networking capabilities could be used as a substitute.  
The objectivity of the approach was validated by performing 
classification on the full dataset (combined data of all ten subjects 
with varying muscularity). An accuracy of 88.5%, just 2.5% lower 
compared to the mean accuracy of the individual results, 
demonstrated that the model did not over-fit to the individual 
subjects.  

The majority of the misclassification errors were in distinguishing 
between ‘Good’ and ‘Fair’ muscle strength levels. Some of the 
errors in distinguishing between ‘Good’ and ‘Normal’ may be 
attributed to noise in the data introduced by the subjects 
simulating weaknesses which is unlikely to be present in patients 
during clinical trials. Despite the presence of noise, it is 
encouraging to note that there were no errors in classifying ‘Poor’ 

muscle strength and all of the errors made were in distinguishing 
between subsequent levels of muscle strength, say between 
‘Good’ and ‘Fair’. We were able to determine perfectly whether 
full range of motion was completed and the errors in 
distinguishing between two classes occurred when these shared a 
boundary.  

In conclusion, the work presents a possible solution to muscle 
strength testing, which addresses the issues of MMT, but at the 
same time is inexpensive and less complicated compared to 
approaches such as equipment based testing. In the future, this 
approach may be part of a self-management strategy for the 
patient to follow the exercise regime at home and assess 
improvements objectively and share a digital audit trail of 
progress with the remote physiotherapist. 
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