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ABSTRACT
Due to the small energy harvesting rates and stochastic ener-
gy harvesting processes, energy management of energy har-
vesting senor is still crucial for body network. Transmission
polices for energy harvesting sensors with Markov chain en-
ergy supply over time varying channels is formulated as an
infinite discounted reward Markov Decision Problem under
the assumption of geometric distribution of sensors’ lifetime.
In this paper, we firstly propose a low-storage transmission
policy based on probability of successful transmission for
body network. Then we narrow the feasible region of param-
eters in our policies from the real domain to a discrete set
with limited number, which makes the method of combing
optimal equations and enumeration algorithm to obtain op-
timal parameters workable. Finally, numerical results show
that our presented transmission policies can achieve a good
approximated performance of optimal policies, which can be
derived by policy iteration algorithm. Compared with the
optimal policies, our presented policies has the advantage of
low storage.
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1. INTRODUCTION
With the development of energy harvesting techniques, har-
vesting energy from the environment has received increasing
attention in wireless sensor networks. Wireless sensor net-
works with energy harvesting nodes can operate for long
periods. However, due to the low replenishing rate and the
stochastic energy renewal process, energy management is
still crucial [1].

Many previous works have been conducted in the optimiza-
tion of a point-to-point energy harvesting communication
system in which the transmitter is equipped with an energy

harvesting device. They can be categorized into two classes
based on the assumption of whether or not the source knows
the information about the energy and data arrival processes.
The review about optimization in energy harvesting commu-
nication system has been conducted in [2]. Our paper mainly
focuses on online scheduling.

Online scheduling assumes that the source contains statis-
tical information about the energy harvesting processes[3]-
[7]. In [3], a threshold algorithm is proposed for utilizing
available energy to transmit packets with different rewards
based on a memoryless Markov chain for battery state, and
time correlation in the energy supply is introduced in [4]. In
[5], energy management polices for energy harvesting sen-
sor nodes to maximize the date rate while the data queue
stays stable are proposed. An online heuristic policy[6] that
performs closely to the online optimal is proposed for the
finite horizon optimal packet scheduling problem. In [7], a
Markov Decision Problem(MDP) is formulated to maximize
the number of successfully delivered packets per time slot
for an energy harvesting node with infinite capacity. It is
proved that the optimal policy is a threshold policy depend-
ing on the state of the channel and the length of the energy
queue.

However, on one hand, it is not possible to know the non-
causal information before transmitting; on the other hand,
the parameters of the underlying stochastic processes change
over time in many practical systems. So, neither offline
scheduling or online scheduling will be applicable. In [8],
a learning approach is proposed to learn the optimal trans-
mission policy that maximizes the expected sum of the data
transmitted during the transmitter’s life over a fixed chan-
nel.

In our paper, we consider a point-to-point communication
system in a time-slot fashion with time-correlated energy
supply, which is similar to [4]. However, in [4], the model
did not consider the impact of limited source lifetime. In
our paper, we model the lifetime of the source as a random
variable, which means the source can stop its operation at
any time slot with fixed probability. At the beginning of
each time slot, the source node decides to transmit a packet
or drop it depending on the channel state and the energy
queue length. The objective for the source is to maximize
the average amount of data successfully transmitted during
its lifetime.
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The rest of the paper is organized as follows. In section II, a
system model is presented and the problem is formulated as
an infinite-horizon discounted reward Markov Decision Pro-
cesses(MDP). In section III, we define a low storage trans-
mission policy and present an algorithm to find the optimal
policy. Finally, numerical results are presented in section
IV, followed by our concluding in section V.

2. SYSTEM MODEL
In this section, we present our system model for a point-to-
point energy harvesting communication system and formu-
late the optimal transmission problem as an infinite-horizon
discounted reward MDP. A time slotted system is consid-
ered, which the k -th time slot means [k, k + 1) , k ∈ Z. Fig.
1 gives the model of the source node with a finite battery.
The data queue is assumed to be saturated, that means there
is always data to be sent at the beginning of each time slot.
We use E to indicate the energy queue length.And the ca-
pacity of the battery is N units. And we also assume that
the life time of source is geometric random variable with
mean of 1

1−β
(0 < 1− β ≤ 1). In other words, at each slot,

the source node can terminate its operation with small prob-
ability 1-β, which is independent and identically distributed.
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Figure 1: system model

We model the time correlation energy harvesting process
{Bk} as two-states Markov chain, as shown in Fig.2. In state
1, node can harvest one unit energy with probability λ1, and
can not harvest energy with probability 1− λ1; in state 0, n-
ode can not harvest energy. Define p1 = P (Bk = 1|Bk−1 = 1)
as transmission probability from state 1 to state 1, p0 =
P (Bk = 0|Bk−1 = 0) as transmission probability from state
0 to state 0.

1 0

Figure 2: energy supply model

Let Hk be the channel state during the time slot k. We as-
sume that Hk follows a Markov model and plj is the trans-
mission probability from state l to state j. hk(0 ≤ hk ≤ 1) is
the successful transmission probability during slot k, which
has M values. Here we assume the channel state process
and energy harvesting process are independent.

