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ABSTRACT
Freezing of gait (FoG) is a motor impairment among patients
with advanced Parkinson’s disease which is associated with
falls and has a negative impact on a patient’s quality of life.
Wearable systems have been developed to detect FoG and to
help patients resume walking by means of rhythmical cue-
ing. A step further is to predict the FoG and start cueing
a few seconds before it happens, which might help patients
avoid the gait freeze entirely.
We characterize the gait parameters continuously with up
to 10-12 seconds prior to FoG, observe if and how they
change before subjects enter FoG, and compare them with
the gait before turns. Moreover, we introduce and discuss
new frequency-based features to describe gait and motor
anomalies prior to FoG. Using inertial units mounted on
the ankles of 5 subjects, we show specific changes in the
stride duration and length with up to four seconds prior to
FoG on all subjects, compared with turns. Moreover, the
dominant frequency migrates towards [3, 8] Hz band with
up to six seconds prior to FoG on 3 subjects. These findings
open the path to real-time prediction of FoG from inertial
measurement units.
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1. INTRODUCTION
Parkinson’s disease (PD) is a neurological degenerative dis-
order with a worldwide prevalence of 16.1 million people [16],
characterized by rigidity, tremor, reduced movement range
and walking difficulties. A common symptom in PD is the
so-called freezing of gait (FoG), an impromptu incapacity
to walk [19], despite the intention of the subject to do so.
Patients have the impression that their feet are glued to the
ground [19] and loose control over their gait. FoG is tran-
sient and last for a few seconds up to 1-2 minutes [19]. It is
the main cause of falls [3] and mortality in PD [6].

There is no cure at the moment for PD, medication being
used to milden or temporary release the symptoms. FoG is
one of the least responsive to the medical treatment. How-
ever, clinical studies suggest that subjects with FoG re-
spond positively to rhythmical external cues, by exiting FoG
and resuming natural gait [5, 18]. Continuous cueing wears
of with time [18], thus rhythmic stimulation is given only
during FoG and few seconds after, until the patient re-
establishes the gait. On-body wearable sensors are used to
detect the onset of FoG in real-time [11], and to start tem-
porary rhythmical cueing upon gait freeze [2]. While such
systems might be beneficial in shortening the FoG duration
[2], they cannot help the user to avoid freeze, since they
need at least some hundreds of milliseconds to react to the
existent FoG [11]. A step further would be to predict that
freeze episodes might happen in the next few seconds and
start cueing, thus helping subjects to maintain natural gait
and avoid the FoG altogether.

Plotnik and colleagues [21] suggest that FoG is a result of
multiple gait impairments, that develop over time, decreas-
ing the gait performance up to the point of freezing. We
follow this hypothesis and aim to characterize whether there
are specific changes in the gait properties during the transi-
tion from normal walking to freeze, and are different to gait
variability before other walking events such as turns.

We contribute the following:

(1) We use data collected from inertial measurement units
(IMU) mounted on both ankles of 5 subjects with PD and
FoG, and extract gait features such as stride length and
stride duration. Given the motor anomalies of the parkinso-
nian gait, we propose features to capture the postural control
variability such as the stance phase percentage, or features
to describe the coordination and symmetry of the gait such
as the duration ratios between left and right limbs.

(2) Moreover, we introduce and discuss new frequency-based
features to assess the gait prior to FoG, such as dominant
frequency, dominant frequency amplitude and the inverse
of the dominant frequency slope of the acceleration data.
These features are a quantification of the gait quality.

(3) We report a constant variation of features with few sec-
onds prior to FoG, the most common being the changes in
stride duration, stride length, dominant frequency and the
inverse of the dominant frequency slope.

To our knowledge, our study is the first to target a continu-
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ous monitoring of gait parameters in the transient between
walking and FoG, and compare it with the gait changes be-
fore turns. The motivation is the real-time prediction of
such episodes using data from wearable sensors.

