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Abstract. This paper provides a general overview of (Bayesian Confirmatory Factor Analysis) with mixed 

ordinal and binary data. Mixed variables with specific cut-points are used and the simulation (Gibbs 

sampling) of the Markov chain Monte Carlo (MCMC) as an estimation tool. The problem of qualitative 

data is handled using censoring methods with specific cut points. Some additional tools, which contain on 

the Bayesian estimator, standard deviations (SD), Markov chain error (MC error) and highest posterior 

density (HPD) interval, are interpreted. The developed approach is discussed with the findings derived 

from the OpenBUGS program using the information on the quality of life (QOL).  
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1. Introduction 

  " Confirmatory factor analysis" (CFA) is a special case of factor analysis which is commonly 

used in social researches. Its investigation needs more unequivocal and points by point data than 

"exploratory factor analysis" (EFA). For instance, in the case of data from past investigations, 

logical speculations or situations, it needs to identify which variable loads on which factor. In 

this case, confine particular loadings to be equivalent to zero. As well as, accessible data 

identified with the relationship between factors can embed.  

   The investigator has more often than not data accessible from past examinations, so he can 

estimate factor loadings by making particular assumptions. Sometimes CFA takes after EFA by 

dispensing with loadings with low values.  

   The introduction of CFA is very extraordinary comparing with EFA because it is an approval 

strategy model. As an outcome, the attack of the model will be poorer since a few parameters 

will be settled or dispensed with. What is lost in the attack will be pick it up as an expansion in 

the degree of opportunities along these lines for the stinginess standard. It is a factual system 

for displaying a succession of related information to gauge the interrelationships among 

manifest and latent variables [1]. 

 In the former years, many specializers recommended models that contain CFA. Some of these 

papers are proposed by Erosheva and Curtis, [2]; Najafabadi, et al., [3]; Merkle, [4]; Kupek, [5]; 

Karatza, [6];  Burgette and Reiter, [7]; Hoofs, et al., [8]; Yu, et al,. [9]; Taylor, [10]. Its strategy 

is very important in many applications, for example, cross-cultural research. The quick 

development of CFA is back to the request of unobtrusive models and related factual strategies 

to tackle complex research issues in various fields. 

IMDC-SDSP 2020, June 28-30, Cyberspace
Copyright © 2020 EAI
DOI 10.4108/eai.28-6-2020.2297911

https://pdfs.semanticscholar.org/e301/4b273858e14586d94b5d644b1f100bfc6264.pdf
mailto:thanoon.younis@ntu.edu.iq
mailto:Hasmek.krekorian@ntu.edu.iq
mailto:Robiaha@utm.my
mailto:thanoon.younis@ntu.edu.iq


 

   The approach of the Bayesian idea has been produced with the Gibbs sampling algorithm [11], 

the censoring distribution and latent variables are dealt with as assumptive missing data. 

Conjugate priors are utilized for structural parameters and non-informative priors are for the cut 

points.  

    Bayesian approach is used in this research as a proposed method for analyzing CFA models 

with qualitative data. For model selection, the Deviance Information Criterion (DIC) (see [12]) 

is used. The major problem is to solve the issue of qualitative data (mixed data), CFA and 

Bayesian analysis is used to estimate the parameters and treat the censoring distribution as a 

missing data and merge them in the posterior analysis. 

   The article contains the following: Introduction of confirmatory factor analysis (CFA) in 

Section 2.  Using Bayesian estimation for CFA in Section 3. The Bayesian model selection using 

DIC is discussed in Section 4. An example of real data is given in Section 5. Section 6 discusses 

the findings and it's interpretations.  Section 7 will be for the conclusions. 

 

2. The Model of Confirmatory Factor Analysis  

"The confirmatory factor analysis" (CFA) model is a normal extension of the exploratory factor 

analysis (EFA) model. For example, the following CFA is considered [1]. 

           
, = +x 

               
(1) 

where ix ( 1)p   a  random vector of response variables, ( )p q  is a factor loading 

matrix of,
 
 ( 1)q   is a of latent factors vector, ( 1)p   is called a random vector of 

residuals. So, 
 
is then distributed as [ , ]N I0 , Further,

 
  is distributed as

 
[ , ]N 0  , where 

  with diagonal elements 1,..., p    is a diagonal matrix. It has also been determined that, 

in this case,   and   are both independent as well.
 

   The proposed CFA Can be used to treat massive completely different kinds of cases. Moreover 

with reference to CFA s, one should watch out to properly interpret the mean vector x , 

particularly because it relates to . 

