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Abstract Broadband microwave termination is made of a uniform transmission line terminated by a 

nonuniform transmission having a varied distributed shunt admittance. We assume a line in which the 

fractional rise in admittance per wavelength is constant. By means of a nonuniform transmission line 

having a fixed geometrical length, we can obtain an arbitrarily large effective length without destroying 

the match of the input. 
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I   Introduction 

Nonuniform transmission lines (LTNU) first appeared for impedance matching in the 

frequency domain, to minimize discontinuities, but also because they have an adaptive 

"character" over wide frequency bands when the impedances to be adapted are different. Certain 

types of LTNU have interesting features. Exponential lines and linear variation of impedance 

have a non-periodic frequency response. These LTNUs are characterized by a cascade of 

uniform sections in quasi-TEM approximation. 

We propose to use a nonuniform transmission line as broadband termination, by fluctuating 

shunt admittance with a constant fractional increase per wavelength and terminated by a short 

circuit, in order to obtain a .big effective length from a fixed physical length.  

Considering the telegrapher equations describing the uniform transmission line behavior 

[1-2].  

 
dV

dx
+ Z(x) I = 0    (1) 

 
dI

dx
+ Y(x) V = 0     (2) 

 

Where Z(x) and Y(x) are per unit length distributed series impedance and the distributed 

shunt admittance respectively [3-4].  
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II   Admittance variation evaluation  

Considering a uniform lossless transmission line composed of series inductance L1 and a 

shunt capacitance C1 terminated by a nonuniform section as shown in figure 1, having a 

wavelength given by the expression [5-7]. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.1: Transmission line terminated by a Nonuniform line section 

 

 

𝜆 =
1

𝑓√𝐿1𝐶1
     (3 )  

 

Where, the local wavelength in the nonuniform line is expressed as 

 

   𝜆𝑙(x) =
𝜆

√ɛ(𝑥)
      (4) 

Where  

ɛ(x)=
𝑌(𝑥)

𝑗2𝜋𝑓𝐶1
=

𝐶(𝑥)

𝐶1
− 𝑗

𝐺(𝑥)

2𝜋𝑓𝐶1
     (5) 

 

Where C(x) and G(x) are per unit length distributed shunt capacitance and conductance 

respectively. 

In the case of a lossless nonuniform transmission line, we have 

 

{
𝐺(𝑥) = 0

ɛ(x) =
𝑌(𝑥)

𝑗2𝜋𝑓𝐶1
=

𝐶(𝑥)

𝐶1

      (6) 

 

In the aim to have minor fractional change in admittance Y(x) per local wavelength over 

2π, this condition should be satisfied  

 

 
𝜆

2𝜋

1

(√ɛ(x))
3

𝑑ɛ(x)

𝑑𝑥
≤ 𝑎        (7) 

Where a is a small constant. 



 
 

 

We assume a real s greater than zero, and find a function ɛ(x), which maximizes ɛ(s) , 

verifying conditions  

ɛ(0) = 1      (8) 

 

In addition, the expression (5) is verified in the interval [0, s]. 

Therefore, we consider the expression: 

 

ɛ(x) = (𝑒 + 𝑏𝑥)𝑐      (9) 

 

Replacing in expression (5), and using (7) we find 

{

𝑐 = −2

𝑏 = −
𝜋𝑎

𝜆

𝑒 = 1      

       (10) 

Which leads to the result: 

ɛ(x) = (1 −
𝜋𝑎

𝜆
𝑥)

−2

     (11) 

If x tends to 
𝜆

𝜋𝑎
 , ɛ(x) becomes infinite  

Ill   Resolving transmission line equations 

Considering a section having uniformly distributed series impedance jωL1 and nonuniform 

distributed shunt admittance per unit length jωC1ɛ(x), the equations (1) and (2) can be rewritten 

as 
𝑑2𝑉

𝑑𝑥2 + (
2𝜋

𝜆
)2ɛ(𝑥)𝑉 = 0     (12) 

 
𝑑2𝐼

 𝑑𝑥2 + (
2𝜋

𝜆
)2ɛ(𝑥)𝐼 −

1

ɛ

𝑑ɛ

𝑑𝑥

𝑑𝐼

𝑑𝑥
= 0      (13) 