Our work is structured as follows: In Section 2 we survey the
clinical observations of FoG patterns and the use of wear-
able sensors to describe the gait.We describe our dataset in
Section 3, and our experimental framework in Section 4. In
Section 5 we present and discuss the features and the po-
tential of predicting FoG by observing trends in the gait
properties. We conclude our work in Section 6.

2. RELATED WORK
In the following we review the literature (1) on clinical ob-
servations regarding gait patterns correlated with FoG, and
(2) on the use of wearable sensors for gait analysis.

Clinical observations of gait patterns prior to FoG.
The FoG pathogenesis is not understood at the moment [19,
10]. Nonetheless, there are several gait impairments asso-
ciated with PD and FoG [12, 23] with respect to a healthy
person’s gait. Among gait anomalies which might contribute
to FoG are the stride length reduction [4], step festination
[10], deteriorations in rhythmic control [4, 8] and in step-to-
step time variability [8], or the reduction of the cadence [4,
10]. Plotnik et al. [20] show that the impairments in left-
right coordination are associated with the presence of FoG,
while Yogev et al. [26] finds that gait asymmetry is increased
in people with PD and FoG. Prior to freezing, subjects ex-
perience postural instability, which might be compensated
by an increased time in which both feet are on the ground
[17]. Yet, these evidences are found by comparing groups
of subjects with FoG with groups of healthy subjects and
people with PD, but who did not experience FoG. Different
from prior studies, we focus on observing changes in the gait
during the transient period before the FoG episode. These
changes, if any, will open the direction of real-time predic-
tion of gait freezing.

To the best of our knowledge, only Nieuwboer and colleagues
[17] use gait characteristics to analyze the relation between
walking pattern and the gait prior to FoG. The study focuses
on the relation between cadence and stride length during
normal walking, gait festination, pre-stop, and prior to freeze
periods. However, it takes into account only three strides for
each of the four groups of walking, for subjects which are in
the OFF medication state. Different and in extension to
[17], we analyze the gait during the whole transient period
from normal walking up to the initiation of FoG or until
the initiation of a turn, and extend the number of analyzed
gait features. In addition, we use data from patients in ON
medication, which makes it more difficult to extract the gait
parameters [10], but is more realistic for the case of out-of-
the-lab FoG prediction setting.

Wearable sensors and features for gait analysis. Wear-
able sensors are used to distinguish kinematic properties,
with applications in sports [22], or in healthcare sector for
clinical diagnosis or rehabilitation [25]. A wide range of sen-
sors are used to extract gait properties, such as inertial mea-
surement units [22, 25], reflective markers [17] or pressure
insoles [4, 8, 20], usually attached on the lower body.

Characterizing Parkinsonian gait with accelerometers is more

complex than in case of healthy subjects, due to the dis-
ease nature, which manifests into a large spectrum of motor
anomalies [24]. Han and colleagues [7] propose an algorithm
based on the a comparation of the standard deviation of
each accelerometer data axis with a threshold to distinguish
between stance and swing phases in PD. In our work, we
use data from 3D wearable accelerometers and gyroscopes
attached to the ankle to characterize the parkinsonian kine-
matics prior to the freezing episodes.

In a previous work, we study the change of time-series fea-
tures and of unsupervised extracted features from acceler-
ation in DAPHnet dataset [2], in the period prior to FoG
events [13]. Although some vary prior and during FoG, such
features seem to have limitations in capturing the gait vari-
ations prior to FoG, a reason being the unlabeled walking
context in the dataset. Gait variability can be represented
also using acceleration frequency-based features like the Am-
plitude [psd], width [Hz] and slope [psd/Hz] of the dominant
frequency [Hz]. Weiss et al. [24] show that a larger width
and a lower amplitude of the dominant frequency on the lo-
comotion band [0.5, 3] Hz is directly related to the stride-to-
stride variability and a relative less consistent gait pattern in
PD patients compared with healthy people. We extend these
frequency-based features to the total power band of locomo-
tion and freeze [0.5, 8] Hz [15] and propose the inverse of
the dominant frequency slope to analyze the spectrum prior
to FoG compared with walking and gait prior to turns.