At the beginning of each slot, the source node decides to
either transmit a packet or discard it. One unit energy is
used from the energy queue when a packet is transmitted.
We assume the source node can receive the feedback from the
receiver about the CSI at the beginning of each slot, then the
action is taken by the source node based on {Ek, Bk−1, Hk}.
We use a to indicate the action, where a = T means the
action is to transmit a packet and a = D means the action
is to discard a packet. The objective of the source node is
to find the optimal policy that maximizes the expected total
number of packets that are received successfully during the
lifetime of the source node.

Next, define S as state space, which contains {Ek, Bk−1, Hk},
A(i) as possible action set at state i, π as the policy used
by the source node. We define V (i, π) as the expected total
reward with the initial state i at a given policy π. It can be
calculated by the following expression

V (i, π) = Eπ
i

{
EY

[
Y∑

k=1

r (sk, ak)

]}
, i ∈ S (1)

where k is the time slot index, sk is the state at time slot
k, ak is the action taken at the time slot k, random variable
Y is the lifetime of the source, EY denotes the statistical
expectation and Eπ

i denotes the expectation of total reward.
The term r (sk, ak) is reward when the state is sk and the
action is ak, and has the following expression

r (sk, ak) =

{
hk, ak = T
0, ak = D

(2)

The reward represents the number of packets received cor-
rectly when the action is taken. If the source chooses action
T, which means to transmit a packet, the reward will be hk

depending the channel state at time slot k. If the source
choose action D, which means to discard a packet, the re-
ward will be 0 since there is no packet to be transmitted.

Due to the geometric distribution of the lifetime Y of the
source with mean 1

1−β
, equation (1) can be equal to the ob-

jective function of infinite-horizon discounted reward, which
has the following expression[9]:

V (i, π) = Eπ
i

{
∞∑

k=0

βkr (sk, ak)

}
, i ∈ S (3)

The optimal problem can be expressed as follows:

V ∗ (i) = max
π

V (i, π) (4)

3. ONLINE TRANSMISSION POLICIES
The optimal problem is an infinite-horizon discounted re-
ward MDP. Because in our system, state space S is count-
able and discrete, and the number of actions for each state is



finite, there exists an optimal deterministic stationary pol-
icy. Furthermore, policy iteration algorithm(PIA)[10] can
be used to solve the problem and will terminate in a finite
number of iterations with an optimal stationary policy.

However, when the number of states is large, the algorithm
needs a lot of calculation to solve the linear system of equa-
tions, and also needs large storage to save the optimal policy.
So in this section, we present a low storage policy and an
algorithm to solve the optimal parameter of the policy.

3.1 Definition of Transmission Policies
The definition of transmission policies as follows,

a =

{
T,Ek ≥ 1 ∩ hk ≥ θb
D,Ek = 0 ∪ hk < θb

(5)

where Ek is the energy level of k-th slot, hk is the successful
transmission probability during slot k. θb is a threshold of
previous slot’s energy harvesting state b, which b can be 1
or 0, and θ0 ≥ θ1.

When energy queue length Ek = 0, the source takes action
D ; When energy queue length Ek ≥ 1, the source decides
action according to hk. When hk < θb, the source tends
to take action D to save energy; when hk ≥ θb, the source
tends to take action T to get good reward. θ1 is threshold
of Bk−1 = 1, and θ0 is threshold of Bk−1 = 0. And when
the energy harvesting rate is larger, more data should be
transmitted, so we have θ0 ≥ θ1.

In the optimal policy solved by PIA, source needs to store a
look-up table, which contains the states and corresponding
action. In our present policy, source only needs to store two
thresholds θ1 and θ0. Our present policy has the advantages
of low storage capacity.

3.2 Algorithm of Optimal Threshold
From the policy, we can see different thresholds lead to dif-
ferent rewards. In this section, we present an algorithm to
solve the optimal threshold.

Firstly, we narrow the feasible region of the threshold from
the real domain to discrete set with limited number. The
range of θb is [0, 1]. Sort the channel state from smal-
l to large by the successful transmission probability, de-
noted by h1, h2, · · · , hM with h0 = 0. Assumed there is
hi < θb ≤ hi+1, i = 0, 1, · · · ,M − 1, then when the k-th suc-
cessful transmission probability is any of {h1, h2, · · · , hi},
the source takes actionD; when the k-th successful transmis-
sion probability is any of {hi+1, hi+2, · · · , hM}, the source
takes action T . The effect is equal to θb = hi+1. And if
θb = hM + ε, ε > 0, the source can only take action D. So
the feasible region of threshold can be narrowed to the set
{h1, h2, · · · , hM , hM + ε} , ε > 0.

The optimal threshold can be solved by combining optimal
equations [10] and enumeration algorithm. The algorithm
flowchart is as follows:

1. Sort the channel state from small to large by the suc-
cessful transmission probability, denoted by h1, h2, · · · , hM .

So θb ∈ {h1, h2, · · · , hM , hM + ε} , ε > 0, b = 0 or 1,
and θ0 ≥ θ1.

