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1. Introduction

The main target of localization is to make a monotonic relationship between the object 

location and it's corresponding RSS [1]. RSS level tend to fall-off as the distance between 

sensors increases. However, RSS-distance relationship is not necessarily to be linear especially 

in indoor environments due to the effect of multipath [2]. Moreover, as half of our bodies is 

water, people movement cause fluctuations of RSS with time which reduce localization 

accuracy [3-5]. 

RSS measuring requires only power detectors which are available in WLAN, UWB, 

Zigbee, Bluetooth and infrared devices. Utilizing WLAN for localization purposes is 

advantageous due to its continuous surveillance, affordable and its ability of operating 

unattended for years [6, 7]; however this may cause interference difficulties with microwave 

ovens and Bluetooth devices, since these devices operate on the same frequency bands, however 

using different channels will minimize the correlation [2].  

RSS systems do not rely on timing information, this makes them more robust to multipath. 

Moreover, synchronization between devices is not required [8].  RSS localization systems excel 

in short-range distances, however, it provides lower accuracy in long-range distances comparing 

to TOA systems which are favourable for outdoor applications [9].  

On the other hand, training and complex matching algorithms are needed to perform 

localization [10]. Moreover, RSS is sensitive to shadowing, low signal to noise ratio (SNR), and 

NLOS propagation.  
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2. RSS-Based Localization Algorithms  

Many RSS-based localization algorithms are presented in literature including range-based 

position, radiofrequency fingerprinting technique, proximity-based position and probabilistic 

estimation [11], a brief discussion on these algorithms are introduced in the following 

subsections.  

 

2.1 Range-based position 

 

Localization using range-based techniques include two stages: ranging and lateration [12], 

in the first stage a distance-power relationship is formulated depending on the observed RSS 

values, in the latter step mobile’s location is inferred based on the distances obtained using least 

square techniques. Using this type of localization is preferred due to its ease; however, it suffers 

from varying RSS measurements [13].  

RSS values vary in a random manner within indoor environments. As the Tx-Rx distance 

increases, the SS level does not follow a monotonic decrease. Figure 1 shows Tx-Rx distance 

relationship with RSS along a building hallway.  

  
Fig. 1. Attenuation of RSS within a hallway.  

The figure shows a nonlinear relationship between RSS and Tx-Rx distance, this 

nonlinearity arises due to the fading effect.  At any receiver point, the received power is the 

transmitted power from transmitter minus losses; those losses are due to distance (the area mean 

propagation loss), shadowing (local mean propagation loss) and multipath (fast fading). In 

indoor environments access points (AP) locations tend to be known while the mobile’s location 

is unknown. For AP located at a known location (𝑥𝑖 , 𝑦𝑖) and a mobile located at an unknown 

location (𝑥, 𝑦), the received power at the mobile is given by Equation 1 [11, 14]:  

 

 
𝑃(𝑑𝑖) = 𝑃0 − 10𝑛 log10 (

𝑑𝑖
𝑑0
) + 𝜒𝜎  (1) 

 

where 𝑑𝑖 is the distance between ith AP and the mobile, (𝑃0 = 𝑃𝑡 + 𝑃𝐿(𝑑0)) is the RSS 

recorded at reference distance, it’s calculated experimentally or by applying Equation 2, 𝑃𝑡 is 



the transmitted power, 𝑃𝐿(𝑑0) is the average path loss at reference distance (usually 1 m) and 

𝜒𝜎  is a Gaussian random variable with zero mean represents shadow fading.  