3. DATASET
To observe whether gait properties change prior to gait freeze,
we extract features from a subset of subjects from Cupid
dataset. Cupid [14] was collected with the purpose to de-
scribe and characterize FoG from a multimodal sensing per-
spective, i.e., IMU, skin response, electrocardiogram. Par-
ticipants performed a clinical protocol in a lab-setting, de-
signed to provoke FoG and simulate daily-life scenarios at-
home, as for example tasks including passing narrow corri-
dors, turnings, or walking with cognitive load.

We use the information provided by the wearable IMU at-
tached on both ankles of the subjects, sampling synchronized
3D acceleration, 3D rotation, and 3D magnetometer data at
128 Hz. Data streams from the 2 IMU are synchronized with
videos used to provide FoG labels by two clinicians. They
considered the moment of the arrested gait pattern, i.e., stop
in alternating left-right stepping, as the start of FoG, and
the instant when the patient resumed a regular gait pattern
as the end of it. Besides FoG, clinicians labeled the start of
other walking events, i.e., gait initiation, turns, stops.

From the 18 participants, 7 did not experience freeze dur-
ing the protocol, while 4 of them had less than 6 FoG, and
for two subjects most of FoG happened similar in a chain
reaction – freeze events were few seconds apart from each
other during walking. We use data from the 5 participants
which had more than 10 FoG episodes during the protocol.
Included subjects are between 49 and 89 years old, with a
disease duration ranging from 3 to 14 years, representing a
wide range of PD stages in terms of Hoehn and Yahr score
(II to IV) [9]. Subjects were in the ON medication state
during protocol, as we aimed for a realistic representation of
the usual daily-life setting.



Figure 1: The data analysis framework: In the first phase we select the IMU data from prior-to-FoG and
prior-to-turn sessions for each of the 5 subjects. Then, for each session we follow different procedures in case
of the two types of features: (1) For gait parameters, we perform a heel strike detection, then we separate
the session into 2 seconds non-overlapping windows. From each window we the extract the features. (2) For
frequency features, we separate the session into 4 seconds overlapping windows, with a window-overlapping
step of 2 seconds, on which we perform a Fourier Transform, and extract the frequency properties.

4. EXPERIMENTAL SETTING
In the following, we describe the methodology and the fea-
tures we extract from IMU to observe whether there is a
transition of the gait towards FoG.

4.1 Methodology
Figure 1 contains the main steps of our experimental set-
ting: We first consider for each of the 5 subjects only the
FoG events during turns and straight line walking. For the
FoG during gait initiation, no prior information about the
gait degeneration could be extracted, as patients were sitting
or standing. Then for each freezing episode, we consider the
walking IMU data just prior to it in a straight line, which
does not contain any other gait event, such as stop walk-
ing, turns or other FoG. We call this period as the prior-to-
FoG session. To have enough prior-to-FoG information, we
keep only sessions which have at least 4 seconds of straight
line walking prior to FoG. This duration was selected as
a trade-off between having a statistical relevant number of
prior-to-FoG sessions, and to have enough information to
characterize the gait before FoG.

Similarly to the prior-to-FoG sessions, we consider for each
subject an equal number of prior-to-turn sessions: Walking
data prior to a turn is selected in the same manner as prior
to a FoG. We use these prior-to-turn information in order
to observe whether the gait features before a FoG change in
a different manner than before an usual turn.

In a second step, we follow different procedures for the two
types of features we extract from the IMU: (a) gait-based
features, and (b) frequency-based features. In case of (a)
gait properties, for each prior-to-FoG and prior-to-turn ses-
sion, we detect the gait cycles from the IMU raw data. A
gait cycle is defined as the difference between two consecu-
tive heel strike time of the same leg. The heel strike is the
moment in which the heel touches the ground and is repre-
sented by a maximum peak on the accelerometer magnitude
data [22, 25, 1]. In the parkinsonian gait, the heel strike is
often confused with the start of the swing phase, due to the
walking abnormalities of the disease [25]. In order to avoid
false heel strike detection, we use the gyroscope signal to
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Figure 2: The procedure to detect the heel strike us-
ing accelerometers and gyroscopes: First we detect
the ending of the swing phase represented as a peak
in the gyroscope information. Then we look in the
next period of acceleration data to detect the peak
in acceleration corresponding to the heel strike.