If losses are not neglected, the conductance term of the admittance is not zero, and 

consequently ɛ(𝑥) will be complex 

 

ɛ(x) =
𝑌(𝑥)

𝑗2𝜋𝑓𝐶1
=

𝐶(𝑥)

𝐶1
(1 − 𝑗

𝐺(𝑥)

2𝜋𝑓𝐶(𝑥)
)     (14) 

In order to have the same dependence to ɛ(x), the ratio 
𝐺(𝑥)

𝐶(𝑥)
 must be constant 

 
𝐺(𝑥)

𝐶(𝑥)
= 𝛼     (15) 

And  

ɛ(x) = (1 − 𝑗
𝛼

𝜔
)(1 −

𝜋𝑎𝑥

𝜆
)

−2

    (16)  

 

Using change of variables 

𝑙 = 𝐿𝑛
1

(1−
𝜋𝑎

𝜆
𝑥)

        (17) 

 
Equations (10) and (11) can be written as 

 



 
 

𝑑2𝑉

𝑑𝑙2 +
𝑑𝑉

𝑑𝑙
+ 𝐵𝑉 = 0     (18) 

 
 

 
𝑑2𝐼

𝑑𝑙2 −
𝑑𝐼

𝑑𝑙
+ 𝐵𝐼 = 0     (19) 

Where  

𝐵 =
4

𝑎2 (1 − 𝑗
𝜎

2𝜋𝑓
)      (20) 

The solutions of these equations are 

𝑉 = 𝑒−
𝑙

2(𝑉1𝑒−𝑙√𝛥 + 𝑉2𝑒𝑙√𝛥)     (21) 
And  

𝐼 = 𝑗
𝑎

2
√

𝐶1

𝐿1
𝑒

𝑙

2[𝑉1̅ + 𝑉2̅]    (22) 

       Where  

𝑉1̅ = −(√𝛥 + 0.5)𝑉1𝑒−𝑙√𝛥    (23) 

 

𝑉2̅ = (√𝛥 − 0.5)  𝑉2𝑒𝑙√𝛥    (24) 
And 

Δ=
1

4
− 𝐵      (25) 

√𝛥 is considered an effective propagation constant, however, L is introduced as an effective 

length. 

This effective propagation constant is real when a≥4 in the case of a lossless line (when 

σ=0). Thus, C(x) and ɛ(x) are frequency-independent, so the constant a must me proportional to 

wavelength and a cutoff wavelength 𝜆0 expressed by 

 

𝑎 = 4
𝜆

𝜆0
= 4

𝑓0

𝑓
    (26) 

 
The effective propagation constant can be written as 

√𝛥 = 0.5.
𝑓

𝑓0
(

𝑓0
2

𝑓2 − 1 + 𝑗
𝜎

2𝜋𝑓
)

0.5

    (27) 

 
At the limit x=s, the voltage is zero, so voltage amplitudes relations can be deduced. 

Also, at x=0, the input admittance is given by 
 

𝑌𝑖 =
𝐼(𝑥=0)

𝑉(𝑥=0)
= −2𝑗𝑓0𝜆𝐶1(0.5 + √𝛥𝑐𝑜𝑡ℎ (𝐿√𝛥))    (28) 

Where 

𝐿 = 𝐿𝑛
1

(1−
𝜋𝑎

𝜆
𝑠)

    (29) 

As consequent, the voltage reflection coefficient is written as 

𝜌 =
√

𝐶1
𝐿1

−𝑌𝑖

√
𝐶1
𝐿1

+𝑌𝑖

       (30) 

Using relations (28) and (30) we can write 



 
 

𝜌 =
1+𝑗

𝑓0
𝑓

(1+2𝑗√𝛥 𝑐𝑜𝑡ℎ(𝐿√𝛥))

1−𝑗
𝑓0
𝑓

(1+2𝑗√𝛥 𝑐𝑜𝑡ℎ(𝐿√𝛥))
    (31) 

 
In order to have a small reflection coefficient over broadband, the transmission loss 

must be large, and as a result, 𝐿√𝛥 must be large. 
From (29) the physical length of the line related to the effective length can be written 

as 

𝑠 =
𝜆0

4𝜋
(1 − 𝑒−𝐿)     (32) 

 
The relation between physical and effective lengths is illustrated in figure 2. If the 

effective length is very large, the cutoff wavelength is equal to 4πs. 
 