 
 

𝑃0 = 𝑃𝑡 (
𝜆

4𝜋𝑑0
)
2

 (2) 

 

Solving Equation 1 for 𝑑𝑖 gives the distance between AP and the mobile:  

 

 𝑑𝑖 = 𝑑0 [10
𝑃(𝑑𝑖)−𝑃0+𝜒𝜎

10 ]

−1
𝑛

 (3) 

 

For an omnidirectional antenna, mobile possible locations may lie on a circle, mobile 

coordinates are the solution of the circle equation shown below:   

 

𝑑𝑖
2 = (𝑥 − 𝑥𝑖)

2 + (𝑦 − 𝑦𝑖)
2 (4) 

 

Provided that 𝑑𝑖 value is given by applying Equation 3. Since 𝑑𝑖 and (𝑥𝑖 , 𝑦𝑖) are known, the 

remaining unknowns are (𝑥, 𝑦), which needs at least another equation to be solved; however, 

with two equations there will be two possible solutions, in order to have a unique solution three 

equations are required, the intersection of these equations will determine the location of the 

mobile as shown in Figure 2, if the problem is in 3D (𝑥, 𝑦, 𝑧) then four APs are used at least to 

have unique solution [15].  

 

   
Fig. 2. Trilateration localization. 

Estimation of environmental parameters 𝜒𝜎  and  𝑛 is accomplished by taking a training data 

(SS collected from known locations), by fitting these data into a model using linear regression 

the unknown parameters are estimated [16]. 

 



Least Square Technique  

Due to the effect of noise and NLOS, the exact solution for a mobile’s location may not 

exist. In this case, least-square methods are applied. These methods are categorized into Non-

linear least square (NLS) and linear least square (LLS)[11]. The principle is as follows: the 

available information includes known parameters (𝑥𝑖 , 𝑦𝑖) and the measured parameter 𝑑𝑖. The 

target to estimate is the unknown location of the sensor (𝑥, 𝑦). This is accomplished by searching 

for all possible locations (𝑥̂, 𝑦̂) such that the distance between this point and (𝑥𝑖 , 𝑦𝑖) is 

approaching 𝑑𝑖 as much possible for all 𝑁 APs, as shown in Equation 5 [11]:  

 

 
(𝑥̂, 𝑦̂) = argmin

𝑥,𝑦
∑[(𝑥 − 𝑥𝑖)

2 + (𝑦 − 𝑦𝑖)
2 − 𝑑𝑖

2]

𝑁

𝑖=1

 (5) 

 

The above approach is the NLS method, which depends on its initial guess, therefore it's 

required to perform several iterations in order to get better results; however, this requires huge 

computations. For a less computational cost, LLS approach is performed; nevertheless less 

accurate results are obtained [11].  

A possible way to perform linearization is by taking the mean of all APs measurements 

then perform a subtraction from each observation [11]. 

 

 1

𝑁
∑[(𝑥 − 𝑥𝑖)

2 + (𝑦 − 𝑦𝑖)
2]

𝑁

𝑖=1

=
1

𝑁
∑𝑑𝑖

2

𝑁

𝑖=1

 (6) 

 

The Kth AP measurement becomes:  
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(7) 

 

For all N-APs, a matrix can be formed as (𝑨𝒛 = 𝒃) where (𝒛 = [
𝑦
𝑥
]) 

 

𝑨 =
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(8) 
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(9) 

 



The mobile location can be estimated as: 

 

 𝒛 = (𝑨𝑇𝑨)−𝟏𝑨𝑇𝒃 (10) 

 

Lateration is prone to outliers (the estimated position is extremely distant from the actual 

one), in order to give robustness to the system, outliers measurements are excluded by taking 

the median value of the sum [17]:  

 

(𝑥̂, 𝑦̂) = argmin
𝑥,𝑦

𝑚𝑒𝑑𝑖𝑎𝑛𝑖∑ [(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2 − 𝑑𝑖
2]

𝑁

𝑖=1

 (11) 

 

Differential RSS (DRSS) 

Equation 1 can be expressed in normalized form as:  

 

 𝑃𝑖 = 𝑃(𝑑𝑖) − 𝑃0 = −10𝑛 log10 (
𝑑𝑖
𝑑0
) + 𝜒𝜎  (12) 

 

As can be seen from Equation 1 or 12 measurements accuracy depend on many parameters 

including the unknown 𝑃𝑡, another problem is the fluctuation of RSS values with time. In order 

to remove the need for having a priori knowledge of 𝑃𝑡 and to reduce the effects of 

environmental changes, Differential RSS (DRSS) is adopted [18, 19]. 