detect the end of the swing phase, and thus to differentiate
between the swing peak and the heel strike as in Figure 2:
We first detect the ending of the swing phase represented as
a peak in the y-axis gyroscope, and then we look in the next
period for a maximum peak detection over the accelerometer
magnitude data, which represents the heel strike. However,
in some of the sessions the subjects experience the so-called
foot drop, in which the swing phase is no present and can
not be detected prior to FoG. These result in false detection
or even no detection of the heel strike. In these rare cases,
we manually set the heel strike.

Once the gait cycles are extracted, we separate each session
of data in non-overlapping windows of Nwindow = 2 seconds.
A full gait cycle lasts for 1-1.5 seconds, thus a window of
2 seconds is enough to capture it and to extract the gait
parameters as detailed in Section 4.2.

In case of the (b) frequency features, we first separate each
session of raw IMU data in overlapping windows of Nwindow =
4 seconds with an overlapping step of Noverlapp = 2 sec-
onds. We choose the window length as a trade-off between
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Figure 3: A prior-to-FoG session, expressed in raw
data from acceleration and from gait parameters.
We observe that with 2 and 4 seconds prior to FoG,
the stride duration, stride length and both D-RL
and D-LR decrease, while SPP increases. However,
the gait features tend to remain constant during
straight line walking (up to 10 seconds).

the latency of observations related to the upcoming FoG and
the FFT estimation error. On each window we perform a
Fast Fourier Transformation (FFT) on the magnitude vec-
tor extracted from the raw 3D acceleration data. We then
compute the frequency features detailed in Section 4.3.

4.2 Gait Features
We extract the following gait-based features:

(1) Stride duration (SD): The time between two con-
secutive steps of the same limb. We compute SD as the
time difference between two consecutive detected accelera-
tion peaks of the same leg.

(2) Stride length (SL): The covered distance between two
consecutive steps of the same limb. We consider SL as the
double integration of the acceleration signal according to the
sampling rate, between two consecutive acceleration peaks
of the same limb.

(3) Right-Left Duration (D-RL)/ Left-Right Dura-
tion (D-LR): The time between a right heel peak and the
consecutive left heel peak (D-RL), or the left heel and the
consecutive right heel peaks (D-LR). Both D-RL and D-
LR, are a measure of the bilateral coordination and the gait
asymmetry/rhythmicity of the patient.

(4) Stance Phase Percentage (SPP) [%]: The time in
which the foot is in contact with the ground over the whole
stride duration of the same limb. D-RL can be considered as
the time the left foot is in contact with the ground (stance
time) and the time the right foot is in the air (swing time).

The relation between D-LR and the stride duration of the
right leg gives the stance phase percentage of the right leg.
This feature is a measure of the postural control in PD [26].

As an example, in Figure 3 we plot the raw acceleration data
from a prior-to-FoG session, together with the extracted gait
features. In the first 10 seconds, there are no high variations
in the gait features. However, with 2 to 4 seconds prior to
FoG, the SD, SL, D-RL and D-LR abruptly decrease, while
the stance phase percentage increases.

4.3 Frequency-based Features

4 s

4 s

Figure 4: The acceleration’s power spectral density
between [1, 6] Hz, from a 4-second window just prior
to FoG, and from a 4-second window during mere
walking, from the same prior-to-FoG session. The
three frequency features are different just prior to
FoG, compared with walking: DF migrates to [3, 8]
Hz freeze band, while its amplitude decreases, and
the relation width-amplitude increases prior to FoG.

Most of the energy during walking in healthy subjects con-
centrates over [0.5, 3] Hz range around a dominant frequency
and with a high amplitude. FoG episodes are related with
gait asymmetry, suggesting variations of the walking fre-
quency, while the energy might spread over a larger range
of frequencies. Therefore a decrease in the dominant fre-
quency amplitude and an increase in its width might be an
indicator of gait symmetry variations [24]. Moreover, the
SD is directly related to the walking frequency. Hence, a
reduction of the stride duration might be also related to an
increase of the dominant frequency.