2. Enumerate the possible values of θ1, θ0, to get policy
according to equation (5). Then solve the following e-
quation to get the rewards.The threshold, which make
the reward biggest is optimal.

(I − βP (f))V = R (f) (6)

In equation (6), V is the expected total reward, R(f) is the
instant reward of each state given policy f , which can be
computed according to equation (2). P (f) is transmission
probability matrix at given policy f . Next we introduce
computational formula of P (f).

The k-th state is denoted by (Ek, Bk−1, Hk). On one hand
,when source takes action T to transmission a packet, one
unit energy is depleted. On the other hand, if Bk−1 = 1, the
source can harvest one unit energy by the probability λ1, so
the energy level can either remain same or decrease by one
unit. If Bk−1 = 0, the source can’t harvest energy, so the
energy level Ek will decrease one unit. Also, channel state
process and energy harvesting process are independent. So
we can derive the following formula.

1 ≤ E ≤ N
P ((E, 1, j)|(E, 1, k)) = λ1p1pkj
P ((E, 0, j)|(E, 1, k)) = λ1(1− p1)pkj
P ((E − 1, 1, j)|(E, 1, k)) = (1− λ1)p1pkj
P ((E − 1, 0, j)|(E, 1, k)) = (1− λ1)(1− p1)pkj
P ((E − 1, 1, j)|(E, 0, k)) = (1− p0)pkj
P ((E − 1, 0, j)|(E, 0, k)) = p0pkj

(7)

When source takes action D, energy level Ek will either
remain same or increase one unit. However, due to the limit
of battery capacity, when Ek = N , energy level Ek can only
be N . So we can derive the following formula.

0 ≤ E < N
P ((E + 1, 1, j)|(E, 1, k)) = λ1p1pkj
P ((E + 1, 0, j)|(E, 1, k)) = λ1(1− p1)pkj
P ((E, 1, j)|(E, 1, k)) = (1− λ1)p1pkj
P ((E, 0, j)|(E, 1, k)) = (1− λ1)(1− p1)pkj
P ((E, 1, j)|(E, 0, k)) = (1− p0)pkj
P ((E, 0, j)|(E, 0, k)) = p0pkj
E = N
P ((E, 1, j)|(E, 1, k)) = p1pkj
P ((E, 0, j)|(E, 1, k)) = (1− p1)pkj
P ((E, 1, j)|(E, 0, k)) = (1− p0)pkj
P ((E, 0, j)|(E, 0, k)) = p0pkj

(8)

4. NUMERICAL RESULTS
In this section, we compare the performance of three trans-
mission policies. They are optimal policies by PIA, our
presented adaptive transmission policies, and greedy po-
lices which means that source can take action T only when
Bk−1 = 1 and Ek > 0.The performance is the expected total
number of packets that are received successfully during the
lifetime of the source node with initial state Ek = 0.

We consider Hk are Gilbert-Elliot channel model[11], which
has p11 = 0.8, p01 = 0.4, h1 = 0.5, h0 = 0.2. Besides, N =
10, β = 0.95.
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Figure 3: p1 = 0.2, p0 = 0.8
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Figure 4: p1 = 0.5, p0 = 0.5
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Figure 5: p1 = 0.8, p0 = 0.2

Fig. 3-5 show the performance against energy harvesting
probability λ1 over different parameters of the energy har-
vesting process. In Fig.3, p1 = 0.2, p0 = 0.8 means source
stays on energy harvesting state 0 for a longer time; in Fig.4,
p1 = 0.5, p0 = 0.5 means source stays on energy harvesting
state 0 and 1 for the same time; in Fig.5, p1 = 0.8, p0 = 0.2
means source stays on energy harvesting state 1 for a longer
time. First of all, from the three figures, we can see that
the performance of transmission policies increases with the
increasing of energy harvesting probability λ1. This is due
to the fact that the bigger energy harvesting probability is
, more energy can be used to transmit data. Secondly, the
performance of our presented adaptive policy is larger than
that of Greedy policies, but smaller than that of optimal
policies. However, when energy harvesting probability is
lower than a threshold, the performance of our presented
adaptive policy is a good approximation of optimal polices’s
performance. Finally, the difference of performance between
optimal polices and adaptive polices increases with the in-
crease of energy harvesting probability λ1. This is because
in our presented adaptive policies, we only consider different
thresholds for different energy harvesting states. However,
the thresholds have nothing to do with energy level.

5. CONCLUSIONS
In this paper, we have considered a point-to-point energy
harvesting system with time-correlated energy supply and
limited lifetime of source over time varying channel in a time
slot system. Our goal is to find optimal transmission poli-
cies to maximize the expected sum of successfully transmit-
ted data during the lifetime of the source. First, assumed
that the life time of source is geometric random variable, we
formulated above problem as an infinite-horizon discounted
reward MDP. Then we presented a low storage transmission
policies and introduced an algorithm to solve the optimal pa-
rameter in our present policies. Also, numerical results show
that when the energy harvesting is lower than a threshold,
the performance of our presented policies can be a good ap-
proximation of that of optimal polices, which can be derived
through policy iteration algorithm.
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