 

 𝑃𝑖𝑗 = 𝑃𝑖 − 𝑃𝑗 = 10𝑛 log10 (
𝑑𝑗

𝑑𝑖
) + 𝜒𝜎𝑖𝑗 (13) 

 

where (𝜒𝜎𝑖𝑗 = 𝜒𝜎𝑖 − 𝜒𝜎𝑗). 𝑃𝑖  and 𝑃𝑗 have a variance of 𝜎2, 𝑃𝑖𝑗  have a variance of 2𝜎2 [16]. 

Generally, if 𝑚 APs are collaborating in localization there will be (
𝑚(𝑚−1)

2
) formulated DRSS 

equations, among these equations (𝑚 − 1) are basic equations, while the rest are redundant, the 

solution of each basic equation will lie on a hyperbola, the intersection of these hyperbolas gives 

the mobile’s coordinates [20].  

 

 
Fig. 3. Hyperbolic localization using DRSS. 

 



For example, using 3 APs system, there will be 2 basic equations (𝑃21 and 𝑃31) while (𝑃32) 

is a linear combination of (𝑃21 and 𝑃31), in order to have a unique solution three basic equations 

are required which is achieved by adding another AP in Fig. 3. The generated basic equations 

are (𝑃21, 𝑃31 and 𝑃43), while (𝑃41 and 𝑃42) are a linear combination of the basic function (𝑃43 −
𝑃31, 𝑃43 − 𝑃32) respectively.  

Although this method reduces dependence on knowing the value of 𝑃𝑡, it has poor 

performance in indoor environments compared to RSS [19].   

 

2.2 Radio-Frequency Fingerprinting  

 

Constructing a signal propagation model can be a very challenging task due to complexities 

of indoor environments, rather than modelling RSS behaviour another approach can be used 

known as Radio Frequency-fingerprinting technique [7, 21, 22].  

RF–fingerprinting involves of two stages; the offline stage and the online stage. In the 

offline stage (Training phase) the area of interest is divided into grids, in each grid, many RSS 

are scanned from nearby APs and averaged to remove the fast fading effect, averaged RSS with 

corresponding location (also called reference points RP) are stored in a database known as Radio 

map  [23]. 

In Online stage (Real-time phase) RSS measurements are collected from unknown locations 

called test points (TP), these measurements are then compared with the database built in the 

offline phase. One popular approach is to find the smallest Euclidean distance between the test 

point measurements and the radio map database [24]. The RP whose Euclidean distance with 

TP is the smallest represents the nearest location to TP [23]. 

 

 arg min
𝑅𝑃(𝑘)

√∑ (𝑇𝑃𝑙 − 𝑅𝑃(𝑘)𝑙)
2𝐿

𝑙=1  ∀ k = 1: K  (14) 

 

where 𝑘 is the kth RP. Other approaches estimate the k-nearest positions by finding lowest 

values of Equation 14 [25].  

The level of achieved accuracy depends heavily on how many APs and RPs used. Adding 

more APs will reduce the possibility of having ambiguous results and tend to enhance the 

localization process. Adding more RPs will enhance resolution; however, this will cost more 

labour work. Another disadvantage of this approach is the need for regular updates for the radio 

map as the building layout or the number of operating APs may be changed [11, 26]. Fig. 4 

shows the distribution of APs, RPs and TPs. 

 
Fig. 4. RF-fingerprinting approach 

 



2.3 Proximity-based position (Free Range Localization) 

 

Proximity measurements (relative positioning) have been suggested as a cheap and simple 

mean to estimate the range between mobile and AP location.  

In contrast to range-based localization which suffers from the fading differences in the 

propagation channel, proximity approach does not matter if the mobile and the AP are exposed 

to same fading channel or not, as long as they are within communication range [27]. 

Mobile’s location is estimated using the coordinates of the AP. Proximity approach is 

simple and widely used, however, accuracy is limited to AP radio coverage [28]. 