We propose the following frequency features to characterize
the gait variability prior to FoG:

(1) Dominant Frequency (DF) [Hz]: The frequency with
the highest energy in the [0.5, 8] Hz band, which sums both
normal gait and FoG frequency bands.

(2) Dominant Frequency Amplitude (DFA) [psd]: Cor-
responds to the power of the dominant frequency.

(3) Inverse of the Dominant Frequency Slope (IDFS)
[Hz/psd]: The relation between the dominant frequency width
(DFW) and the DFA where the DFW is the frequency range
of the DF obtained through the extension of the DF’s slopes.

Figure 4 shows the power spectral density with respect to
the frequency, on a 4 seconds window of straight line walking
acceleration, and on the 4 seconds window just prior to a
FoG episode, for the same subject. We observe that with 4
seconds just prior to FoG the dominant frequency migrates
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Figure 5: The mean and CoV values in case of stride duration, stride length, and stance phase percentage
for the two different types of walking sessions, in each of the 5 subjects data. The numbers of the time axis
represent the time difference between the start of FoG and the start of the window from which features were
computed. For example, 2 seconds means that features were computed in the data window that started with
2 seconds prior-to-FoG, 4 seconds – in the window which started with 4 seconds prior to FoG, and so on.

to the so-called freeze band, being higher than 3 Hz, while
in case of the 4 seconds window of normal walking, the DF
is in the range of the gait movement [0.5, 3] Hz. Moreover,
the DFA decrease just prior to FoG, compared with walking.

5. ANALYSIS AND DISCUSSION
To observe whether there are general trends in gait and fre-
quency features prior to FoG, for each of the 5 subjects, we
compute statistics such as mean, standard deviation, and
the coefficient of variation overall the prior-to-FoG sessions.
The statistics are computed for each synchronized window,
as for example in windows which start 2 seconds prior to
FoG, or start with 4 seconds prior FoG, and so on. The
coefficient of variation (CoV) is defined as the ratio of the
standard deviation to the mean, and in our case is a measure
of how much dispersed are the the values of a specific feature
in a window. To determine if the changes in the features are

specific prior to FoG, we apply the same methodology for
the features in each window from all prior-to-turn sessions
of the same subject. In the following, we discuss our findings
with respect to the two categories of features extracted.

5.1 Gait Features Trends prior to FoG
Figure 5 shows the CoV and mean statistics for each of the
5 subjects, in case of SD, SL, and SPP gait features. We
will discuss further the results for each of them:

Stride duration. Clinical literature relates FoG with a
decrease of in the SD [4, 17, 10] in subjects with FoG com-
pared with subjects without FoG or healthy ones. We ob-
serve from Figure 5 that for all the 5 subjects, the CoV
increases just prior to FoG, showing a higher dispersion of
the stride duration in windows starting with 2 to 4 seconds
prior to FoG. While for the rest of the walking session, the
CoV values tend to have constant values across all windows
(except in case of S2, on which we did not have sessions



longer than 6 seconds prior-to-FoG). Moreover, when com-
pared with prior-to-turn information, we observe that the
CoV values tend to be constant across all the window times,
except in case of S4, where the CoV also increases prior to
turn, but the variation is smaller than in the case of FoG.

[s]

Figure 6: The variation of D-LR and D-RL features
in case of prior-to-FoG and prior-to-turn sessions for
S2. The values on the time axis follow the same con-
vention as in Figure 5. For walking prior to turn,
their average values and the ratio remains constant,
and in windows starting with 4 seconds before FoG
the D-LR decreases, while D-RL stays constant, sug-
gesting gait asymmetry just prior to FoG.