   In any case, to solve the issue of qualitative data, it should be assumed that 
iy ( 1)s  is a 

sub-vector of the unobservable continuous data. This information is reflected within the 

observed mixed vector
iz . At its most essential level, mixed variable 

mz can be introduced 

according to it's unobserved continuous random variable 
my by: Such that it is also true that 

,1 ,2 ,b ,b 1{ ... }
m mm m m m    +− =     =  is the set of cut point's specification 

which define the given classes, and 
mb for which 

mb represents the number of selected cut 

points regarding the mixed variable
mz .  

It should be clear that the number of cut points is equivalent to every mixed variable.  

 

 



 

3.  Markov Chain Monte-Carlo Method for CFA 

   In the previously recognized model, let   be a vector of the unknown parameter. To be more 

precise, to let Bayesian estimates generated according to the Gibbs sampler, it allowed being a 

vector containing the complete set of distinct unknown parameters. For the mixed variables, let 

  be the vector of cut points. 

Moreover, the observed mixed date is denoted by 1( ,..., )N=Z z z , while for latent 

continuous measurement let be denoted by 1( ,..., )N=Y y y  which are related to Z 

respectively. Thence in the posterior analysis, the increase of observed data is done by Y. After 

establishing y, all the data can be counted and treated as continuous the problem is going to be 

easier to tackle. Moreover, let on the variable 1( ,..., )N=     be latent matrix. In addition 

to that realization that the observations of   and measurement equations intensified into a 

regular simultaneous regression model. 

    Therefore, issues related to the model's more complex elements can be solved by increasing 

the data. Through posterior analysis (Z), which is the set of data observed, can be completed by 

( , )Y  . Moreover, reveal the joint posterior distribution [ , , , | ]Y Z   . It is possible to 

apply the Gibbs sampling algorithm to create a series of observations from the associated 

posterior joint distribution. 

  As an outcome, a set of standard inferences based on a simulated sample of observations may 

be applied via the Bayesian approach. In addition, using Gibbs sampling, the iteration technique 

can be used to create a sample observation from the following distributions:                  "

[ | , , , ]Y Z   , [ , | , , ]Y Z   " and "[ | , , , ]Y Z   ". 

    With the same strategy, it can decide the non-informative before finding out " " so that the 

relevant prior distribution is comparable to the constant, which are used in previous cut point 

problems. The conditional distribution "[ | , , , ]Y Z   " hence can be added into individual 

components with several different structural parameters, depending on the particular models. 

The components of the conditional distribution, known as "[ | , , , ]Y Z   " applied to prior 

distributions are somewhat various and different. To start with, it is implicitly assumed that the 

previous distributions for the unconstrained parameters from different models would act 

independently. In addition, it becomes necessary to identify the specific value of its prior 

distribution while constructing an approximation for the unconstrained parameters and to 

outline the information belonging to the corresponding groupings in order to be completely 

implemented. 

  This section explains the Bayesian estimation and model choice in the case of using CFA with 

mixed data. The definition of data increase is explored with Markov Chain Monte Carlo 

(MCMC )tools to complete the general scheme[13]. 

    The goal is to define how to analyze the preceding CFA models, in the context of the mixed 

variables, using the Bayesian approach. Understanding these principles will allow us to 

strategically augment the data as termed in the Bayesian estimation of the confirmatory factor 

analysis s with mixed variables. 

   The data matrix [Z] is enhanced by the unobserved data [Y, ] in the posterior analysis. 

Along these lines so as to characterize the Bayesian estimation of CFA, let 
1{ ,..., }nz z=Z



 

to represent the observed data set of mixed variables, and   represents the unknown parameters 

vector.  

The Bayesian estimate for  , the estimates of standard error 

can be derived respectively from the mean sample and variance matrices. 

          

1 ( ) 1 ( ) ( )

1 1

, var( | ) ( 1) ( )( ) .
N N

t t t

t t

N N− −

= =

= = − − −       Z                       (2) 

The following well-known prior distributions of conjugate are used: 

       0 0 0 0( ) ~ [ , ], ( | ) ~ [ , ],k k k k k k k kp N p N         H H    

       

1 1

0 0 0 0( ) ~ [ , ], ( ) ~ [ , ]q k k kp W p Gamma   − − R                                           (3) 

Respectively given the definition that
k , is the kth diagonal element of , k    and k   

are the kth rows of   and  . 
2 2

0 01 0( ,..., ),pdiag  =H and 0 0 0, , ,k k k    

0 0 0 0 0, , , , ,k k k   H H  and
 0R  it supposed to be known, however, prior information is 

obtained via analysis of past data, theoretical consideration and causal observance. 