 

2.4 Maximum Likelihood Estimation  

 

In this method RSS behaviour is modelled as a random variable, two stages are performed 

similarly to RF-Fingerprinting approach. In the first stage, SS measurements are collected from 

the area of interest, these data are processed to give a probabilistic distribution for the SS 

behaviour in each location, in the second stage mobile’s RSS from surrounding APs are 

collected from unknown location and stored in vector and then mobile’s location is inferred 

based on Maximum Likelihood Estimation (MLE) as shown in Equation 15 [29]: 

 

 (𝑥̂, 𝑦̂) = argmax
𝐿𝑗
(𝑃(𝐿𝑗|𝒔𝒔)) (15) 

 

where 𝑃(𝐿𝑗|𝒔𝒔) is the probability that the mobile is located at the location 𝐿𝑗 given that the 

RSS vector is (𝒔𝒔). 

In the first stage, the study area is divided into grids, in each grid, the signal strength is 

measured from each AP extensively. If we assume a 4-grids environment with one AP, where 

many measurements were taken in each. At each grid the probability distribution of RSS from 

AP-1 𝑃(𝑠𝑠𝑗) will follow certain behaviour as seen in Fig. 5. This distribution also can be 

considered as the probability of having 𝑠𝑠 at grid 𝑗 (𝑃(𝑠𝑠|𝐿𝑗)). 

 

 𝑃(𝑠𝑠𝑗) = 𝑃(𝑠𝑠|𝐿𝑗) (16) 

 

where 𝑗=1:4. The probability for RSS from AP-1 in all grids will be:  

 

 

𝑃(𝑠𝑠) =
1

4
∑𝑃(𝑠𝑠𝑗)

4

𝑗=1

 (17) 

 

If we have M-APs then Equations 16 and 17 will be respectively:  

 

 𝑃(𝒔𝒔|𝐿𝑗) =∏𝑃(𝑠𝑠𝑖|𝐿𝑗)

𝑀

𝑖=1

 (18) 

 𝑃(𝒔𝒔) =∏𝑃(𝑠𝑠𝑖)

𝑀

𝑖=1

 (19) 

 



In the localization stage, the question is given this level of RSS what is the probability for 

the mobile to be located in each grid? Or as shown in Equation 20 [29]:  

 

 
𝑃(𝐿𝑗|𝒔𝒔

′) =
𝑃(𝒔𝒔′|𝐿𝑗)𝑃(𝐿𝑗)

𝑃(𝒔𝒔)
 (20) 

 

 
Fig. 5. Example of MLE RSS positioning methodology. 

 

Since the location of the mobile is unknown, then the probability of each grid to be the 

location where the mobile locates is equal.  

 

 
𝑃(𝐿𝑗) =

1

𝐽
 (21) 

 

The algorithm shows a precise analysis of the given data; however, it suffers from extensive 

labour work [11]. 

 
Fig. 6. Performance comparison between RSS based algorithms [30]. 

 

Fig. 6 and Fig. 7 give comparisons between RSS based algorithm, including the radar 

algorithm (RF-fingerprinting), GR gridded radar (RF-fingerprinting), ABP (MLE), H1 (MLE), 

LLS and NLS (Range based) using WLAN network [11] [30], as seen in these figures, MLE 

and RF fingerprinting performance are very similar while for range-based algorithms the 

performance is relatively poor. Also, it can be seen that NLS is more accurate compared to LLS.  



 
Fig. 7. Performance comparison between RSS based algorithms [11]. 

 

Conclusions  

A study on indoor localization techniques using received signal strength (RSS) is 

introduced. The RSS is cheap as it requires only power detectors which are available in Wi-Fi, 

UWB, Zigbee, Bluetooth, and infrared devices, it does not require synchronization between 

devices, it also shows good performance in NLOS propagation scenarios; however, as the 

distance becomes larger accuracy degrades. Choosing the localization method depends on many 

factors including cost, available resources, type of environment and accuracy required; the most 

powerful technique is the one that gives high accuracy with less computation 
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