Even if the CoV always increases in windows with few sec-
onds prior to FoG, the SD follows different trends across
datasets: For the first 4 subjects, the mean stride duration
decreases with 2-4 seconds windows prior to FoG, with an
overall average values between 0.1-0.2 seconds, while for S5
SD slightly increases with approx. 0.05 seconds, but also
this happens in the periods prior to turns. In case of S3,
even if the SD decreases with 2 second prior to turn, first it
increases with up to 0.1 seconds with 4 seconds before turns.

Stride length. The same observations as for SD are present
also in case of the SL feature: The CoV increases for all 5
subject in data up to 4 seconds of data before FoG, sug-
gesting a high dispersion of the stride length values prior
to FoG. SD and SL are directly related: In case of S1, S2
and S4 the mean of SL decreases with an average between
0.1 and 0.05 m in the windows starting 2 to 4 seconds just
before FoG, compared with all the rest of walking. However,
in case of S5 the mean stride length also slightly decreases
with approx. average of 0.02 m, even if the SD increases, in
this case suggesting stepping hesitation that might cause an
eventual FoG. For all subjects SL tends to remain constant
prior-to-turns.

For S3 and S5, even if prior to FoG the SL changes only
slightly, when comparing prior-to-FoG SL with prior-to-turn
SL values, we observe that constantly all over the session the
SL prior to turn is lower than in the case of mere walking
with turns (with up to 0.05 m for S3 and a constant 0.02
m in case of S5). The same observation holds in the case of
SD feature for both subjects.

Stance Phase Percentage. Unlike the previous SD and
SL features, the SPP CoV do not follow a clear trend. How-
ever, the stance phase percentage varies for S1–S4 patients,
in windows starting with 2 seconds (S4) up to 6 seconds (S1
and S3) prior to FoG. SPP is a measure of the postural con-
trol, gait asymmetry and rhythmicity. Thus, the variation of
SPP prior to FoG, as in case of S1, S3 and S4, suggest that
the subjects loose the postural control just prior to FoG,
compared to prior to a turn. However, for S1 and S3 the
SPP also changes prior to turns, but opposite to the case of
FoG sessions. In case of S5, the SPP is constant across time
windows, but it is constantly lower than in case of sessions
with mere walking and turns. This suggests that for this
subject there is an anomaly of walking defined by all three
SL, SD and SPP features which might be a cause of FoG,
but over long sessions of time.

LR/RL Limb Durations. D-RL and D-LR features are
a measure of the gait symmetry. In healthy subjects, D-
RL and D-RL tend to have similar values during walking,
expressing a symmetrical gait. In case of prior-to-turn ses-
sion, all subjects tend to have constant ratio for D-RL/D-LR
times. In case of prior-to-FoG data in S2 and S3, this ratio
tends to change and also to have larger ranges towards 2
to 4 seconds before FoG, as shown also in Figure 6 for S2:
In case of turns the D-RL/D-LR tends to remain constant,
while in case of FoG, there is a variation in D-RL feature
from data window starting 4 seconds prior to freeze. This
suggests an asymmetry between the left and right limb prior
to FoG, which might cause the freeze. However, for the other
3 subjects, this ratio is similar as in the case of turns.

5.2 Frequency Features Trends prior to FoG
In case of the three frequency features, the CoV for each
window of walking does not show any significant differences
in case of prior-to-FoG and prior-to-turn sessions in any
subjects datasets, except for S2. However, In Figure 7, we
plot the mean and standard deviation for the three frequency
features in prior-to-FoG and prior-to-turn data. We observe
that the dominant frequency tends to increase in windows
starting 4 up to 6 seconds prior to FoG for all subjects.
In case of S1, S2 and S4 the DF even migrates from the
normal gait band of [0.5, 3] Hz to the freezing band, being
higher than 3 Hz, with a higher variation of the feature
values across sessions, compared with the mere walking.

In case of the IDFS feature, it increases in windows starting
4 to 6 seconds prior to FoG, compared with periods of nor-
mal walking preceding turns for all subjects. S1, S2 and S3
are particular cases, as DFA is constantly lower in sessions
ending with a FoG, than compared with the walking sessions
with turns, pointing towards a walking anomaly which lasts
longer and might cause eventually a FoG. In this case the
cueing can be given when this anomaly is observed, as it can
help patients to ameliorate the gait.