As built up in crafted by Kass and Raftery [14], expected prior knowledge, as it is related to 

current models, is usually chosen for comfort only when specific data are not collected enough. 

This should be possible on the grounds that the impact these presumptions have on Bayesian 

estimations stays little, notwithstanding when a huge example measure is utilized. The outcomes 

are useful when attempting to utilize PC displaying with the Gibbs sampler [11], because it can 

simulate ,   and  , all from the conditional distribution. 

Because it is capable of simulating ,   and , from all conditional distribution. 

   Notwithstanding, due to the presence of mixed data, excessively unpredictable can be the 

associated conditional distributions, making it impossible to effectively extract or simulate 

information from them. The simulation process will start with the starting values and then 

simulate the first observation 
(1) (1) (1) (1)( , , , )Y    until the mth iteration of these 

observations to get on with the observation from the posterior distribution. 

   The series, after the mth repetition, will give us
( 1) ( 1) ( 1) ( 1)( , , , )m m m m+ + + +

Y   . However, 

the joint distribution
( ) ( ) ( ) ( )( , , , )m m m m

Y   can be proven to move toward the joint 

posterior distribution[ , , , ]Y Z    [15].  

 

4.  Bayesian Model Selection 

In this paper, DIC is used provided by OpenBUGS. It is equal to: 

( ) 2D DDIC D p D p= + = +       (4) 

Where 

 D , the posterior mean of the deviance, 

 Dp , the effective number of parameters, 



 

 and ( )D   is the point estimate of the deviance at the mean of the estimated parameters θ. 

The deviance is defined as 

                  ( ) 2log ( / ) (5)D f y = −
           

 

While  

( )

1

2
log ( / ) (6)

N
t

t B

D f y
N


= +

= −              

  The model with the smallest DIC is evaluated as better predict an imitated dataset of an 

indistinguishable structure form that as noted at the moment [6]. The DIC values corresponding 

to the CFA s with real data is produced by OpenBUGS program.  

 

 

5. Real Data Example 
  

    The (QOL) data measures the quality of life and has an extraordinary incentive for clinical 

works and medical research, arranging and assessment of social insurance. It has been for the 

most acknowledged part, QOL is a multidimensional idea that is best assessed by various 

distinctive idle builds, for example, physical capacity, wellbeing status, mental status, and social 

connections [16].  

   The instrument in QOL are normally estimated on the mixed scale, first, (12) variables are 

ordinarily with three-to five-categories and second (12) variables are binary with two categories. 

It is considerable in investigations of discrete nature likewise draws (Fayer and Machin, [17]; 

Fayer and Hand, [18]). This instrument WHOQOL-100 [16] was built up to assess four latent 

factors.  

 

Table 1 Description of the data 

"The initial seven things (Q1 to Q7) are planned to address physical health". 

"The following six things (Q8 to Q13) are proposed to address mental health". 

"The three things (Q14, Q15, Q16) that take after are for social connections". 

"The last eight things (Q17 to Q24) are expected to address the condition, giving a sum of 24 things". 

 

The majority of the things are estimated with a five-point scale  

"(1 = ‘not at all/very dissatisfied’; 2 = ‘a little/dissatisfied’; 3 = ‘moderate/neither’; 4 = ‘very 

much/satisfied’; 5 = ‘extremely/very satisfied’)", and we recode the second (12) variables to 

binary (1 = satisfied; 2 = dissatisfied) to study the relationship between ordinal and binary data. 

   The sample size is extremely large for entire data. To outline the Bayesian techniques, 

investigated by a synthetic data set with sample size n = 338. Regarding these mixed data as 

originated from a continuous normal distribution isn't right. So this Bayesian approach considers 

the discrete idea of the information which is connected to dissect this mixed data.  

   Manifest 24 real data example related to four basic latent variables 1 2 3 4( , , , )i i i i    from 

CFAMs defined in Equation (3) are discussed. To illustrate the confirmatory factor analysis 

Bayesian method with mixed variables, a real data set is related to random vectors, 



 

1 2 24( , ,..., )i i i i
=z z z z , let 1 2 24( , ,..., )i i i i

=y y y y  be the random vector of latent 

continuous, which corresponds to the mixed variables 1 2 24, ,...,i i iz z z where
 

, i 1,..., ni =z  

are mixed variables that are related to (4) latent variables
 1 2 3 4( , , , )i i i i i   =w ,

1 2 24( , ,..., )i i i i=    , with the values of the parameters in 1 2 20( , ,..., )=    . 