 

Fig 2: Effective and physical lengths relationship 

  

A great value of L is obtained by approaching the singularity in ɛ(x). The real part of 
ɛ(x) at x=s. 

 
𝐶(𝑠)

𝐶1
= (1 − 4𝜋/𝜆0 )−2=𝑒2𝐿    (34) 

 
So that beyond large values of distributed shunt capacitance are required to obtain 

large effective lengths 

 
Fig.3: Admittance ratio in the case of 13-db transmission loss. 
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In the aim to calculate the distributed shunt capacitance at x=s; to ensure a given 

transmission line loss; this result will depend on the value of the loss parameter
𝜎

𝑓0
 . 

In figure 3, if 
𝜎

𝑓0
  is very much less than one, a big value of   

𝐶(𝑠)

𝐶1
 is required.  If the 

transmission loss is sufficiently large 
 

𝑐𝑜𝑡ℎ(𝐿√𝛥) = 1    (35) 

 
If, in addition, 

𝜎

𝑓0
  is neglected in comparison to unity, it follows from (31) that 

|𝜌|2 =
1−√1−(

𝑓0
𝑓

)2

1+√1−(
𝑓0
𝑓

)2
       (36) 

Equation (36) provides the intensity reflection of the ideal line. The return loss and 
the reflection coefficient is plotted as a function of the frequency in figures 4.and 5, where 
the return loss is zero at the cutoff frequency, but increases rapidly as the frequency 
increases. 

 

Fig.4: Return loss in the case of ideal line 

 

  

Fig.5: Reflection coefficient in the case of ideal line 
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In practice, for example, the reflection coefficient and return loss will also be 

calculated for   
𝜎

  𝑓0
. It follows from figures 5 and 6, that this requires 

𝐶(𝑠)

𝐶1
= 400 to ensure a 

13 dB transmission.  

It follows from (27) that, if  
𝜎

 𝑓0
= 4π , then  

√𝛥 = 0.5 (1 + 𝑗
𝑓

𝑓0
)     (37) 

 
Fig.6: Reflection coefficient of a real line  

With
𝜎

𝑓0
= 4𝜋. 

 
Fig.7: Return loss of a real line with

𝜎

𝑓0
= 4𝜋. 

As result, the real part of effective attenuation is frequency independent.  

The effective length of this line is L=3. For these values of √𝛥 and L, coth (𝐿√𝛥) 
oscillates between 0.9 and 1.1.as shown in figure 7. 
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Fig.8: coth (𝐿√𝛥) parameter versus frequency 

If we neglect interference due to multiple reflections, assuming coth (𝐿√𝛥) =1, the 
reflection coefficient of the line is given by 

 |𝜌|2 =
1

1+(
𝑓0
𝑓

)2
     (35) 

The blue curve in figure 7 gives the return loss as a function of frequency, deduced from 

the exact expression. However, the red curve gives the return loss neglecting interference 

effects, as determined from (35), it is shown that the exact return loss in oscillating about the 

value obtained when the interference effects are neglected. However, in the high-frequency limit 

(𝑓 ≪ 𝑓0 ) the two curves diverge. 

For 
𝜎

𝑓0
= 4𝜋 the return loss at high frequencies approaches 26 dB, which is just the two-

way transmission loss of the line. 

It is clear from figure 4, that there is 3 dB return loss at the cutoff frequency of the ideal 

line, however, as the frequency increases, at 𝑓 = 4𝑓0the return loss is 13.3 dB of a real line, and  

17.8 dB for the ideal line. 

IV   Conclusion  

Starting from nonuniform transmission lines in which the fractional change in shunt 
admittance per wavelength is constant. The transmission line equations have been 
resolved and the solution shows that a fixed length of line s can lead to as large effective 
length as desired. Hence, with the introduction of a small loss term, all energy matches 
into the line are completely absorbed regardless of the line’s termination. 

The differences between the ideal structure and the practical example become 
explained as a greater required absorption. Nevertheless, practical structures may 
approach the performance of the ideal line if one considers a variation of the loss term σ 
in addition to the capacitance C(x) variation. 
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