5.3 Discussion
Table 1 contains a summary of our results regarding the
gait variability before FoG, outlining the most informative
features across all five subjects.

Stride length, stride duration and the stance phase percent-
age show significant variations prior to FoG for 4 out of
5 subjects. Moreover, these changes are not present dur-
ing mere walking prior-to-turns sessions. These significant
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Figure 7: The average and standard deviation across
all 5 subjects, for the three frequency features in
case of prior-to-FoG and prior-to-turn. The time
axis follows the same convention as in Figure 5.

changes can be observed on average in windows starting 2
to 4 seconds before FoG. In case of S5, even if there are
not significant changes in these 3 features with few seconds
before FoG, in case of prior-to-FoG sessions the average val-
ues for SD, SL, and SPP are constantly lower than in case
of prior-to-turn sessions.

These characteristic trends of the SD, SL and SPP prior
to FoG open the direction of predicting such freeze episodes
with seconds before they are about to happen for S1–S4, and
even help the subject correct the anomalous gait which will
lead eventually to FoG, as in case of S5. Moreover, these ob-
servations are based on periods which transition from mere
walking towards FoG, thus making possible a real-time pre-
diction of such freezing episodes.

From the frequency features, the dominant frequency and
the inverse of the dominant frequency slope increase in all
of 5 subjects with 4 up to 6 seconds prior to FoG and the DF
migrates towards the [3, 8] Hz band for 3 out of 5 subjects,
which describes the FoG event.

All the other gait features such as D-RL/-LR and frequency
features such as DFA are informative and helpful for FoG
prediction, but are dependent and specific to some subjects.
This suggests that there are anomalies of the gait with few
seconds prior to FoG which announce the freeze, but these
anomalies are subject specific. For building a model of FoG-
prediction, we would need to take into account different

Table 1: Informative features across subjects
Feature S1 S2 S3 S4 S5

Gait parameters
SD X X X X no
SL X X X X no
SPP X X X X no
D-(RL) no X X no no

Frequency features
DF X X X X X
DFA X X X no no
IDFS X X X X X

sets of gait and frequency features for each subject: Stride
length, stride duration, dominant frequency, and the inverse
of the dominant frequency slope seem to be a common set,
on which specific features such as DFA or SPP can be added,
depending on the gait anomalies of the subject, as for exam-
ple for S5 the gait hesitation prior to FoG, or gait asymmetry
in case of S2.

In this study, we used data from patients in the ON medi-
cation state, which might milden the overall gait variations
prior to FoG. However, we were able to observe changes in
the gait prior to freeze even in these realistic setting, which
gives the possibility to predict FoG with a wearable system
in a daily-life out-of-the-lab setting, where patients follow
their regular PD treatment.

All the gait and frequency features to characterize the gait
prior to FoG were extracted from wearable IMU mounted
on the ankle of the subjects. There are already wearable
systems which use information from on-body attached IMU
to detect FoG in real-time and to start cueing to support the
user to exit FoG and resume walking [11, 2]. Such systems
can be extended with gait features and methods to predict
FoG, given that the same information is used for both tasks.

6. CONCLUSION
We analyze the gait in the transient period between walking
and freezing of gait in Parkinson’s disease, and compare it
with periods prior to other walking events such as turns.
Our motivation is to find specific gait characteristics which
change prior to FoG, thus enabling the idea of predicting in
real-time FoG with few seconds before, in order to help the
subject avoid the upcoming event.

We use inertial measurements unit mounted on both ankles
of 5 PD subjects with freezing of gait. We compute gait-
related parameters used to monitor the gait in sports and
healthcare such as stride length and stride duration. More-
over, we propose specific gait and frequency features to catch
the Parkinsonian gait characteristics, such as stance phase
duration, dominant frequency of gait, or the inverse of the
dominant frequency slope.