Using CFA model to assess the relationships of the latent variables 
1 2 1 2

( , , , )
i i i i i

w    =
  

The prior inputs of the hyperparameter values are as follow: 

1- "Prior I: Elements in 0k  and 0 k  in Equation (3) are series equal to the following 

optional values with initial values are equal to 1";  

"
1

0 8− = R 
 0 0,u kH H and 0 kH are used to be 0.25 times the identity matrices; 

0 10k =  , 
0 8k =  , 

0 30 = ". 

2- "Prior II: Elements in 0k  and 0 k  in Equation (3) are series equal to the following 

optional values with initial values are equal to 0.5";  

"
1

0 8− = R 
 0 0,u kH H and 0 kH are used to be 0.25 times the identity matrices; 

0 10k =  , 
0 8k =  , 

0 30 = ". 

   To explain and analyze the data set, the quality of life data set with (n=338) was analyzed by 

OpenBUGS [19] to implement Bayesian estimates in the CFA model. For analyzing it is used 

the MCMC procedure, the data need more iterations to converge when comparing the Bayesian 

analyses of CFA with the data. The estimation of the parameters were obtained using Bayesian 

approach from T=10000 Iterations for censored distribution in CFA model. 

 

6. Results and Discussion 

    In this section, the objective is to discuss the results that reveal the empirical performance of 

estimating parameter and model selection.  

   The Bayesian way was used to analyse CFA models for mixed data, which is the purpose of 

this research, applied using freely available statistical software OpenBUGS to analyze unknown 

parameters and model selection (DIC). So it is convenient to be applied to real data. But there 

are some restrictions on this approach. The most important is that the majority of data come 

from mixed is discrete due to the nature of social and behavioral sciences. While studying mixed 

data, the essential assumption in CFA that the data that came from a normal distribution is 

plainly damaged, so it is necessary to find an alternative solution to overcome this problem.  

   Hence, it's clear that regarding mixed factors as the continuous variable may lead to prompt 

incorrect conclusions (see Lee et al., [20]; Olsson, [21]). A good approach to evaluating these 

kinds of data is to consider it observations came from censoring distribution with specific cut 

points. 

 



 

    

 

Figure 1. [Path Diagram of the study] 



 

 

Figure 2. Time Series Plot and Posterior Density Plot of observation corresponding to some 

parameters for CFA with mixed Variables 



 

Para Est. SD MC error HPD Interval Para Est. SD MC error HPD Interval 

λ 1
 0.906 0.122 0.004 [0.684, 1.157] ɸ33

 

2.648 0.685 0.041 [1.481, 4.099] 

λ 2
 0.886 0.088 0.004 [0.725, 1.069] ɸ34

 
-2.346 0.508 0.019 [-3.437, -1.461] 

λ 3
 0.829 0.080 0.003 [0.687, 0.993] ɸ44

 

4.395 0.880 0.045 [2.860, 6.295] 

λ 4
 0.694 0.084 0.003 [0.535, 0.866] Ψ1

 
0.875 0.090 0.002 [0.710, 1.061] 

λ 5
 0.855 0.081 0.003 [0.711, 1.023] Ψ2

 
0.602 0.067 0.001 [0.480, 0.740] 

λ6
 0.909 0.085 0.004 [0.755, 1.086] Ψ3

 
2.209 0.242 0.005 [1.771, 2.719] 

λ 7
 0.816 0.083 0.002 [0.660, 0.984] Ψ4

 
2.879 0.344 0.007 [2.259, 3.580] 

λ 8
 0.487 0.058 0.001 [0.375, 0.607] Ψ5

 
1.324 0.131 0.002 [1.080, 1.591] 

λ 9
 0.550 0.083 0.002 [0.393, 0.719] Ψ6

 
3.240 0.348 0.006 [2.624, 3.974] 

λ 10
 0.774 0.070 0.002 [0.643, 0.916] Ψ7

 
2.942 0.321 0.006 [2.362, 3.615] 

λ 11
 1.404 0.263 0.014 [0.962, 2.014] Ψ8

 
2.594 0.296 0.006 [2.064, 3.220] 