Our results suggest that stride length and stride duration
significantly changes in all of 5 subjects, and on 4 of them in
data starting with 2 up to 4 seconds prior to FoG. The dom-
inant frequency also tends to migrate to the [3, 8] Hz band
for 3 subjects with 4 up in data windows starting up 6 sec-
onds prior to FoG and the inverse of the dominant frequency
slope increase in the information starting with 4 up to 6 sec-
onds prior to FoG compared with prior-to-turn sessions for
all subjects. All other features capture specific gait charac-



teristics prior to FoG, although are subject-dependent.

These evidences suggest that gait and frequency parameters
from IMU might be used to predict FoG with few seconds
before it happens. However, these findings are preliminary,
due to the limited number of subjects in the experiments.
For future work, we consider to increase the number of sub-
jects, and to compare prior-to-FoG to other gait contexts,
such as prior-to-stop periods.
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Hausdorff, and G. Tröster. Engineers meet clinicians:
augmenting Parkinson’s disease patients to gather
information for gait rehabilitation. In Proceedings of
the 4th Augmented Human International Conference,
pages 124–127. ACM, 2013.

[15] S. Moore, H. MacDougall, and W. Ondo. Ambulatory
monitoring of freezing of gait in Parkinson’s disease.
Journal of Neuroscience Methods, 167:340–348, 2008.

[16] W. Muangpaisan, A. Mathews, H. Hori, and D. Seidel.
A systematic review of the worldwide prevalence and
incidence of Parkinson’s disease. Journal of the
Medical Association of Thailand, 94(6):749–55, 2011.

[17] A. Nieuwboer, R. Dom, W. De Weerdt, et al.
Abnormalities of the spatiotemporal characteristics of
gait at the onset of freezing in Parkinson’s disease.
Movement Disorders, 16:1066–1075, 2001.

[18] A. Nieuwboer, G. Kwakkel, L. Rochester, D. Jones,
et al. Cueing training in the home improves
gait-related mobility in Parkinson’s disease: the
RESCUE trial. Journal of Neurology, Neurosurgery
and Psychiatry, 78(2):134–140, 2007.

[19] J. G. Nutt, B. R. Bloem, N. Giladi, M. Hallett, F. B.
Horak, and A. Nieuwboer. Freezing of gait: moving
forward on a mysterious clinical phenomenon. Lancet
Neurolology, 10:734–744, 2011.

[20] M. Plotnik, N. Giladi, and J. Hausdorff. Bilateral
coordination of walking and freezing of gait in
Parkinson’s Disease. European Journal of
Neuroscience, 27(8):1999–2006, 2008.

[21] M. Plotnik, N. Giladi, and J. Hausdorff. Is Freezing of
Gait in Parkinson’s Disease a result of multiple gait
impairments? Implications for treatment. Parkinson’s
Disease, 2012.

[22] C. Strohrmann, H. Harms, C. Setz, and G. Troester.
Monitoring kinematic changes with fatigue in running
using body-worn sensors. IEEE Transactions on
Information Technology in Biomedicine,
16(5):983–990, 2012.

[23] J. Vandenbossche, N. Deroost, E. Soetens,
J. Spildooren, S. Vercruysse, A. Nieuwboer, and
E. Kerckhofs. Freezing of gait in Parkinson Disease is
associated with impaired conflict resolution.
Neurorehabil Neural Repair, 25(8):765–773, 2011.

[24] A. Weiss, S. Sharifi, M. Plotnik, J. van Vugt,
N. Giladi, and J. Hausdorff. Towards automated,
at-home assessment of mobility among patients with
Parkinson Disease, using a body-worn accelerometer.
Neurorehabil Neural Repair, 25(9):810–818, 2011.

[25] A. Willemsen, F. Bloemhof, and H. Boom. Automatic
stance-swing phase detection from accelerometer data
for peronel nerve stimulation. IEEE Transactions on
Biomedical Engineering, 37(12):1201–8, 1990.

[26] G. Yogev, M. Plotnik, C. Peretz, N. Giladi, and
J. Hausdorff. Gait asymmetry in patients with
Parkinson’s disease and elderly fallers: when does the
bilateral coordination of gait require attention? Exp
Brain Res, 177(3):336–346, 2007.