λ12
 0.000 0.073 0.002 [-0.147, 0.145] Ψ9

 
2.088 0.218 0.004 [1.690, 2.536] 

λ 13
 1.210 0.283 0.019 [0.752, 1.830] Ψ10

 
3.320 0.312 0.004 [2.746, 3.968] 

λ 14
 0.467 0.135 0.006 [0.241, 0.764] Ψ11

 
1.850 0.176 0.003 [1.524, 2.211] 

λ 15
 0.406 0.127 0.006 [0.196, 0.689] Ψ12

 
3.628 0.376 0.006 [2.939, 4.397] 

λ 16
 0.857 0.199 0.011 [0.540, 1.320] Ψ13

 
1.389 0.401 0.021 [0.732, 2.270] 

λ 17
 0.336 0.119 0.005 [0.136, 0.608] Ψ14

 
1.744 0.422 0.020 [1.033, 2.688] 

λ 18
 1.399 0.290 0.017 [0.917, 2.045] Ψ15

 
1.119 0.343 0.016 [0.544, 1.881] 

λ19
 1.228 0.259 0.016 [0.791, 1.782] Ψ16

 
1.392 0.413 0.022 [0.698, 2.334] 

λ 20
 1.384 0.257 0.016 [0.942, 1.960] Ψ17

 
0.737 0.216 0.012 [0.388, 1.217] 

ɸ11
 

2.931 0.504 0.022 [2.071, 4.048] Ψ18
 

1.180 0.381 0.022 [0.566, 2.025] 

ɸ12

 

-2.537 0.434 0.012 [-3.461, -1.780] Ψ19
 

1.154 0.358 0.018 [0.557, 1.940] 

ɸ13

 

0.880 0.307 0.011 [0.330, 1.553] Ψ20
 

1.272 0.407 0.022 [0.610, 2.176] 

ɸ14
 

-0.729 0.357 0.011 [-1.486, -0.067] Ψ21
 

1.167 0.350 0.017 [0.594, 1.926] 

ɸ22

 

5.676 0.800 0.023 [4.303, 7.393] Ψ22
 

1.429 0.427 0.023 [0.718, 2.386] 

ɸ23

 

-1.346 0.422 0.014 [-2.249, -0.580] Ψ23
 

1.389 0.412 0.023 [0.715, 2.311] 

ɸ24 -0.404 0.488 0.016 [-1.385, 0.535] Ψ24 1.470 0.407 0.022 [0.785, 2.369] 

Table 2. Bayesian Estimation of Confirmatory Factor Analysis Model with Mixed Variables 

 



 

Table 3. The goodness of Fit Statistics (DIC) for Confirmatory Factor Analysis Model with 

Mixed Variables 

 Dbar Dhat DIC pD 

Total 13670.0 12810.0 14520.0 857.3 

 
   It is noticed from the table (2) that SD values are small for all the parameters and MC error, 

for mixed variables with censoring distribution and cut points. The effectiveness of the HPD 

intervals is suitable for mixed variables when using censored distribution, so the highest 

posterior density (HPD) for all the parameters has been calculated. Which are significantly far 

from zero . 

   The data sets are used confirmatory factor analysis to re-analyzed appear the effectiveness of 

DIC for the goodness of fit test and compare the results with the correct model, which is shown 

in table (3). The goodness of fit test DIC of CFA with mixed data using censored distribution 

was (14520.0). Which is considered a satisfactory performance of DIC. 

   By plotting several generated sequences of individual parameters with various starting values 

clear the idea of concourse Gibbs sampler, presented in figure Bayesian evaluations were 

acquired from T = 5000 cycles in CFA models for censoring distribution. 

 

7. Conclusions and Recommendations 

In social and behavioral sciences, the CFA is very common. The goals of this article are 

three, the first is to estimate parameters using confirmatory factor analysis models, the second 

is to deal with the problem of mixed data using censoring distribution and the thirds is applying 

the cut point's method. Developing a confirmatory factor analysis models with missing data may 

be a potential future research topic . There are examples with latent variables in CFA models, so 

this article discusses the measurable techniques acquire "SD" and Bayesian goodness of fit test 

using the (DIC) attributable and its complication. As we notice the troubles emerging caused by 

relationships between the latent factors and the discrete idea of mixed data are lightened by 

increasing data with some MCMC techniques. While increasing the actual observed data with 

the theoretical missing one would be moderately simple with the full information  . This 

technique is intense and can be connected to other more unpredictable models. 
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